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Abstract

This thesis deals with computing of the magnetic lens with a perturbed pole piece due
to manufacturing imperfections. Two possible ways of calculation are discussed — the
perturbation theory and 3D computing. Three methods for evaluating axial multipole field
functions from 3D fields are introduced. Beam spots in the image plane and aberration
coefficients are computed and results obtained by the application of perturbation theory
are compared to results evaluated from 3D simulations. Consequently, a suitability of
using the perturbation theory is discussed.

Key words

Magnetic lens, manufacturing imperfections, parasitic aberrations, axial multipole field
function.

Abstrakt

Tato práce se zabývá výpočty magnetické čočky, jejíž pólový nástavec má kvůli nepřesnos-
tem ve výrobě porušenou rotační symetrii. Jsou diskutovány dva možné způsoby výpočtů
— užití poruchové teorie a 3D výpočty. Jsou představeny tři metody pro určení osových
multipólových funkcí ze 3D polí. Jsou vypočítány stopy svazku v obrazové rovině a aber-
ační koeficienty a výsledky získané použitím poruchové teorie jsou porovnány s výsledky
vypočítanými s využitím 3D simulací. Na základě těchto výsledků je diskutována vhod-
nost použití poruchové teorie.
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1 Introduction

Performance of electron optical system depends on the quality of lenses. Widely used
electrostatic and magnetic lenses are rotationally symmetric, but limited machining pre-
cision of electrodes and pole pieces causes small perturbations from the ideal shape. These
perturbations induce parasitic fields, which affect the optical properties of the lens. Aber-
rations corresponding to mechanical imperfections are usually called parasitic aberrations.
Two principal ways to deal with the parasitic aberrations [1] are available. The first possi-
bility is the ”blind” alignment relying on improved manufacturing precision and alignment
procedures to reduce the aberrations to acceptable values, without being able to address
them individually. On the other hand, this very fine production could be too expensive
for mass production of standard electron optical systems, especially if the device per-
formance is affected negligibly by parasitic aberrations. The second alternative is to add
optical elements that give the complete control over the aberrations. Therefore, often just
basic correction by several stigmators and deflectors is sufficient. For the lens designer,
it is important to estimate the influence of parasitic aberrations on system performance
and suggest the adequate power of correcting elements. However, corrections of parasitic
aberrations are beyond the interest of this thesis.

This thesis freely follows the doctoral thesis of Ondřej Sháněl [2] from 2014, the paper
by Ondřej Sháněl, Jakub Zlámal and Martin Oral from 2014 [3], and contributions of
Michal Horák and Jakub Zlámal [4], and Jakub Zlámal and Bohumila Lencová [5] to the
9th international conference on charged particle optics held in 2014 in Brno. The main goal
of this work is to introduce a method for evaluating 3D electrostatic and magnetic fields
and to explore the results obtained by two different techniques for computing electron
optical systems with broken rotational symmetry — application of perturbation theory
to 2D calculations and 3D simulations. As the result, limits of the perturbation theory
are explored and illustrated on a magnetic objective lens.

Electron optical systems with broken rotational symmetry were studied for the first
time by Walter Glaser in 1942 during his stay in Prague [6]. Parasitic aberrations of the
magnetic objective lens caused by misaligned and elliptic pole pieces were observed and
simply eliminated by James Hillier and E. G. Ramberg in 1946 [7]. The most important
step in the progress of calculation of parasitic aberrations was the numerical computation
of fields. The problems of tolerances of the shape of electron lenses graduate especially
with the manufacturing of the high resolution microscopes. A brief survey of literature
dealing with parasitic aberrations is in chapter 2.

A field close to the optical axis can be expressed using the axial potential in the case
of an electrostatic lens, respectively using the axial magnetic flux density in the case of
a magnetic lens [8, 9]. Analogously the parasitic fields can be simply characterized by
the axial multipole field functions. The knowledge of the axial field functions is therefore
important to evaluate optical properties and to interpolate the field using radial expansion
of axial fields derived in chapter 3.
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Nowadays, there are two possibilities of numerical computing of electron optical sys-
tems with broken rotational symmetry. The first alternative is to use the perturbation
theory, which substitutes the impact of lens defects by parasitic multipole fields. The per-
turbation theory was introduced by François Bertein in 1948 [10] for electrostatic lenses
and by Peter Andrew Sturrock in 1951 for magnetic lenses [11]. Three basic mechanical
imperfections — ellipticity, misalignment, and tilt — of otherwise rotationally symmetric
lens can be solved using the perturbation theory implemented in plug-in Tolerancing in
Electron Optical Design (EOD) software [12]. The second possibility to study broken rota-
tional symmetry is to use software, like COMSOL Multiphysics [13], which allows solving
fully 3D problems. The simulation of perturbed electron optical systems is discussed in
chapter 4.

It is advantageous for accurate interpolation and also evaluation of aberrations to
substitute the 3D field by the axial multipole field functions. Computed 3D field can be
affected by numerical errors. These errors are mainly caused by the shape and size of mesh
elements. The mesh of 3D problems is not as dense as the mesh in 2D computation due to
the memory consumption requirements in general. Three methods usable to determine the
axial multipole field functions from the 3D field are introduced in chapter 5. Advantages
and disadvantages of each method are shown on the example of the magnetic lens with a
hole in the pole piece, discussed in [4].

Evaluation of the influence of different perturbations on optical properties of the mag-
netic lens consists of four parts — computation of the field, determination of the axial
field functions, particle tracing, and calculation of relevant aberration coefficients. The
process is introduced on the magnetic objective lens with an elliptic pole piece (chapter
6) and applied to different types of perturbations of the lens (chapter 7). The study is
divided into four topics — influence of the saturation of magnetic materials (section 7.1),
influence of the ellipticity magnitude (section 7.2), the misalignment magnitude (section
7.3), and the tilt magnitude (section 7.4) on optical properties of the magnetic objective
lens. Finally, axial multipole field functions and selected aberration coefficients obtained
using the perturbation theory in 2D are compared to the results evaluated using the 3D
solution of the field to explore the limits of the perturbation theory.
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2 Parasitic aberrations in literature

Despite that problems with manufacturing tolerances are interesting for companies pro-
ducing modern sophisticated electron optics, there are only few recent publications dealing
with the topic concerning parasitic aberrations. In the first section of this chapter are
discussed contributions in books and book series, namely Grundlagen der Elektronenoptik
by W. Glaser from 1952 [14], Magnetic Electron Lenses by P. W. Hawkes from 1982 [15],
contribution of M. I. Yavor in Advances in Electronics and Electron Physics from 1993
[16], contribution of J. A. Rouse in Advances in Optical and Electron Microscopy from
1994 [17], Principles of Electron Optics by P. W. Hawkes and E. Kasper from 1996 [8],
Geometrical Charged-Particle Optics by Harald H. Rose from 2009 [18], and Handbook
of Charged Particle Optics by Jon Orloff from 2009 [9].

More interesting are papers, discussed in the second section of this chapter. Unfortu-
nately it must be noticed that this survey is not complete. Only the papers accesible to
the author are mentioned. Mainly papers introducing methods of calculation of perturbed
lenses and related to round magnetic lenses are discussed. For more complete survey see
[8, 9, 15, 16].

Algorithms for calculation of perturbed systems are covered by papers by F. Bertein
from 1948 [10], by P. A. Sturrock from 1951 [11], by J. Janse from 1970 [19], by E. Munro
from 1988 [20], by H. Liu and X. Zhu from 1990 [21], by C. J. Edgcombe from 1991 [22]
by L. Wei and Y. Hanchun from 1999 [23], and by L. Wei and T. Yan from 1999 [24].

Round magnetic lenses are discussed in papers by J. Hillier and E. G. Ramberg from
1946 [7], by P. A. Sturrock from 1951 [11], by G. D. Archard from 1953 [25], by K. Amboss
and J. C. E. Jennings from 1970 [26], and, finally, the most recent paper by O. Sháněl, J.
Zlámal and M. Oral from 2014 [3].

2.1 Parasitic aberrations in books and book series

Walter Glaser covered electron optical systems with broken rotational symmetry in the
first complex text dealing with electron optics Grundlagen der Elektronenoptik [14] (in
German) from 1952 in chapter 22 on pages 452–466. Mainly the axial astigmatism is
discussed.

Four chapters related to the parasitic aberrations are in the book Magnetic Electron
Lenses edited by Peter W. Hawkes [15] from 1982. Section 1.5 on pages 50–51 is a brief
and general introduction with a list of references. Section 2.1.2 on pages 60–61 covers
Fourier series expansions of the scalar potential. The principle of the numerical treatment
of lenses with small perturbations of the rotational symmetry is discussed in the section
2.6.1 on pages 105–106. And in the section 3.2 on pages 124–125 are useful notes about
the field distribution in unsaturated and saturated lenses.

M. I. Yavor [16] in his chapter in Advances in Electronics and Electron Physics from
1993 presented an overview of methods for calculation of parasitic aberrations. Two dif-
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ferent types of defects are introduced – manufacturing imperfections of electron optical
elements leading to perturbations of their electromagnetic fields and displacements of
elements relative to their nominal position. Effects of weak electromagnetic field dis-
turbances on charged particle trajectories are discussed using equations for relativistic
trajectories in a narrow beam with an arbitrary optical axis. An electrostatic lens with
one elliptic electrode and a weakly disturbed inhomogeneous magnetic and electrostatic
sector fields are discussed as examples. Four general methods for calculation of the per-
turbation due to electrode or pole piece distortions are summarized – an exact conformal
mapping, Bertein’s perturbation method, a coordinate frame variation method, and a
method of integral equations in variations.

The exact conformal mapping provides in some special cases an exact analytical ex-
pressions for field variations. The electrostatic field distribution in a cylindrical capacitor
with a misaligned electrode is treated as an example.

Bertein’s perturbation method was the first application of the perturbation theory to
investigate the parasitic aberrations in electron optical systems. Aberrations caused by
small deformations of round lens electrodes are studied. This method is suitable only
if a distortion of the boundary of electrodes, the distorted electrodes, and the potential
distribution at the boundary are smooth.

Instead of determining a field potential disturbance at the ideal positions of electrode
surfaces, as it is done in the Bertein’s perturbation theory, an appropriate coordinate
frame – slightly different from the initial one – can be found, so that distorted electrodes
take the perfect form in this new coordinate frame. This is the main idea of the coordinate
frame variation method. Two examples are treated – a round immersion electrostatic lens
with slightly elliptical electrodes and again the cylindrical capacitor with a misaligned
electrode.

The electrostatic potential can be calculated as an integral of the surface charge density
over all points on the surface of an electrode. If the variation of perturbed charge density
is defined, the perturbation of the electrostatic potential at an arbitrary point inside the
system can be determined. This is the principle of the method of integral equations in
variations.

In the final part a field disturbance in electrostatic and magnetic sector analyzers is
treated and several applications of approximate conformal mappings are discussed. Also
a survey of literature related to the topic of parasitic aberrations is included.

John A. Rouse [17] in his chapter in Advances in Optical and Electron Microscopy
from 1994 introduced software packages for 3D computer modelling of electron optical
systems. The most important part is one of the tests of the software, which is the tolerance
calculation for electric and magnetic lenses with elliptical defects. The comparison of
results produced by the perturbation theory and 3D field computation is done. The first
example is a bipotential lens. The bore radius of the lens is 20 mm and the elliptical
defect is 1 mm. The astigmatism coefficient is determined by the distance between the
positions where two perpendicular planes focus. The difference between 3D computation
and the perturbation theory is below 0.5 %. The second example is a test of magnetic lens.
The bore radius of the lens is 10 mm and the elliptical defect is from 0.5 mm to 5 mm.
The astigmatism coefficients are computed by aberration integral. If the elliptic defect is
0.5 mm, the results of both methods are more less the same, respectively the difference is
below 0.5 %. The difference rises with an increase of the defect. If the elliptic defect is
1 mm, the difference is approximately 5 %. This seems to be the limit of the perturbation
theory. However, the usual elliptical defects are far below 0.1 mm with bore radius in
units of mm, so the perturbation theory seems to be sufficiently precise for practical use.
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The classical book Principles of Electron Optics by Peter W. Hawkes and Erwin Kasper
[8] from 1996 covers in the chapter 31 on pages 470–479 the problems of parasitic aberra-
tions. The most important conclusions are that the eccentricities in the sense of shift and
tilt are producing very weak dipole fields, which can cause a very small lateral deflection
of the whole electron beam. Ellipticity of pole pieces or electrodes causes quadrupole
field producing an astigmatism. But there is much more important information, like the
section 31.3 concerning numerical determination of parasitic aberrations, discussed in a
friendly way. Also a short survey of pioneering contributions from 1940s and 1950s on
page 471 can be useful.

In Geometrical Charged-Particle Optics by Harald H. Rose [18] from 2009 is the section
8.4.4 on pages 264–269 dealing with parasitic aberrations of quadrupole-octupole systems.

In the most recent Handbook of Charged Particle Optics edited by Jon Orloff [9] from
2009 can be found a nice survey of the literature, some basic information, and a table of
different notations for the parasitic aberration coefficients of lenses in the section 6.5 on
pages 291–293 and for electrostatic lenses in the section 5.3.4 on pages 190–191.

2.2 Parasitic aberrations in papers

James Hillier and E. G. Ramberg [7] observed astigmatism caused by misaligned and
elliptic pole pieces. Simple compensating screws were implemented into the pole piece of
the lens to correct these aberrations and to increase the quality of the image.

François Bertein [10] introduced the first application of the perturbation theory to the
perturbed electrostatic systems. Real electron optical systems have perturbations from
the ideal shape caused by inaccurate shape and alignment. Perturbations of the field
can be expanded into the Fourier series and replaced by additional multipole potentials.
Misalignment, in the sense of decentralization, is replaced by additional dipole field and
causes a beam shift. However, Bertein did not consider aberrations, which are caused
by the dipole field and affect the beam profile, like coma, therefore Bertein does not
consider the misalignment to be a serious problem. Ellipticity is substituted by additional
quadrupole field and causes an astigmatism. Perturbations with three-fold symmetry are
much weaker than the perturbations with two-fold symmetry as the ellipticity. Finally,
perturbations with four-fold and higher symmetry are negligible. Consequently, according
to Bertein, the most important perturbation is the ellipticity of an electrode. Several
electrostatic lenses with different shapes of electrodes are discussed.

Peter Andrew Sturrock [11] treated the mathematical problem of connection of par-
asitic aberrations to their causative machining defects. A computational procedure is
set out for ascribing tolerances to a proposed lens design. The method may be divided
into two parts. The first part is established for obtaining the perturbation of scalar mag-
netic potential from the known perturbation of its equipotential surfaces, assuming that
the pole pieces are the magnetic scalar potential equipotentials. The second part covers
the deduction of aberrations. Two classes of mechanical defects are introduced – mis-
alignment, which means the misalignment of the individual axes of the pole pieces, and
distortion, which means the deviation of the pole pieces from its ideal rotationally sym-
metric shape. Field perturbations and aberrations due to elliptic distortions, eccentricity
and orientation are covered. It is shown that ellipticity and corrugation causes astigma-
tism. Eccentricity and misorientation causes astigmatism and coma. As an example the
effect of ellipticity of bore of an idealized magnetic lens is discussed for the two cases –
symmetrical and antisymmetrical. The symmetrical ellipticity means the major axes of
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both pole pieces are parallel. In the case of the antisymmetrical ellipticity, the major axes
of both pole pieces are perpendicular.

G. D. Archard [25] shortly summarized the most important results of previous studies
and dealt with the application of the Sturrock’s perturbation theory. The theory is ap-
plied to several practical cases with an attempt to the generalization and tries to specify
mechanical tolerances with respect to the resolution due to aberrations. The criterion is to
reach the resolution affected by coma, astigmatism, spherical aberration, and diffraction
not much worse than the resolution influenced just by spherical aberration and diffrac-
tion. Graphs of the dependence of eccentricity, misorientation, ellipticity, and corrugation,
which produces the resolution two times worse than the spherical aberration and diffrac-
tion, on the excitation of the lens for three different bore-to-gap ratios are included. The
limiting eccenricity is around 30 µm and declines to 1 µm for higher excitation of the lens.
The limiting orientation is around 0.01 rad and drops off for higher excitation of the lens
even below 1 mrad. The restriction to the ellipticity is below 0.1 µm and slightly rises for
higher excitation of the lens up to 0.3 µm. In conclusion, the correction of the parasitic
aberrations caused by ellipticity using asymmetrical correcting devices or a stigmator is
preferred to fine manufacturing, because the tolerances for ellipticity need to be very
strict, therefore difficult to attain.

K. Amboss and J. C. E. Jennings [26] proved the Sturrock’s perturbation theory ex-
perimentally. As the electron lens the winding air-cored solenoid was used and aberrations
produced by small deformations of circular turns were investigated. Their apparatus con-
sists of a tungsten electron source, the solenoid, two correctors, and a fluorescent screen.
Axial astigmatism, coma, and anticoma were observed. The anticoma corresponds to the
three-fold astigmatism.

J. Janse [19] investigated the deviation of the original paraxial trajectories due to the
deviations from axial symmetry in electron lenses with the aid of perturbation theory. The
Fourier series of the electrostatic potential is implemented into the Laplace equation which
is solved using the method of successive overrelaxation. Several examples of frequently
occurring asymmetries are mentioned. A changed electrode diameter and an axial shift
of the cathode is approximated by an additional rotationally symmetric field, a shift of
one of the electrodes and a tilted cathode is replaced by an additional dipole field, and
an ellipticity of the electrode is alternated by an additional quadrupole field. A shift of
the electrode in an einzel lens is discussed as a numerical example.

Eric Munro [20] introduced finite difference programs for computing tolerances for
electrostatic lenses. The programs predict the beam displacement and coma, caused by
misalignments and tilts, and the astigmatism, caused by ellipticities. The calculation is
based on Bertein’s principle of the equivalent perturbation of the boundary potential.
The finite difference method is used to compute firstly the potential distribution of the
unperturbed lens, secondly the perturbations effected by small changes in the position
and shape of each electrode. The aberrations can be evaluated using aberration integrals.
Three electrostatic lenses are studied as examples – a bipotential lens, an einzel lens, and
a four-electrode lens for a focused ion beam system.

H. Liu and X. Zhu [21] discussed the numerical computation of the error effect in
electron beam focusing and deflection systems using the perturbation theory and the finite
element method. The important statement is that the assembling errors of deflectors
and the elliptical errors of electrode or pole piece do not affect the first order optical
properties and the first order chromatic aberrations. On the other hand, 42 additional
aberration coefficients arise for the additional geometric aberrations for assembling errors.
A magnetic focusing and deflection system is investigated as an illustrative example.
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Christopher John Edgcombe [22] described a method for calculation of changes of
paraxial trajectories in a given axisymmetric structure caused by both symmetric and
asymmetric perturbations of the structure. Perturbations of electrodes include an axial
displacement of an electrode, a change of diameter of an aperture, a displacement of an
electrode transverse to the axis, and an ellipticity of an aperture. Effects of movement of
parts of longitudial sections, such as an axial displacement, a tilt, and a transverse shift of
one part of a device to another, are also considered. Any of these perturbations, defined
for a full circuit of the axis, can be expressed as a sum of Fourier components. Therefore, it
is sufficient to establish the calculation for a general periodicity for the angular coordinate
describing rotation round the axis. The perturbation potential is found using the new
functional in the finite element method. Deviations of trajectories, computed separately
from the unperturbed trajectory and directly from the perturbation potential, if possible,
may be added linearly to the unperturbed trajectories. An electrostatic cathode lens is
discussed as an example.

Lei Wei and Yin Hanchun [23] announced a method of prediction of the perturbation
of particle trajectories caused by small displacement of electrodes. Unperturbed potential
is calculated by the finite element method. Derivative of the potential with respect to the
displacement vector is found from the variational principle, so the perturbed potential
can be predicted. Variation of trajectory is found by solving the equation of motion for
particles after the determination of perturbed potential. A bipotential lens is calculated
to demonstrate this method.

Lei Wei and Tu Yan [24] proposed another method to determine the acceptable toler-
ance of manufacturing. The main idea is that the performance of electron optical system
is usually determined by the electron trajectories. Hence acceptable tolerance can be
obtained approximately by dividing the permissible perturbation of the trajectory in the
image plane by the derivative of trajectory with respect to the vector of displacement
of the perturbed electrode. Some typical perturbations of the main lens of cathode ray
tube are analysed as an example. It is questionable if this method is enough accurate for
purposes of electron microscopes design.

Ondřej Sháněl, Jakub Zlámal and Martin Oral [3] investigated compensation of para-
sitic aberrations of the saturated magnetic lens for a high resolution scanning transmission
microscope. The setup consists of the objective lens, stigmators, and two deflectors. Two
examples are discussed. The first example is the mechanical imperfection including an el-
lipticity of both pole pieces of 0.25 µm, a misalignment of the upper pole piece of 0.25 µm,
and a tilt of upper pole piece of 1 mrad. The second example is the mechanical imperfec-
tion of 0.5 µm including the two times higher ellipticity and misalignment. The optimal
excitation of the lens, the stigmators, and the deflector is calculated. The aberration
coefficients are determined by ray tracing using the least squares fit of the aberration
polynomial in the image plane. Further details can be found in the doctoral thesis by
Ondřej Sháněl [2] as well.

Finally, some examples of papers related to other types of electron optical systems are
listed below. The issue of multipoles is discussed in most cases. Paper by L. A. Baranova
and F. H. Read from 2001 is covering aberrations caused by mechanical misalignments in
an electrostatic quadrupole lens system [27]. Philip E. Batson in 2009 discussed parasitic
aberrations in multipole optics, concretely finding of the optimal setup of a quadrupole-
octupole third-order aberration corrector [28]. More complex paper written by G. W.
Grime, F. Watt, G. D. Blower and J. Takacs from 1982 is dealing with real and para-
sitic aberrations of quadrupole probe-forming systems [29]. Aberrations of electrostatic
systems with machining error are discussed in the paper by T. Tsumagari, J. Murakami,
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H. Ohiwa and T. Noda from 1985 [30], where the extension of the perturbation theory
for electrostatic lenses and deflectors is introduced. T. Ozaki, Y. H. Hisaoka and H. Mu-
rakami in the paper from 1993 [31] dealt with parasitic aberrations of an electrostatic
deflector. Aberrations of microfabrication systems consisting of an electrostatic lens and
an electrostatic deflector are introduced in the paper by Kenji Kurihara from 1990 [32].
Finally, the problems of parasitic aberrations in static sector field mass analyzers and
their correction is covered by paper by M. I. Yavor and A. S. Berdnikov from 1993 [33].
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3 Radial expansion of static electro-
magnetic fields

The field close to the optical axis can be interpolated from the axial potential. This is
the most accurate interpolation method for solving the equation of motion o particle close
to the optical axis. For this reason, it is necessary to introduce radial expansion of axial
fields, which is used for calculation of the axial multipole field functions from the 3D
solution of the field in chapter 5 and for particle tracing in section 6.3.

Radial expansion of static electromagnetic fields can be easily derived from the Laplace
equation. Exact definitions and derivations of most of used physical quantities, symbols,
differential operators, and equations can be found in classical books of Electrodynamics
by David J. Griffiths and Reed College [34] or by Jack Vanderlinde [35].

3.1 Electrostatic field

Scalar Laplace operator of an electrostatic potential in cylindrical coordinates is

∆Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂ϕ2
+
∂2Φ

∂z2
. (3.1)

Let us assume that an electrostatic field is composed as a sum of a rotationally sym-
metric field and multipole fields with m-fold symmetry (namely rotationally symmetric
for m = 0, dipole for m = 1, quadrupole for m = 2, hexapole for m = 3, etc.) as

Φ(r, ϕ, z) =
∞∑
m=0

Φm(r, ϕ, z), (3.2)

with
Φm(r, ϕ, z) = Fm(r, z) cos (mϕ+ αm), (3.3)

where

Fm(r, z) =
∞∑
n=0

fm,n(z)rn (3.4)

and αm is the rotation of the m-th multipole field component. Then

∂Fm
∂r

=
∞∑
n=0

nfm,n(z)rn−1,

∂2Fm
∂r2

=
∞∑
n=0

n(n− 1)fm,n(z)rn−2, (3.5)

∂2Fm
∂z2

=
∞∑
n=0

f ′′m,n(z)rn,
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with f ′′m,n(z) ≡ ∂2fm,n(z)

∂z2
. Substituting (3.5) divided by rm back to the Laplace equation

(3.1) gives

∞∑
m=0

∞∑
n=0

[
(n2 −m2)fm,n(z)rn−m−2 + f ′′m,n(z)rn−m

]
cos (mϕ+ αm) = 0. (3.6)

Consequently, for every m must be satisfied

0 = −m2fm,0(z)

rm
r−2 + (1−m2)

fm,1(z)

rm
r−1 +

+

[
(4−m2)

fm,2(z)

rm
+
f ′′m,0(z)

rm
(z)

]
r0 + · · ·+ (3.7)

+

[
(n2 −m2)

fm,n(z)

rm
+
fm,n−2(z)

rm

]
rn−2 + · · · .

Equation (3.6), respectively (3.7), is fulfilled just when

fm,n(z) = 0 (3.8)

for every n < m and n > m with n of different parity than m. Let us define

φm(z) ≡ fm,n(z)

rm
(3.9)

for every n = m with φm as the m-th axial reduced potential, therefore

fm,n(z)

rm
=

(
n∏

j=m+2,m+4,···

−1

j2 −m2

)
φ(n−m)
m (z) (3.10)

for every n > m with n of the same parity as m. Equation (3.10) can be rewritten as

fm,n(z)

rm
= (−1)i

1

4i
m!

i!(m+ i)!
φ(2i)
m (z), (3.11)

with 2i = n−m.
According to (3.3), (3.4), and (3.11), equation (3.2) can be expressed as the power

series

Φ(r, ϕ, z) =
∞∑
m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
φ(2i)
m (z)r2i+m cos (mϕ+ αm). (3.12)

In the case of rotationally symmetric field, equation (3.12) transforms into the much
more famous power series

Φ0(r, z) =
∞∑
i=0

(−1)i
1

4i(i!)2
φ
(2i)
0 (z)r2i, (3.13)

with φ0(z) as the axial potential. The same equation as (3.13) could be also found in the
classical book of Electron optics by Peter W. Hawkes and Erwin Kasper [8] as equation
(7.50) on page 85.
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3.2 Magnetic field

In the case of magnetic field, a magnetic scalar potential is considered instead of the
electrostatic potential. Equation (3.12) becomes

Ψ(r, ϕ, z) =
∞∑
m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
ψ(2i)
m (z)r2i+m cos (mϕ+ αm), (3.14)

with ψm as the axial reduced magnetic potential. Similar equations as (3.14) can be found
in the paper by Peter Andrew Sturrock [11] as equations (1.10) to (1.13) on page 394.
The magnetic flux density in cylindrical coordinates is

~B = −µ0∇Ψ = −µ0

(
∂Ψ

∂r
,
1

r

∂Ψ

∂ϕ
,
∂Ψ

∂z

)
, (3.15)

respectively

Br = −µ0

∞∑
m=0

∞∑
i=0

(−1)i
2i+m

4i
m!

i!(m+ i)!
ψ(2i)(z)r2i+m−1 cos (mϕ+ αm),

Bϕ = µ0

∞∑
m=0

∞∑
i=0

(−1)i
m

4i
m!

i!(m+ i)!
ψ(2i)(z)r2i+m−1 sin (mϕ+ αm), (3.16)

Bz = −µ0

∞∑
m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
ψ(2i+1)(z)r2i+m cos (mϕ+ αm).

At r = 0, which implies ϕ = 0, according to equations (3.16)

Br = −µ0ψ1,

Bϕ = 0, (3.17)

Bz = −µ0ψ
′
0.

Let us define the axial multipole field function

Dm = −µ0ψm. (3.18)

Consequently, equations (3.16) transform into the power series

Br =
∞∑
m=0

∞∑
i=0

(−1)i
2i+m

4i
m!

i!(m+ i)!
D(2i)
m (z)r2i+m−1 cos (mϕ+ αm),

Bϕ = −
∞∑
m=0

∞∑
i=0

(−1)i
m

4i
m!

i!(m+ i)!
D(2i)
m (z)r2i+m−1 sin (mϕ+ αm), (3.19)

Bz =
∞∑
m=0

∞∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!
D(2i+1)
m (z)r2i+m cos (mϕ+ αm).

If the field is rotationally symmetric, it is useful to define the axial magnetic field

B0 = D′0 = −µ0ψ
′
0. (3.20)
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Therefore, equations (3.16) or (3.19) transform into the power series

Br,0 =
∞∑
i=0

(−1)i+1 1

(2i+ 2)4i(i!)2
B

(2i+1)
0 (z)r2i+1,

Bϕ,0 = 0, (3.21)

Bz,0 =
∞∑
i=0

(−1)i
1

4i(i!)2
B

(2i)
0 (z)r2i.

These power series (3.21) can be also derived via magnetic vector potential and vector
Laplace equation. The same power series in slightly different form can be also found in the
classical book of Electron optics by Peter W. Hawkes and Erwin Kasper [8] as equations
(7.56a–c) on page 87.

In the case of the rotationally symmetric field, it is useful to know the power series for
magnetic vector potential ~A = (0, Aϕ, 0) and magnetic flux ΦB. Especially if the software,
like EOD [36], which solves the magnetic flux, is used. The power series for the magnetic
vector potential is

Aϕ(r, z) =
∞∑
i=0

(−1)i
1

(2i+ 2)4i(i!)2
B

(2i)
0 (z)r2i+1, (3.22)

and the power series for magnetic flux is

ΦB(r, z) =
∞∑
i=0

(−1)i
2π

(2i+ 2)4i(i!)2
B

(2i)
0 (z)r2i+2. (3.23)
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4 Calculation of perturbed electron
optical systems

This chapter summarizes two possible calculation strategies for computing field of the lens
when the rotational symmetry is broken. The first method is calculation of the field in 2D.
The perturbation theory is then used to calculate 2D parasitic fields arising due to broken
rotational symmetry. The second method is the 3D computation of such systems. For this
purpose, a list of software suitable for 3D calculations is included. A short comparison of
2D and 3D calculations is introduced in the final part of this chapter.

4.1 Perturbation theory

Let us start shortly with history. The perturbation theory was introduced by François
Bertein in 1948 for electrostatic lenses [10]. Unfortunately his work was published in
French. Peter Andrew Sturrock in 1951 [11] applied this method to magnetic lenses. As
the result the perturbation theory is in literature called after either Bertein, or Sturrock.

It is necessary to consider, which order of the perturbation theory is used. Almost
all authors are discussing only the first order perturbation theory, which substitutes the
perturbation just by one parasitic field. Tsumagari and co-workers supposed also the
higher order terms, but their analysis is confined to the first order terms [30]. On the
contrary, Sturrock discussed also the higher order terms, therefore the perturbation can
be replaced by more than one parasitic field [11].

The only problem of numerical determination of parasitic aberrations of perturbed
systems is the computation of the field. The general first order perturbation theory is
briefly introduced below. A rigorous calculation would proceed in these steps according
to the chapter 31.3 in Principles of Electron optics by Peter W. Hawkes and Erwin Kasper
[8] on pages 475–477:

1. The field of the perfect unperturbed system is computed in a standard way as a
boundary-value problem in 2D cylindrical coordinates.

2. From the solution, the boundary values of the electric and magnetic intensity ( ~E
and ~H) are determined.

3. Surface deformation ~s is determined from ellipticities, misalignments, tilts, and other
deformations, defined as the shift from a point at the ideal surface to the correspond-
ing point at the real surface. If |~s| is small enough, the deformation ~s corresponds to
the parasitic potential on the ideal boundary of δΦ = ~E ·~s, respectively δΨ = ~H ·~s.

4. With these new boundary values δΦ, respectively δΨ, the boundary-value problem
in the ideal (or undeformed) domain is solved and the parasitic potential is added
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to the results of unperturbed system.

5. The total fields are known so particles can be traced or aberration integrals can be
evaluated.

Any perturbation, which is defined for a full circuit of the axis, can be expressed as
a sum of Fourier components [10, 22]. For further use in the following chapters, it is
useful to discuss the perturbation theory for basic perturbations more precisely. Three
main mechanical defects breaking rotational symmetry of electron optical system are
covered by this theory — ellipticity, misalignment and tilt, using nomenclature as in [3]
or [20], respectively elliptic distortion, eccentricity and orientation, using nomenclature
by Sturrock [11].

Reflecting the first order perturbation theory, perturbations can be classified according
to the periodicity m for the angular coordinate ϕ, describing rotation round the axis z,
as [22]:

• m = 0 (no variation round the axis):

– axial shift of an electrode, a pole piece, or a section

– change in diameter of an electrode or a pole piece

• m = 1 (single cycle round the axis, one-fold symmetry):

– tilt of an electrode, a pole piece, or a section

– misalignment (transverse shift) of an electrode, a pole piece, or a section

• m = 2 (two cycles round the axis, two-fold symmetry):

– ellipticity of an electrode or pole piece

According to the first order perturbation theory a perturbation of pole pieces causes
the parasitic magnetic field, characterized by the multipole magnetic scalar potential,
which fulfil the boundary condition Ψm on pole pieces and equals to zero on the axis of
symmetry, unperturbed surfaces, and outer boundaries of computed region. In the case
of an ellipticity, the quadrupole parasitic field characterized by

Ψ2 = −Hre cos(2ϕ+ α) (4.1)

appears. In the case of a misalignment, the dipole parasitic field characterized by

Ψ1 = −Hra cos(ϕ+ α) (4.2)

rises up, and, finally, a tilt of pole pieces causes also the dipole parasitic field characterized
by

Ψ1 = [rHz − (z − zt)Hr]t cos(ϕ+ α), (4.3)

with ~H = (Hr, 0, Hz) as the magnetic field intensity of unperturbed lens and e, a, t,
zt, and α as parameters characterizing the perturbations (see figure 4.1) [3, 11]. In the
case of an electrostatic lens, simply substitute Ψ1, Ψ2 by Φ1, Φ2 and ~H = (Hr, 0, Hz) by
~E = (Er, 0, Ez) [8, 20].

This theory requires the field intensity to be perpendicular to the perturbed surface.
Unfortunately this is fulfilled only for electrostatic and non-saturated magnetic lenses.
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Figure 4.1: Three types of mechanical imperfections — (a) ellipticity, (b) misalignment, and
(c) tilt, using nomenclature as in [3, 20], respectively (a) elliptic distortion, (b) eccentricity,
and (c) orientation, using nomenclature by Sturrock [11]. Dotted lines show ideal unperturbed
lenses, solid lines the perturbed lenses.

The magnetic field intensity in saturated magnetic lenses does not have to be perpen-
dicular to the perturbed surface of pole pieces. Despite this the first order perturbation
theory is a powerful method for calculation of imperfect lenses, which is implemented, for
instance, in software EOD in module Tolerancing [12].

Reflecting the perturbation theory including the higher order terms, perturbations are
substituted as [11]:

• ellipticity – additional quadrupole field,

• misalignment and tilt – additional dipole and quadrupole field.

The only difference to the standard first order perturbation theory is the additional
quadrupole field in the case of a misalignment or a tilt. However, the additional quadrupole
field is weaker than the additional quadrupole field caused by an ellipticity of similar
magnitude. Also it is very unlikely that the real optical element would suffer, due to
mechanical imperfections during manufacturing, just from one perturbation. Therefore,
the standard first order perturbation theory seemed to be sufficient, if a combination of
basic perturbations of similar magnitudes is considered.

4.2 Computation of perturbed systems in 3D

If the previously discussed technique cannot be used, the field must be solved as fully 3D
problem. This is necessary, for example, in the case of a magnetic lens with a hole in
the pole piece [4]. The 3D solution of the field can be computed in software like CPO3D
and CPO3DS [37], SIMION [38], COMSOL Multiphysics [13] with AC/DC module, Field
Precision [39], program LORENTZ by INTEGRATED Engineering Software [40], 3D
software package by Munro’s Electron Beam Software Ltd. [41], and some others.

A brief description and illustration of suite of programs written for the computer-aided
design of three-dimensional electron optical systems is in the chapter by John A. Rouse
[17] and in the paper by John A. Rouse and Eric Munro [42]. The programs are based on
the finite difference methods for calculation of the potentials at points on a 3D rectangular
grid and can be used for analysis of electrostatic and magnetic systems.
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There are some disadvantages of using 3D software. The powerful computer with
enough memory is necessary, and the computational time can be rather long. The most
important question is the accuracy of results, because the mesh cannot be usually as dense
as in the 2D calculation. This is illustrated in the following section.

4.3 Short note comparing 2D and 3D computation

It is useful to illustrate the main differences between 2D and 3D computation on an ex-
ample. The example is the magnetic objective lens of K. Tsuno [43] (figure 4.2). The
magnetic lens is saturated, and the excitation of the lens is 10500 A-turns, which cor-
responds to the performance in a 200 kV high resolution scanning transmission electron
microscope [3]. Comparison of the computation in 2D using EOD software and 3D using
COMSOL Multiphysics is summed up in the table 4.1. It must be noticed that only one
half of the lens is calculated in 3D. Despite that COMSOL allows using a mirror symme-
try to get the whole 3D field, the particle tracing in such mirrored field is not possible.
The difference in computational time and memory requirements is dramatic. This is the
reason, why 2D calculation methods, including the perturbation theory, are important.

Figure 4.2: 200 kV magnetic objective lens – pole pieces (red), yoke (blue), coil (green). Bore
diameter and gap are both 2mm.

Table 4.1: Comparison of the computation in 2D and 3D.

2D computation 3D computation
Performed in EOD [36] COMSOL [13]

Calculation algorithm 1st order finite 2nd order finite
of the field element method element method

Smallest mesh element 0.05 mm 0.084 mm
Number of mesh elements ∼ 0.5 million ∼ 4.5 million

Relative accuracy 1 · 10−14 5 · 10−8

Computational time 1 minute 13 hours
Memory requirements for computation 100 MB 65 GB (half of the lens)
Memory requirements to display results 30 MB 6 GB
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5 Calculation of axial multipole field
functions from the 3D solution of
the field

Particle tracing in the 3D fields is difficult due to problems with field interpolation. Elec-
trons are typically moving in distances about 100 µm from the optical axis. It means, that
the only one or two mesh elements near to the axis are used for interpolation of the field.
Every small error, whether numerical or generated by inappropriate element shape, of
calculated field in mesh nodes can have great influence on particle trajectory. In addition,
the interpolation polynomial, usually of second or third order, cannot correctly express
the field dependence on distance from the optical axis. A method to interpolate the field
close to the axis using radial expansion of the axial field was introduced in section 3.2.
Knowledge of axial fields is important for aberration theory, which requires derivatives
of the axial field of high orders. Therefore, it is important to find a suitable method to
calculate the axial multipole field functions from the 3D solution of the field.

Three different algorithms for the calculation of axial multipole field functions from
the 3D solution are introduced. The first one is based on the Fourier series expansion,
and the axial multipole field functions are evaluated at series of points on the optical
axis. The Fourier expansion is introduced, for example, in the book Magnetic Electron
Lenses edited by Peter W. Hawkes [15] in the section 2.1.2 on page 60. The second
algorithm is based on the least square fit of the wavelets (sum of Gaussian functions), and
the axial multipole field functions are determined in all positions along the optical axis.
The wavelet interpolation is one of the method studied by Tomáš Radlička and Bohumila
Lencová [44]. The third method combines the best parts of the previous ones.

All scripts evaluating the axial multipole functions are written in MATLAB [45]. The
methods are discussed for magnetic fields, because magnetic lenses are more common in
standard electron microscopes than electrostatic ones.

5.1 Algorithm based on the Fourier series expansion

This method was briefly introduced and used in [4]. The calculation process consists
of three main steps repeated Z-times for all selected z coordinates z1 < z2 < ... < zZ
along the axis. In the first step, components of the magnetic flux density (in cylindrical
coordinates) are evaluated using built in interpolation methods of 3D software in points
on R circles with increasing radius r1 < r2 < ... < rR, but the same z position of their
centres on the optical axis (see figure 5.1).

In the second step, the magnetic field components on each circle are expanded into
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Figure 5.1: Components of the field are evaluated in points on R concentric circles.

the cosine, respectively the sine, Fourier series reflecting equations (3.19) as

Br(r, ϕ, z) ≈ Cr,0(r, z) +
M∑
m=1

Cr,m(r, z) cos(mϕ+ αm),

Bϕ(r, ϕ, z) ≈
M∑
m=1

Cϕ,m(r, z) sin(mϕ+ αm), (5.1)

Bz(r, ϕ, z) ≈ Cz,0(r, z) +
M∑
m=1

Cz,m(r, z) cos(mϕ+ αm),

with αm as the rotation of m-th multipole field component.

If the rotation of the multipole field is known, for example, from the geometry of the
lens, the Fourier coefficients are calculated as

Cr,0(r, z) =
1

2π

∫ 2π

0

Br(r, ϕ, z) dϕ,

Cr,m(r, z) =
1

π

∫ 2π

0

Br(r, ϕ, z) cos(mϕ+ αm) dϕ,

Cϕ,m(r, z) =
1

π

∫ 2π

0

Bϕ(r, ϕ, z) sin(mϕ+ αm) dϕ, (5.2)

Cz,0(r, z) =
1

2π

∫ 2π

0

Bz(r, ϕ, z) dϕ,

Cz,m(r, z) =
1

π

∫ 2π

0

Bz(r, ϕ, z) cos(mϕ+ αm) dϕ.

The evaluation of the Fourier coefficients as integrals over angular coordinate ϕ for
each circle also partially eliminates the fluctuation of the field due to numerical errors of
the 3D field calculation in azimuthal direction.
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With respect to equations (3.19), the Fourier coefficients are proportional to

Cr,0(r, z) ∝
N−1∑
i=0

B
(2i+1)
0 (z)r2i+1,

Cr,m(r, z) ∝
N−1∑
i=0

D(2i)
m (z)r2i+m−1,

Cϕ,m(r, z) ∝
N−1∑
i=0

D(2i)
m (z)r2i+m, (5.3)

Cz,0(r, z) ∝
N−1∑
i=0

B
(2i)
0 (z)r2i,

Cz,m(r, z) ∝
N−1∑
i=0

D(2i+1)
m (z)r2i+m.

In the third step, the axial multipole field functions at the given z coordinate are
determined from the known multipole field components and their dependence on radial
coordinate r by the least squares fit with respect to the equations (5.3). Usually only the
first three terms of series are used, therefore N = 3, which means, the axial multipole field
functions and their first five derivatives are computed. This least square fit eliminates the
fluctuations of the 3D field interpolation in radial direction. Standard deviations SD(Dm)
of fitted axial field functions Dm(z) are used as an index of quality of the least squares
fit.

The least squares fit can be written in the matrix notation as [46]

A = (M′ ·M)\M′ · F, (5.4)

with A as the vector of length 2N = 6 including the axial multipole field function Dm(z)
with its derivatives, M as the matrix of size 2N×3R including coefficients from equations
(5.3), and F as the vector of length 3R consisting of the Fourier coefficients Cr,m(r, z),
Cϕ,m(r, z), and Cz,m(r, z). For further details see equations (A.1) and (A.2) in appendix
A.1 on page 64. The least squares fit is provided separately for every multipole component
and for every z position along the axis.

The vector S of the standard deviations SD(Dm) is calculated as

S =

√
(M ·A− F′) · (M ·A− F)

3R− 2N

√
diag(inv(M′ ·M)). (5.5)

The axial multipole field functions and their first five derivatives (due to N = 3) are
known in all given z positions along the axis. The field needs to be interpolated between
the given z positions, for example, using splines. Unfortunately, this method does not
include any smoothing of the axial multipole field functions in the z direction, therefore,
the interpolation may become unstable, due to the fluctuations of the axial multipole
field functions. Consequently, the interpolated axial multipole field functions and their
derivatives can be affected by a high degree of noise, which is the main disadvantage of
this algorithm.
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5.2 Algorithm based on the wavelet interpolation

The second method is much more compact and consists of just one step, because the
axial field function is determined as a sum of Gaussian functions (wavelet). The Gaussian
wavelet interpolation was introduced by Martin Berz [47] and is implemented, for example,
in COSY INFINITY [48]. This interpolation method was used for electrostatic lenses, for
instance, by Zhixiong Liu [49] and discussed as one of the interpolation method by Tomáš
Radlička and Bohumila Lencová [44].

Let us assume the axial multipole field functions in the form of Gaussian wavelets.
The base Gausssian functions have centres in J points zj on the z axis. In the case of
rotationally symmetric field

B0 =
J∑
j=1

A0,j exp

[
−(z − zj)2

(σdz)2

]
(5.6)

and in the case of multipole field

Dm =
J∑
j=1

Am,j exp

[
−(z − zj)2

(σdz)2

]
, (5.7)

where Am,j are unknown parameters, σ is the parameter determining the width of the
base Gaussian function, and dz = zj+1 − zj is the constant distance between two nearby
node points.

Substituting (5.6) to (3.21) for the rotationally symmetric field and (5.7) to (3.19) for
the multipole fields using the first N terms of the series

Br(r, ϕ, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i+1 1

(2i+ 2)4i(i!)2
d2i+1

dz2i+1

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+1A0,j

+
M∑
m=1

J∑
j=1

N−1∑
i=0

(−1)i
2i+m

4i
m!

i!(m+ i)!

d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}

r2i+m−1 cos (mϕ+ αm)Am,j =
J∑
j=1

Kr,0,j,NA0,j +
M∑
m=1

J∑
j=1

Kr,m,j,NAm,j,

Bϕ(r, ϕ, z) ≈ −
M∑
m=1

J∑
j=1

N−1∑
i=0

(−1)i
m

4i
m!

i!(m+ i)!

d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+m−1

sin (mϕ+ αm)Am,j =
M∑
m=1

J∑
j=1

Kϕ,m,j,NAm,j, (5.8)

Bz(r, ϕ, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i
1

4i(i!)2
d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}
r2iA0,j

+
M∑
m=1

J∑
j=1

N−1∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!

d2i+1

dz2i+1

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+m

cos (mϕ+ αm)Am,j =
J∑
j=1

Kz,0,j,NA0,j +
M∑
m=1

J∑
j=1

Kz,m,j,NAm,j,
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with αm as the rotation of m-th multipole field component. If this rotation is known, for
instance, from the geometry of the lens, the only unknown parameters are just Am,j.

Let us assume, that the magnetic flux density components Br(~rp), Bϕ(~rp) and Bz(~rp)
are known in P points ~r1, ~r2, . . . , ~rP . These points can be, for example, the nodal points
of the 3D mesh in the area of interest – if the mesh is sufficiently dense. Consequently,
the unknown parameters Am,j can be calculated using the least squares fit. In the matrix
notation

A = (M′ ·M)\M′ · F, (5.9)

with A as the vector of length J ·M including the unknown parameters Am,j, M as the
matrix of size 3P × J ·M including the coefficients Kr,m,j,N , Kϕ,m,j,M , and Kz,m,j,N from
equations (5.8), and F as the vector of length 3P consisting of the field components Br(~rp),
Bϕ(~rp), and Bz(~rp). For further details see equations (A.3) in appendix A.1 on page 65.
The least squares fit is provided just once. The problematic part is the computation with
two large matrices M and M′.

The vector S of the standard deviations SD(Am,j) is calculated as

S =

√
(M ·A− F′) · (M ·A− F)

3P − J ·M

√
diag(inv(M′ ·M)). (5.10)

Finally, the axial field B0 and the axial multipole field functions Dm are evaluated
according to equations (5.6) and (5.7). Any of their derivative can be computed as

dnB0

dzn
=

J∑
j=1

A0,j
dn

dzn

{
exp

[
−(z − zj)2

(σdz)2

]}
(5.11)

in the case of axial field, respectively

dnDm

dzn
=

J∑
j=1

Am,j
dn

dzn

{
exp

[
−(z − zj)2

(σdz)2

]}
(5.12)

in the case of axial multipole field functions.
The standard deviations of the axial field B0 and axial multipole field functions Dm

can be calculated as

SD
(
B0(z)

)
=

√√√√ J∑
j=1

{
SD
(
A0,j(z)

)
exp

[
−(z − zj)2

(σdz)2

]}2

(5.13)

in the case of axial field, respectively

SD
(
Dm(z)

)
=

√√√√ J∑
j=1

{
SD
(
Am,j(z)

)
exp

[
−(z − zj)2

(σdz)2

]}2

(5.14)

in the case of axial multipole field functions. The standard deviations of their derivatives
can be determined analogously.

To summarize, the axial multipole field functions and any of their derivatives are
known in all z coordinates along the axis. The axial multipole field functions and their
derivatives are smooth, which is necessary for accurate ray tracing and for evaluation
of aberration integrals. This is the main advantage of this method. The only problem
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can appear when the 3D calculated field suffers from a high degree of noise in azimuthal
direction. This could cause an inaccuracy in the decomposition into the multipole com-
ponents because this method is less stable than the calculation of Fourier coefficients as
integrals. Unfortunately this algorithm needs working with two large matrices, so the
memory consumption is significant. Due to this it is necessary to use a computer with
enough memory. This is the only disadvantage of this method. Nevertheless, the compu-
tation of the 3D field requires a powerful computer as well so this problem should be in
reality marginal.

5.3 Wavelet interpolation of radial dependence of
Fourier components

The third method combines the main advantages of previous ones. The calculation process
consists of three main steps. The first two steps are the same as in the first discussed
method. Components of the field are evaluated using built in interpolation methods of
3D software in points on L circles with the radii r1, r2, . . . , rL and the positions of centres
z1, z2, . . . , zL in the whole area of interest. The circles can be, for instance, the same as in
the first method, which implies L = R · Z. Afterwards the magnetic field components on
each circle are expanded into the cosine, respectively the sine, Fourier series in the same
way as in (5.1) and (5.2).

Calculated Fourier coefficients are used instead of the field components for the second
method. Equations (5.8) change to

Cr,0(r, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i+1 1

(2i+ 2)4i(i!)2
d2i+1

dz2i+1

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+1A0,j

=
J∑
j=1

Kr,0,j,NA0,j,

Cr,m(r, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i
2i+m

4i
m!

i!(m+ i)!

d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+m−1Am,j

=
J∑
j=1

Kr,m,j,NAm,j,

Cϕ,m(r, z) ≈ −
J∑
j=1

N−1∑
i=0

(−1)i
m

4i
m!

i!(m+ i)!

d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+m−1Am,j

=
J∑
j=1

Kϕ,m,j,NAm,j, (5.15)

Cz,0(r, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i
1

4i(i!)2
d2i

dz2i

{
exp

[
−(z − zj)2

(σdz)2

]}
r2iA0,j

=
J∑
j=1

Kz,0,j,NA0,j,
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Cz,m(r, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i
1

4i
m!

i!(m+ i)!

d2i+1

dz2i+1

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+mAm,j

=
J∑
j=1

Kz,m,j,NAm,j.

The only unknown parameters Am,j are calculated by the least squares fit, which is pro-
vided separately for the rotationally symmetric and every multipole component. In the
matrix notation

A = (M′ ·M)\M′ · F, (5.16)

with A as the vector of length J including the unknown parameters Am,j, M as the matrix
of size 3L × J including the coefficients Kr,m,j,N , Kϕ,m,j,N , and Kz,m,j,N from equations
(5.15), and F as the vector of length 3L consisting of the Fourier coefficients Cr,m(~r),
Cϕ,m(~r), and Cz,m(~r). For further details see equations (A.4) in appendix A.1 on page 65.
The least squares fit is calculated (M + 1)-times.

The vector S of the standard deviations SD(Am,j) is calculated as

S =

√
(M ·A− F′) · (M ·A− F)

3L− J

√
diag(inv(M′ ·M)). (5.17)

Finally, the axial field B0 and the axial multipole field functions Dm are evaluated
according to equations (5.6) and (5.7). Their standard deviations are calculated using
(5.13) and (5.14). Any of their derivatives are computed via (5.11) and (5.12).

The axial multipole field functions and any of their derivatives are known in all z
coordinates after applying this algorithm. The axial multipole field functions and their
derivatives are smooth, which is necessary for accurate ray tracing, for evaluation of
aberration integrals, or for computing aberration coefficients using differential algebra
[49]. This method seems to be the most powerful, thanks to applying the best parts of
previously described algorithms.

5.4 Magnetic lens with a hole in the pole piece

To compare three presented algorithms and examine their advantages and disadvantages,
the magnetic objective lens of K. Tsuno [43] with a hole drilled into the pole piece per-
pendicular to the optical axis, discussed in [4], is studied. The position of the hole is
z = −10 mm and the diameter is 5 mm (figure 5.2). The hole drilled into the pole piece
of the lens causes a change of rotationally symmetric axial field and rises additional mul-
tipole fields – dipole field, weak quadrupole field, and even more weaker hexapole field
[4]. The magnetic lens is saturated, and the excitation of the lens is 10 500 A-turns, which
corresponds to the performance in a 200 kV high resolution scanning transmission electron
microscope [3].

The smallest mesh element size, used for the 3D calculation (performed in COMSOL
Multiphysics [13]), was reduced to 0.12 mm in the gap region from z = −2 mm to z = 2 mm
and in the surrounding regions close to the axis the mesh size was rising up to 0.2 mm
to achieve sufficient accuracy of the field, reasonable memory consumption (70 GB), and
computation time. Second order finite element method was used to calculate the field.
The smallest possible relative accuracy of the field computation 5 · 10−8, for which the
solution still converges, was used. Components of the magnetic flux density were evaluated
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Figure 5.2: Magnetic lens with the hole drilled perpendicular to the optical axis – hole (yellow),
pole pieces (red), yoke (blue), coil (green).

using built in interpolation methods of COMSOL Multiphysics in 360 points on R = 50
circles with radii from 0.01 mm to 0.50 mm. The sampling step in axial direction was
0.01 mm. The area of interest was from z = −20 mm to z = 10 mm, which implies
Z = 301 z positions of circles, respectively L = 15 050 circles in total. The components
of the magnetic flux density in P = 19 283 nodal points of the 3D mesh in the area of
interest were exported to MATLAB as well. Finally, the axial field functions of the lens
with the hole in the pole piece were determined by three discussed algorithms. Memory
requirements of all three algorithms are between 1 and 2 GB, therefore the axial multipole
field functions were calculated on a standard personal computer and the calculation lasted
between 10 and 30 minutes.

Using the algorithm based on Fourier series expansion, the axial multipole functions
are calculated in the series of 301 points along the axis (figure 5.3, green points). Especially
the hexapole component suffers from a relatively high degree of noise. Consequently, it is
necessary to apply some de-noising process before further use of the axial field functions.

Applying the algorithm based on wavelet interpolation, the continuous axial multipole
functions are evaluated (figure 5.3, red solid lines). Parameters of the least squares fit were
optimized to get the functions with the lowest level of noise, which is fulfilled for N = 4,
dz = 0.2 mm, and σ = 2.2 chosen according to results of [44]. However, the multipole
field functions suffer from the parasitic peaks in the gap region. This inaccuracy can be
affected by too large mesh elements in the gap region. Unfortunately, computation with
mesh with smaller mesh step in the gap could not be performed due to available memory
restriction.

Employing the wavelet interpolation of radial dependence of Fourier components, the
smooth continuous axial multipole functions are determined (figure 5.3, black dashed
lines). This algorithm evidently provides the best results. Parameters of the least square
fit are optimized to obtain the higher derivatives of the functions with the lowest level of
noise. The optimal values seemed to be N = 4, σ = 2.2, and dz = 0.4 mm. The first three
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derivatives of the axial field functions are shown in figure 5.4 to illustrate the capabilities
of this method.
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Figure 5.3: Axial field functions of the magnetic objective lens with the hole in the pole piece
determined by three discussed methods – method based on the Fourier series expansion (green
points), method based on the wavelet interpolation (red solid lines), and the combined method
(black dashed line).
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Figure 5.4: The first three derivatives of the axial field functions of the magnetic objective
lens with the hole in the pole piece evaluated by the combined algorithm.
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6 Calculation of optical properties of
the lens with an elliptic polepiece

Influence of different perturbations of pole piece shape of magnetic lens on optical proper-
ties is studied in the following chapter. The method used to calculate axial field functions
from the results of 3D calculation and evaluation of aberration coefficients is described
in this chapter. At the beginning, the field of the lens is computed. Afterwards, the
axial field functions are determined. In the next step, electrons are traced through the
lens using radial expansion of the axial field functions interpolation method. Finally, the
aberration coefficients are evaluated.

The process is presented on a magnetic lens with an elliptic pole piece. The ellipticity
of upper pole piece is 0.1 mm, and the excitation of the lens is 1 000 A-turns.

6.1 Calculation of the magnetic field in lens

Figure 6.1: Magnetic lens with an elliptic pole piece – coil (green), yoke (blue), pole pieces
(red), perturbed part of pole piece (light blue). Bore diameter and gap are both 2mm.

Properties of the modified magnetic objective lens of K. Tsuno [43] with an elliptic
pole piece (figure 6.1) are studied. The region of pole pieces parallel to the optical axis

39



is extended and conical parts of pole pieces are removed. This modification is necessary
to avoid an influence of the change of geometry to results of the perturbation theory in
the case of highly saturated lens [5]. The axial field of the modified lens is the same as
the axial field of the lens with original pole pieces (figure 6.2). The original shape of pole
piece is shown in figure 4.2 on page 28.

This exploratory study is performed in EOD [36] using the fine mesh with step 0.05 mm
in the area of interest close to the gap, which implies approximately 0.5 million mesh
points. The highest possible relative accuracy of the non-linear solver 1 · 10−14 is chosen.
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Figure 6.2: Comparison of the axial magnetic flux density of the magnetic objective lens and
the magnetic objective lens with modified shape of pole pieces for two excitations.

Figure 6.3: Fine mesh of the magnetic lens in COMSOL Multiphysics. The undistinguishable
black region corresponds to the area of the smallest mesh elements in the gap region, which is
shown in detail on the right. Polepieces in the detailed view are red coloured.

The 3D calculation is performed in COMSOL Multiphysics [13] with AC/DC module
using the second order finite element method. The smallest mesh element size, used for
the 3D calculation, is reduced to 0.084 mm in the gap region close to the axis to achieve
sufficient accuracy of the field and reasonable memory consumption. Despite that only
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one half of the lens is computed (figure 6.3), the memory consumption is almost 70 GB.
The total number of degrees of freedom is about 25 million. Again the relative accuracy
of the field computation 5 · 10−8 is used. Components of the magnetic flux density are
evaluated using built in interpolation methods of COMSOL Multiphysics in 360 points
on 50 circles with radii from 0.01 mm to 0.50 mm. The sampling step in axial direction is
0.01 mm.

The 2D calculation applying the perturbation theory is performed in EOD [36] with
plugin Tolerancing [12] with the same mesh as for the calculation of magnetic field in the
exploratory study discussed above in this section.

6.2 Optimization of the axial field function
evaluation

The wavelet interpolation of radial dependence of Fourier components, introduced in the
section 5.3, is used for determining the axial field functions. Optimization consists of
selecting the proper parameters dz and σ. The parameters can be optimized according to
three different criterions:

1. to get the axial functions oscillation as low as possible

2. to get the standard deviation of the axial function as low as possible

3. to get the higher derivatives of the functions with the lowest level of noise

The first criterion is the simplest one, but also the least strict. Therefore, the results
are not necessary as accurate as possible. The second criterion should be more strict,
but it is disputable. Are the lowest standard deviation really necessary? Probably they
are not, because the lowest standard deviation do not have to imply having the higher
derivatives smooth. Especially if the 3D field suffers from a high degree of numerical
errors. Consequently, the best criterion seemed to be the third one. Similar criterion as
the third one is used by Radlička to find the optimal σ in wavelet interpolation in [44].

In the first optimization step, the optimal dz parameter is found. This is provided by
varying dz with fixed σ = 2. The parameter dz was changed from 0.04 mm to 0.50 mm.
Seventh derivative of the quadrupole axial field function for different values of dz is shown
in figure 6.4. Only selected axial field functions from all tested are displayed. The interval
of optimal values of dz seems to be from 0.08 mm to 0.16 mm. The seventh derivative
have perfect shape of maxima and relatively low degree of noise around the nonzero axial
field area in this region. For values of dz less than 0.06 and greater than 0.2, the seventh
derivative is fluctuating.

The second optimization step searches the optimal value of σ parameter. This is
provided by varying σ with fixed dz = 0.12 mm. The parameter σ was changed from 1
to 5. Seventh derivative of the quadrupole axial field function for selected values of σ is
shown in figure 6.5. The interval of optimal values seems to be from 1.8 to 3. In this
region, the seventh derivative has relatively low degree of noise. For other values of σ the
seventh derivative is fluctuating.

As the result, parameters dz = 0.12 mm and σ = 2.2, which are in the middle of
intervals mentioned above, are chosen for further calculations. The axial field functions
and their first seven derivatives for the rotationally symmetric and the quadrupole field
are shown in figure 6.6. The axial field functions and their derivatives are smooth. A
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low fluctuation is noticeable only around z = 1 mm in the case of the seventh derivative
of the quadrupole field function. This is probably caused by numerical errors in the
3D calculation. However, this assumption cannot be confirmed by calculation of field in
denser mesh because of limited computer memory.
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Figure 6.6: Axial field functions and its first seven derivatives for the rotationally symmetric
(left) and quadrupole (right) field using dz = 0.12mm and σ = 2.2. The ellipticity of upper pole
piece is 100 µm, and the excitation of the lens is 1 000A-turns.

Figure 6.7 shows the comparison of the axial field functions of the modified magnetic
objective lens with ellipticity of upper pole piece of 100 µm and excitation of 1 000 A-turns
evaluated from the 3D field and computed using the 2D perturbation theory. Rotationally
symmetric axial field function evaluated from the 3D field is in very good agreement with
the axial field calculated in 2D and its standard deviation is below 1 %. A small difference
of 3 % is observed between the quadrupole axial field function evaluated from the 3D
calculation and computed by the perturbation theory in 2D. The standard deviation of
the quadrupole axial field function is again below 1 %. Finally, the octupole axial field
function is evaluated from the 3D field. Its standard deviation is approximately 7 % of
the value at the minimum. The perturbation theory by Sturrock [11], including the high
order terms, does not take into account the octupole component of the field. However, if
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a pure geometrical point of view on transformation of a circle to an ellipse is considered,
the octupole field appears (for further details see appendix B on page 67). Finally, the
influence of the octupole axial field function on electron trajectories is negligible (figure
6.8), which is in agreement with [10]. Other multipole components are not present.

6.3 Particle tracing

To evaluate optical properties of the lens with perturbed pole piece, it is necessary to define
the object and the image plane of imaging. Inspiration is found in [3], where the non-
modified lens acts as an objective lens for a 200 kV high resolution scanning transmission
electron microscope. The object position is zo = −130 mm and the Gaussian image plane
is zi = 0 mm. Energy of electrons is properly adjusted according to the lens excitation.

The axial field functions and its first five derivatives are imported to EOD using
external field interpolation option. Trajectories are computed with the variable-step
seventh/eight-order Runge-Kutta-Fehlberg method with relative accuracy 10−14 using the
first three terms of radial expansion of axial field interpolation method.

Particle tracing consists of two steps. In the first step, the energy of electrons is found
using focusing by energy from zo = −130 mm to zi = 0 mm. Excitation of 1 000 A-turns
implies the energy of 2.107 keV. In the second step, trajectories of an electron beam are
calculated. Positions of electrons in the Gaussian image plane zi = 0 mm are shown in
figure 6.8. The electron beam consists of 51 particles – one axial particle and 50 particles
with step π/20 rad around the z-axis with the slope from 0.01 to 0.10 mrad in the object
plane. Positions of electrons traced using the axial field functions evaluated from the 3D
field without the octupole component and including the octupole component are the same.
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Positions of electrons traced using the axial field functions computed by the perturbation
theory are slightly different, which is caused by the small difference in quadrupole axial
field functions.
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Figure 6.8: Comparison of positions of electrons in the Gaussian image plane zi = 0mm
calculated using the axial field functions evaluated from the 3D field without the octupole
component (green), including the octupole component (blue), and calculated using the axial
field functions computed by the perturbation theory (red).

6.4 Aberration coefficients

Aberration coefficients can be calculated using aberration integrals [8, 9], or by a poly-
nomial least squares fit of particle positions in the Gaussian image plane [3, 46, 50]. The
positions of particles wi = xi + iyi (xi and yi are Cartesian coordinates) in the Gaussian
image plane z = zi caused by aberrations are expressed by equation

wi = LDγiωiω̄i +
1

2
L̄Dγ̄ω

2
i + ADγ

2
i ω̄i + CFωi + A1ω̄i + CSω

2
i ω̄i, (6.1)

where γi is the deflection and ωi is the complex slope of the trajectory at the Gaussian
image plane. The meaning of coefficients is: LD – coma of deflection, AD – astigmatism
of deflection, CF – defocus with field curvature, A1 – two-fold axial astigmatism, and CS

– spherical aberration.
Aberration coefficients LD, AD, and CS are calculated using aberration integrals im-

plemented in EOD software. Evaluation of A1, which is an important defect caused by
the parasitic quadrupole field in the case of an ellipticity, is not implemented in EOD soft-
ware, therefore the two-fold axial astigmatism aberration coefficient needs to be evaluated
by the least squares fit of the analytical model — equation (6.1).

Two-fold axial astigmatism coefficient A1 is evaluated by the least squares fit of an
analytical model to the positions of the electrons in the Gaussian image plane zi. Figure
6.9 shows the fitted and traced positions of electrons in the Gaussian image plane. Fitted
positions and positions of electrons calculated by tracing are in good agreement. Other
aberration coefficients are calculated using aberration integrals implemented in EOD.
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Figure 6.9: Comparison of fitted (red) and traced (green) positions of electrons in the Gaussian
image plane using the axial field functions evaluated from the 3D field. The magnetic lens pole
piece ellipticity is 100 µm and the excitation of the lens is 1 000A-turns.

Aberration coefficients are summarized in table 6.1. The aberration coefficients evaluated
using the axial field functions calculated from the 3D field and computed by the 2D
perturbation theory are similar. Small difference in range of units of per cent is in the
two-fold axial astigmatism coefficient.

Table 6.1: Selected aberration coefficients (CS and A1) of the magnetic lens with ellipticity of
100 µm and excitation of 1 000A-turns.

aberration coefficient value
spherical aberration (2D) [mm] 0.417
spherical aberration (3D) [mm] 0.416

two-fold axial astigmatism (2D) [µm] (84.892 4 + i78.137 3)± (0.001 2 + i0.001 2)
two-fold axial astigmatism (3D) [µm] (83.845 1 + i82.106 1)± (0.001 3 + i0.001 3)
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7 Comparison of 2D and 3D calcula-
tion of perturbed magnetic lens

The main goal of this thesis is to explore and illustrate limits of the perturbation theory.
The limits can be divided into two groups. The first group covers effects caused by
saturation of the lens. The second group deals with magnitudes of perturbations. Modern
machining can achieve the tolerances of the pole pieces under 2 µm. Considering the real
tolerances measured in [2], the most of perturbations are below 20 µm for an ellipticity and
a misalignment, respectively 20 mrad in the case of a tilt. Perturbations up to 100 µm,
respectively 100 mrad, are studied to explore the limits of perturbation theory in this
thesis. These limits are demonstrated on the modified magnetic objective lens (figure 6.1
on page 39). Parameters of the axial field function evaluation, introduced in section 5.3,
are M = 5, which means, multipole fields up to decapole component are investigated,
N = 5, which means, the first five terms of series are used, and dz = 0.1 mm and σ =
2.2, according to section 6.2. The object position is zo = −130 mm and the Gaussian
image plane is zi = 0 mm. Energy of electrons is properly adjusted according to the lens
excitation, similarly as in section 6.3.

7.1 Influence of saturation of the magnetic lens
with an elliptic pole piece

An influence of saturation of the magnetic lens on suitability of the perturbation theory
is investigated by comparing the results obtained by 3D calculations and by calculations
using the perturbation theory. The ellipticity of the pole piece is 2 µm, and the excitation
is 1 000, 2 000, 3 000, 4 000, 5 000, and 10 500 A-turns. Table 7.1 summarizes optical
properties of the magnetic lens for different excitations calculated using EOD software.

Table 7.1: Optical properties of the magnetic lens for different excitations calculated using
EOD software. Object and image planes of the lens are zo = −130mm and zi = 0mm.

excitation beam energy magnification beam rotation spherical aberration
[A-turns] [keV] [rad] [mm]

1 000 2.107 −5.674 · 10−3 2.036 0.429
2 000 8.380 −5.705 · 10−3 2.038 0.432
3 000 18.772 −5.854 · 10−3 2.047 0.439
4 000 34.285 −6.638 · 10−3 2.083 0.461
5 000 52.721 −7.598 · 10−3 2.135 0.474

10 500 198.582 −1.428 · 10−2 2.315 0.596
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Figure 7.1: Rotationally symmetric axial field components B0 for different exciations of the
lens computed using 2D (dotted lines) and 3D calculation (solid lines).
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Rotationally symmetric axial field components B0 are shown in figure 7.1. Standard
deviations of B0 evaluated from the 3D solution of the field are below 1 % of value of
maxima. Saturation of the lens is noticeable in figure 7.2. If the lens is not saturated, the
maxima of B0 are linear to the excitation, which is fulfilled for excitations of 1 000, 2 000,
and 3 000 A-turns. In the case of non-saturated lens, the axial field B0 rises in the same
position around z = −3 mm. For higher excitations the lens saturates and the axial field
rises in the lower values of z coordinate (figure 7.1).

Quadrupole axial field functions D2 are shown in figures 7.3 and 7.4. Standard devia-
tions of D2 evaluated from the 3D solution of the field are below 1 % of value of maxima.
The function computed using the perturbation theory is for lower excitations of the lens
(1 000 and 2 000 A-turns) in perfect agreement with the function evaluated from the 3D
field. For higher excitations, the function calculated using the perturbation theory reaches
higher values than the corresponding function determined from the 3D field. The differ-
ences are below 1 %. In the case of excitation 3 000 A-turns, the shape is similar, but
the maximum of D2 computed using the perturbation theory is about 3 % higher. For
4 000 A-turns, the shape is slightly different and the maximum of D2 by the perturbation
theory is approximately 7 % higher. The different shape of the axial function is more
significant for higher saturation of the lens. The onset and the end of the axial function is
similar, but the middle part is different. The function calculated using the perturbation
theory rises more rapidly, whereas the function evaluated from the 3D field has a staircase
growth in two steps — the first is the onset; the second is approximately in the area of
the onsets of functions for lower excitations around z = −2 mm. The maximum of D2

computed using the perturbation theory is about 10 % higher in the case of 5 000 A-turns.
The difference rises up to 16 % for the excitation of 10 500 A-turns, which is corresponding
to the performance of the lens situated as an objective lens in the 200 kV scanning trans-
mission electron microscope. Differences in maxima of the axial quadrupole field function
are summarized in the table 7.2.

Another important effect, connected to the saturation of magnetic materials, is the
penetration of the perturbation multipole field into the material. Consequently, if the lens
is saturated, the relative permeability of material can be very low [5]. Influence of the
relative permeability of the material near the pole piece tip to the difference in maxima
of the quadrupole axial field functions of the magnetic lens with an elliptic pole piece
is summarized in table 7.2. The perturbation theory is perfectly suitable, if the relative
permeability of material is high, respectively if the lens is not saturated. With rising
excitation, the lens becomes saturated and the relative permeability of material decreases.
If the relative permeability is below 100, the results obtained using the perturbation theory
are inaccurate. This conclusion is in agreement with [5].

Table 7.2: Relative permeability µr of the material near the pole piece tip and difference in
the maxima of the quadrupole axial field functions D2 of the magnetic lens with an elliptic pole
piece for different excitations of the lens. The ellipticity of the lens is 2 µm.

excitation [A-turns] µr near the pole piece tip difference in D2

1 000 ∼ 1 500 < 1 %
2 000 ∼ 700 < 1 %
3 000 ∼ 100 3 %
4 000 ∼ 15 7 %
5 000 ∼ 10 10 %

10 500 ∼ 5 16 %
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Figure 7.3: Quadrupole axial field functions D2 for different exciations of the undersaturated
lens computed using 2D perturbation theory (dotted lines) and 3D calculation (solid lines). The
ellipticity of the pole piece is 2 µm.
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An elliptic pole piece of the lens, respectively the parasitic quadrupole field, causes
a two-fold astigmatism. Two-fold astigmatism aberration coefficients, evaluated by the
least square fit introduced in the section 6.4, are summarized in the table 7.3. Standard
deviations of the aberration coefficients are around 1 %. Magnitudes of the coefficients
evaluated using the perturbation theory and the 3D field are almost the same up to the
excitation of 4 000 A-turns. For higher excitations, the difference between the coefficients
is getting higher as the difference in maxima and shape of the quadrupole axial field func-
tions rises. The two-fold astigmatism aberration coefficient evaluated using the axial field
functions calculated using the perturbation theory is approximately 1.5-times higher than
the coefficient calculated using the axial field functions evaluated from the 3D solution of
the field for the excitation of 10 500 A-turns, so the perturbation theory does not produce
accurate results. According to this, it is disputable, how accurate are results in [3].

Table 7.3: Size of two-fold axial astigmatism aberration coefficients |A1| caused by the
quadrupole field compoment of the magnetic lens with an elliptic pole piece for different ex-
citations of the lens calculated by the fit. The ellipticity of the lens is 2 µm.

excitation [A-turns] |A1| (2D) [µm] |A1| (3D) [µm] difference in |A1|
1 000 2.31 2.34 1 %
2 000 2.25 2.33 3 %
3 000 2.26 2.33 3 %
4 000 2.50 2.42 3 %
5 000 2.73 2.39 14 %

10 500 4.04 2.70 50 %

Standard deviations of other multipole axial field functions are similar or higher than
the function values, therefore no other multipole fields are present. However, if the pure
geometrical point of view on elliptic deformation of a circle is considered, additional
octupole field can appear (for further details see appendix B on page 67).

7.2 Influence of the magnitude of ellipticity

The limiting ellipticity magnitude of the magnetic lens pole piece for the legitimacy of
the perturbation theory is examined in the same way as in the previous section. Results
obtained by 3D calculations and by calculations employing the 2D perturbation theory
are compared for the ellipticity of the pole piece of 2 µm, 20 µm, 50 µm, and 100 µm. The
excitation of the lens is 1 000 A-turns.

Quadrupole axial field functions D2 computed using the perturbation theory seems to
be for lower magnitudes of the ellipticity in perfect agreement with the function evaluated
from the 3D field (figure 7.5). The shape of the functions is similar for all discussed elliptic
pole pieces. However, the maximum of the function calculated using the perturbation
theory is lower than the maximum of the function determined from the 3D field. The
difference of maxima is approximately 1 % for the ellipticity of 2 µm, 2 % for 20 µm, 2 %
for 50 µm, and 3 % for 100 µm. Standard deviations of quadrupole axial field functions
evaluated from the 3D solution of the field are below 1 % of value at the maxima.

The presence of elliptic pole piece of the lens causes the parasitic quadrupole field,
which inflicts the two-fold astigmatism. Two-fold astigmatism aberration coefficients,
evaluated by the least square fit introduced in the section 6.4, are summarized in the table
7.4. Standard deviations of the aberration coefficients are around 1 %. Magnitudes of the

51



-5

 0

 5

 10

 15

 20

 25

-4 -3 -2 -1  0  1  2

D
2 

[m
T/

m
m

]

z [mm]

ellipticity 100 µm, 3D
ellipticity 100 µm, 2D pert.

ellipticity 50 µm, 3D
ellipticity 50 µm, 2D pert.

ellipticity 20 µm, 3D
ellipticity 20 µm, 2D pert.

ellipticity 2 µm, 3D
ellipticity 2 µm, 2D pert.

Figure 7.5: Quadrupole axial field functions D2 for different values of the ellipticity computed
using 2D perturbation theory (dotted lines) and 3D calculation (solid lines). The excitation of
the lens is 1 000A-turns.

coefficients evaluated using the perturbation theory are perfectly linear to the ellipticity
(figure 7.6). The magnitude of the coefficients evaluated using the perturbation theory
and the 3D field is almost the same, respectively the coefficients calculated using 3D field
are slightly higher, which is noticeable mainly for higher magnitudes of ellipticity. The
perturbation theory provides relatively accurate results. Similar analysis was done by J.
A. Rouse [17], summarized on page 58 in figure 34. However, in his study the coefficients
calculated using 3D field are lower than the coefficients evaluated using the perturbation
theory. On the other hand, the discussed magnetic lenses are entirely different.

Table 7.4: Size of two-fold axial astigmatism aberration coefficients |A1| caused by the
quadrupole field compoment of the magnetic lens with an elliptic pole piece for different magni-
tudes of ellipticity calculated by the least square fit. The excitation of the lens is 1 000A-turns.

ellipticity [µm] |A1| (2D) [µm] |A1| (3D) [µm] difference in |A1|
2 2.31 2.34 1 %

20 23.0 23.7 3 %
50 57.6 59.2 3 %

100 115 117 2 %

Octupole axial field functions D4 evaluated from the 3D field are shown in figure 7.7.
Standard deviations of D4 are almost the same for all values of the ellipticity and almost
in the same range as the function values. However, this is not true in the case of the
highest ellipticity (100 µm), where the standard deviation is around 6 % of the value at
the minimum of D4. The presence of the octupole field component is in agreement with
the pure geometric interpretation (see appendix B on page 67). However, this field affects
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Figure 7.6: Two-fold axial astigmatism size |A1| calculated by the least square fit as a function
of the ellipticity. Linear dependency is extrapolated from the |A1| for the ellipticity of 2 µm.
The excitation of the lens is 1 000A-turns.

the electron trajectories negligibly (figure 6.8 on page 45).
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Figure 7.7: Octupole axial field functions D4 for different values of the ellipticity evaluated
from the 3D solution of the field. The excitation of the lens is 1 000A-turns.

Standard deviations of other multipole axial field functions are higher than their values,
therefore no other multipole fields — dipole, hexapole, and decapole — are present. The
pure geometric analysis of possible parasitic fields arising from the ellipticity (discussed
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in appendix B) predicts the same results.

7.3 Misalignment of upper pole piece of the
magnetic lens

Misalignment of upper pole piece of the magnetic lens is explored in a similar way as the
ellipticity. The misalignment of the pole piece is tested for values 2 µm, 20 µm, 50 µm,
and 100 µm. The excitation of the lens is again 1 000 A-turns.

The first order (standard) perturbation theory predicts the presence of parasitic dipole
field caused by the pole piece misalignment (introduced in section 4.1). Axial dipole field
functions D1 computed using the perturbation theory seems to be for smaller misalign-
ments in perfect agreement with the functions evaluated from the 3D field (figure 7.8).
The shape of the functions is similar for all studied misalignments. Nevertheless, the max-
imum of the function calculated using the perturbation theory is lower than the maximum
of the function determined from the 3D field. The difference of maxima is approximately
1 % for the misalignment of 2 µm, 2 % for 20 µm, 2 % for 50 µm, and 3 % for 100 µm.
Standard deviations of dipole axial field functions evaluated from the 3D solution of the
field are below 1 % of value at the maxima.

The parasitic dipole field caused by the misaligned pole piece of the lens provides a
beam deflection and aberrations — coma of deflection and astigmatism of deflection.
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Figure 7.8: Dipole axial field functions D1 for different values of the misalignment computed
using 2D perturbation theory (dotted lines) and 3D calculation (solid lines). The excitation of
the lens is 1 000A-turns.

Table 7.5 summarizes beam deflections γi caused by the parasitic dipole field. Beam
deflections evaluated using the perturbation theory in 2D depend linearly on the misalign-
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ment magnitude. Beam deflections calculated using the axial field functions evaluated
from the 3D solution of field reach slightly higher values and are also almost linear.

Table 7.5: Beam deflection γi of the magnetic lens with a misaligned pole piece for different
magnitudes of misalignment. The excitation of the lens is 1 000A-turns.

misalignment [µm] γi (2D) [µm] γi (3D) [µm]
2 2.00− i0.03 2.06− i0.04

20 20.0− i0.3 20.7− i0.5
50 50.0− i0.7 51.8− i1.2

100 100− i1 104− i2

Table 7.6 summarizes coma sizes |LDγi| caused by the parasitic dipole field calculated
by the aberration integral implemented in EOD software. Coma size calculated using
the 2D perturbation theory is linear to the misalignment. Coma size calculated using
the axial field functions evaluated from the 3D field reaches higher values and depends
linearly on the misalignment, too (figure 7.9 left).

Table 7.6: Coma size |LDγi| of the lens with a misaligned pole piece for different magnitudes
of misalignment. The excitation of the lens is 1 000A-turns.

misalignment [µm] |LDγi| (2D) [µm] |LDγi| (3D) [µm] difference in |LDγi|
2 2.21 2.25 2 %

20 22.1 22.6 2 %
50 55.2 56.5 2 %

100 110 113 3 %

Table 7.7 summarizes astigmatism sizes |ADγ
2
i | caused by the parasitic dipole field

calculated by the integral implemented in EOD software. Astigmatism size calculated
using the 2D perturbation theory depends quadratic on the misalignment. Astigmatism
size calculated using the axial field functions evaluated from the 3D field reaches higher
values and is also almost quadratic to the misalignment (figure 7.9 right).

Table 7.7: Astigmatism size |ADγ
2
i | of the magnetic lens with a misaligned pole piece for

different magnitudes of misalignment. The excitation of the lens is 1 000A-turns.

misalignment [µm] |ADγ
2
i | (2D) [µm] |ADγ

2
i | (3D) [µm] difference in |ADγ

2
i |

2 0.003 3 0.003 4 3 %
20 0.329 0.346 5 %
50 2.05 2.16 5 %

100 8.22 8.68 5 %

Also non-negligible quadrupole axial field functions D2 are detected in the 3D field
(figure 7.10) in addition to expected dipole field. Presence of the quadrupole field is
predicted using the perturbation theory including higher order terms [11] mentioned in
section 4.1 and corresponds to the geometric interpretation (appendix B on page 67).
Standard deviations of quadrupole axial field functions are almost the same for all values
of the misalignment in range of units of per cent of the maxima, respectively minima, of
the functions.
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Figure 7.10: Quadrupole axial field functions D2 for different magnitudes of the misalignment
evaluated from the 3D solution of the field. The excitation of the lens is 1 000A-turns.

Influence of the parasitic quadrupole field on the beam deflection is negligible. Table
7.8 summarizes axial astigmatism sizes |A1| caused by the quadrupole field component,
evaluated from the 3D field of the magnetic lens with a misaligned pole piece, for different
misalignments calculated by the least square fit. Values of |A1| caused by the misalignment

56



are much smaller than values of |A1| caused by the ellipticity (table 7.4). However, the
two-fold axial astigmatism is approximately 70-times greater than the astigmatism of
deflection for the smallest value of misalignment (2 µm). For greater misalignments, the
astigmatism of deflection prevails.

Table 7.8: Size of two-fold axial astigmatism aberration coefficients |A1| caused by the
quadrupole field compoment, evaluated from the 3D field of the magnetic lens with a mis-
aligned pole piece, for different magnitudes of misalignment calculated by the least square fit.
The excitation of the lens is 1 000A-turns.

misalignment [µm] |A1| (3D) [µm]
2 0.232

20 0.165
50 0.187

100 0.942

Standard deviations of other multipole axial field functions are higher than the function
values, therefore multipole fields of higher periodicity — hexapole, octupole, and decapole
— are either not present, or are really weak and strongly affected by numerical errors.
However, according to the purely geometric point of view, really weak octupole field
should appear (appendix B on page 67).

To conclude, the standard (first order) perturbation theory is not as good approxi-
mation of pure misalignment as it is traditionally assumed especially for small values of
misalignment. It is necessary to consider the parasitic quadrupole field to get the correct
result, therefore the perturbation theory including the second order term should be used.
On the other hand, the quadrupole field component and the axial astigmatism caused by
the misalignment is much smaller than the quadrupole field component and axial astig-
matism caused by the ellipticity, therefore if both perturbations — misalignment and
ellipticity — are present, the standard first order perturbation theory seems to be an
applicable approximation.

7.4 Tilt of upper pole piece of the magnetic lens

Tilt of upper pole piece of the magnetic lens is investigated in the same way as the
misalignment. The tilt of the pole piece is tested for values 2 mrad, 20 mrad, 50 mrad,
and 100 mrad. The axis of tilted pole piece intersects the z-axis in zt = 0 mm. The
excitation of the lens is 1 000 A-turns. It must be noticed, that the largest tilt is in the
case of considered lens in reality unrealizable, because the mass of the tilted pole piece
overlaps the optical axis. Nevertheless, this effect does not affect results for z > −5 mm,
where the perturbation field is present, therefore it is ignored.

The first order (standard) perturbation theory again predicts the presence of parasitic
dipole field caused by the tilted pole piece (introduced in section 4.1). Axial dipole field
functions D1 computed using the perturbation theory are slightly lower than the functions
evaluated from the 3D field (figure 7.11). The difference of maxima is approximately 3 %
for the tilt of 2 mrad, respectively 4 % for the tilt of 20 mrad, 50 mrad, and 100 mrad. The
shape of the functions is similar for all studied tilts. Standard deviations of dipole axial
field functions evaluated from the 3D solution of the field are below 1 % of value at the
maxima.
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Figure 7.11: Dipole axial field functions D1 for different values of the tilt computed using 2D
perturbation theory (dotted lines) and 3D calculation (solid lines). The axis of tilted pole piece
intersects the z-axis in zt = 0mm. The excitation of the lens is 1 000A-turns.

The parasitic dipole field caused by the tilted pole piece of the lens provides, similarly
as in the case of the misaligned pole piece discussed in the previous section, a beam
deflection and aberrations — coma of deflection and astigmatism of deflection.

Table 7.9 summarizes beam deflections γi caused by the parasitic dipole field. Beam
deflections evaluated using the perturbation theory in 2D depends linearly on the tilt
magnitude. Beam deflections calculated using the axial field functions evaluated from the
3D solution of field reach slightly higher values are linear to the tilt magnitude, too.

Table 7.9: Beam deflection γi of the magnetic lens with a tilted pole piece for different magni-
tudes of tilt. The axis of tilted pole piece intersects the z-axis in zt = 0mm. The excitation of
the lens is 1 000A-turns.

tilt [mrad] γi (2D) [µm] γi (3D) [µm]
2 2.49 + i0.08 2.55 + i0.09

20 24.9 + i0.8 25.7 + i0.6
50 62.2 + i2.0 64.2 + i1.5

100 124 + i4 128 + i3

Table 7.10 summarizes coma sizes |LDγi| caused by the parasitic dipole field calculated
by the aberration integral implemented in EOD software. Coma size calculated using the
2D perturbation theory is linear to the tilt. Coma size calculated using the axial field
functions evaluated from the 3D field reaches slightly higher values and also depends
linearly on the tilt (figure 7.12 left).

Table 7.11 summarizes astigmatism sizes |ADγ
2
i | caused by the parasitic dipole field

calculated by the aberration integral implemented in EOD software. Astigmatism size
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Table 7.10: Coma size |LDγi| of the magnetic lens with a tilted pole piece for different magni-
tudes of tilt. The axis of tilted pole piece intersects the z-axis in zt = 0mm. The excitation of
the lens is 1 000A-turns.

tilt [mrad] |LDγi| (2D) [µm] |LDγi| (3D) [µm] difference in |LDγi|
2 2.98 3.01 1 %

20 29.8 30.2 1 %
50 74.6 75.7 1 %

100 149 152 2 %

calculated using the 2D perturbation theory depends quadratic on the tilt. Astigmatism
size calculated using the axial field functions evaluated from the 3D field reaches higher
values and is also almost quadratic to the tilt (figure 7.12 right).

Table 7.11: Astigmatism size |ADγ
2
i | of the magnetic lens with a tilted pole piece for different

magnitudes of tilt. The axis of tilted pole piece intersects the z-axis in zt = 0mm. The excitation
of the lens is 1 000A-turns.

tilt [mrad] |ADγ
2
i | (2D) [µm] |ADγ

2
i | (3D) [µm] difference in |ADγ

2
i |

2 0.005 7 0.005 8 2 %
20 0.573 0.591 3 %
50 3.58 3.70 3 %

100 14.3 14.9 4 %
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Figure 7.12: Coma size |LDγi| (left) and astigmatism size |ADγ
2
i | (right) as a function of tilt.

Linear dependency is extrapolated from the |LDγi| for the tilt of 2mrad, respectively quadratic
dependency is extrapolated from the |ADγ

2
i | for the tilt of 2mrad. The axis of tilted pole piece

intersects the z-axis in zt = 0mm. The excitation of the lens is 1 000A-turns.

Again non-negligible quadrupole axial field functions D2 are detected in the computed
3D field (figure 7.13). Presence of the quadrupole field is predicted using the perturbation
theory including higher order terms [11] and corresponds to the geometric interpretation
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(appendix B on page 67), similarly as in the case of the misalignment. Standard deviations
of quadrupole axial field functions are almost the same for all values of the tilt in range
of units of per cent at the maxima of the functions.
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Figure 7.13: Quadrupole axial field functions D2 for different values of the tilt evaluated from
the 3D solution of the field. The axis of tilted pole piece intersects the z-axis in zt = 0mm. The
excitation of the lens is 1 000A-turns.

Influence of the parasitic quadrupole field on the beam deflection is again negligible.
Table 7.12 summarizes axial astigmatism size |A1| caused by the quadrupole field compo-
nent, evaluated from the 3D field of the magnetic lens with a tilted pole piece, for different
magnitudes of tilt calculated by the least square fit. Values of |A1| caused by the tilt are
also much smaller than values of |A1| caused by the ellipticity (table 7.4). However,
the two-fold axial astigmatism is approximately 40-times greater than the astigmatism of
deflection for the tilt of 2 mrad. For greater tilts, the astigmatism of deflection prevails.

Table 7.12: Size of two-fold axial astigmatism aberration coefficients |A1| caused by the
quadrupole field compoment, evaluated from the 3D field of the magnetic lens with a tilted
pole piece, for different magnitudes of tilt. The axis of tilted pole piece intersects the z-axis in
zt = 0mm. The excitation of the lens is 1 000A-turns.

tilt [mrad] |A1| (3D) [µm]
2 0.245

20 0.219
50 0.353

100 1.15

Standard deviations of other multipole axial field functions are higher than the function
values, therefore multipole fields of higher periodicity — hexapole, octupole, and decapole
— are either not present, or are really weak and strongly affected by numerical errors.
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However, according to the geometric interpretation, really weak octupole field should
appear (appendix B on page 67), similarly as for the lens with a misaligned pole piece.

The conclusion is the same as in the case of misaligned pole piece in the previous
section. The standard (first order) perturbation theory is not as good approximation of
pure tilt as it is traditionally assumed especially for small tilts. It is necessary to consider
the parasitic quadrupole field to get the correct result, therefore the perturbation theory
including the second order term should be used. On the other hand, the quadrupole field
component and the axial astigmatism caused by the tilt is much lower than the quadrupole
field component and axial astigmatism caused by the ellipticity, therefore if both pertur-
bations — tilt and ellipticity — are present, the standard first order perturbation theory
seems to be an applicable approximation.
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8 Conclusion

Rotationally symmetric electron lenses may suffer from parasitic aberrations caused by
limited machining precision of otherwise rotationally symmetric electrodes or pole pieces.
The imperfection can be classified as an ellipticity, a misalignment, a tilt, or a combination
of previous types. The main goal of this work was to introduce a method for evaluating the
axial field functions from the 3D solution of the field and to explore the results obtained by
the two different techniques for computing electron optical systems with broken rotational
symmetry — application of perturbation theory to 2D calculations and 3D simulations.
As the result, limits of the perturbation theory were explored and illustrated on the
magnetic objective lens used in a high resolution 200 kV scanning transmission electron
microscope.

Three different algorithms for the calculation of axial multipole field functions from the
3D solution of the field were introduced (chapter 5) and tested on the magnetic objective
lens with the hole in the pole piece (section 5.4). The best results were obtained using
the wavelet interpolation of radial dependence of Fourier components described in section
5.3. The functions are interpolated in all positions along the optical axis from multipole
components of the field. Evaluated axial multipole field functions and their derivatives
were smooth and continuous, which is necessary for accurate ray tracing, for evaluation
of aberration integrals, or for computing aberration coefficients using differential algebra
method. Design of 3D field interpolation algorithm is very important result of this thesis.
It offers an opportunity of very accurate calculation of optical properties of lenses with
complicated geometry, which is impossible to reach with standard field interpolation in
the mesh nodes.

The limits of the perturbation theory were explored by the comparison of axial mul-
tipole field functions and selected aberration coefficients obtained using the perturbation
theory in 2D to the results evaluated using the 3D solution of the field. The study cov-
ered the influence of magnetic saturation of the material (section 7.1) and the influence
of magnitudes of different perturbations (sections 7.2 to 7.4).

The standard perturbation theory is suitable for non-saturated magnetic lenses, but
it provides inaccurate results for saturated magnetic lenses. With rising excitation (over
3 000 A-turns), the lens becomes saturated and the relative permeability of material de-
creases. If the relative permeability of pole piece tip is below 100, the results using the
perturbation theory are inaccurate, as was predicted in [5]. For the excitation of 10 500 A-
turns, which corresponds to the performance of the lens situated as an objective lens in
the 200 kV scanning transmission electron microscope, the difference at the maximum of
the quadrupole axial field function was 16% and the two-fold astigmatism aberration co-
efficient evaluated using the axial field functions calculated using the perturbation theory
was approximately 1.5-times higher than the coefficient calculated using the axial field
functions evaluated from the 3D solution of the field. According to this, it is disputable,
how accurate are results published in [3]. Consequently, an extension of the standard
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perturbation theory to the saturated magnetic lenses would be useful.
Influence of the pole piece ellipticity, misalignment, and tilt were further studied on

non-saturated lens. The standard first order perturbation theory, which substitutes the
ellipticity of pole piece by parasitic quadrupole field, provides applicable results for all
studied ellipticity magnitudes (from 2 µm to 100 µm). The difference at the maxima of
quadrupole axial field functions and the difference in the corresponding two-fold axial
astigmatism size were both less than 4 %. In the case of the ellipticity of 100 µm, the
noticeable parasitic octupole field was determined from the 3D solution of the field in
addition to the quadrupole field. However, the weak octupole field had negligible effect
on the optical properties.

The standard first order perturbation theory predicts only the presence of parasitic
dipole field caused by the pole piece misalignment. However, the analysis of the 3D
field gave parasitic dipole and quadrupole fields, as was predicted by the Fourier analysis
of a misaligned circle (appendix B). Differences in dipole axial field functions, beam
deflection and related aberrations — coma of deflection and astigmatism of deflection —
were less than 5 %, which means still sufficient approximation compared to the fully 3D
solution. The main problem is the additional parasitic quadrupole field causing the two-
fold axial astigmatism. In the case of 2 µm misalignment, the two-fold axial astigmatism is
approximately 70-times greater than the astigmatism of deflection, therefore the standard
first order perturbation theory is not as good approximation. A possible solution could
be applying the perturbation theory including higher order terms [11], which means, the
misalignment of pole piece would be substituted by two parasitic fields — dipole and
quadrupole.

In the case of the tilt, the situation is the same as for the misalignment. The standard
first order perturbation theory again predicts only the presence of parasitic dipole field
caused by the tilted pole piece. However, the analysis of the 3D field gave, in agreement
with the Fourier analysis of a misaligned circle, parasitic dipole and quadrupole fields.
Differences in dipole axial field functions, beam deflection and related aberrations —
coma of deflection and astigmatism of deflection — were less than 5 %, which again
means sufficient approximation compared to the fully 3D solution. The main problem is
again the parasitic quadrupole field causing the two-fold axial astigmatism. In the case
of 2 mrad tilt, the two-fold axial astigmatism is approximately 40-times greater than the
astigmatism of deflection, therefore the standard first order perturbation theory is not
as good approximation. A possible solution could be applying the perturbation theory
including higher order terms [11] similarly as in the case of misalignment, which means,
the tilt of pole piece would be substituted by two parasitic fields — dipole and quadrupole.

The standard perturbation theory is a powerful tool for fast computation of electro-
static and non-saturated magnetic lenses with elliptic electrodes or pole pieces. In the
case of misalignment and tilt, it is important to consider also the second order term of
the perturbation theory causing the axial astigmatism. Perturbation theory is often used
to determine the strength of stigmators and deflectors, which are necessary to correct
parasitic aberrations arising from the inaccuracy of machining of the lens. If the axial
astigmatism of misalignment and tilt is not considered, the power of stigmators may be
underestimated. If the same size of ellipticity and misalignment is assumed the difference
of stigmator power is about 10 %.
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A Useful relations

A.1 Matrices used for the calculation of axial
multipole field functions from the 3D solution
of the field

The matrices in equation (5.4) on page 31 are

A =



B0(z)

B0(z)′

B0(z)′′

B0(z)(3)

B0(z)(4)

B0(z)(5)


,F =



Cz,0(r1, z)

Cz,0(r2, z)
· · ·

Cz,0(rR, z)

Cr,0(r1, z)
· · ·

Cr,0(rR, z)


, (A.1)

M =



1 0 −1
4
r21 0 1

64
r41 0

1 0 −1
4
r22 0 1

64
r42 0

· · ·
1 0 −1

4
r2R 0 1

64
r4R 0

0 −1
2
r1 0 1

16
r31 0 − 1

384
r51

· · ·
0 −1

2
rr 0 1

16
r3R 0 − 1

384
r5R


in the case of rotationally symmetric field and

A =



Dm(z)

Dm(z)′

Dm(z)′′

Dm(z)(3)

Dm(z)(4)

Dm(z)(5)


,F =



Cz,m(r1, z)

Cz,m(r2, z)
· · ·

Cz,m(rR, z)
Cr,m(r1, z)
· · ·

Cr,m(rR, z)
Sϕ,m(r1, z)
· · ·

Sϕ,m(rR, z)


, (A.2)
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M =



0 rm1 0 −1
4(m+1)

rm+2
1 0 1

32(m+1)(m+2)
rm+4
1

0 rm2 0 −1
4(m+1)

rm+2
2 0 1

32(m+1)(m+2)
rm+4
2

· · ·
0 rmR 0 −1

4(m+1)
rm+2
R 0 1

32(m+1)(m+2)
rm+4
R

mrm−11 0 −(m+2)
4(m+1)

rm+1
1 0 m+4

32(m+1)(m+2)
rm+3
1 0

· · ·

mrm−1R 0 −(m+2)
4(m+1)

rm+1
R 0 m+4

32(m+1)(m+2)
rm+3
R 0

mrm−11 0 −m
4(m+1)

rm+1
1 0 m

32(m+1)(m+2)
rm+3
1 0

· · ·
mrm−1R 0 −m

4(m+1)
rm+1
R 0 m

32(m+1)(m+2)
rm+3
R 0


in the case of multipole field.

The matrices in equation (5.9) on page 33 are

A =



A0,1

A1,1

· · ·
AM,1

A0,2

· · ·
AM,J


,F =



Br(~r1)

Bϕ(~r1)

Bz(~r1)

Br(~r2)
· · ·

Bz( ~rP )


, (A.3)

M =



Kr,0,1,N(~r1) Kr,1,1,N(~r1) · · · Kr,M,1,N(~r1) Kr,0,2,N(~r1) · · · Kr,M,J,N(~r1)

0 Kϕ,1,1,N(~r1) · · · Kϕ,M,1,N(~r1) 0 · · · Kϕ,M,J,N(~r1)

Kz,0,1,N(~r1) Kz,1,1,N(~r1) · · · Kz,M,1,N(~r1) Kz,0,2,N(~r1) · · · Kz,M,J,N(~r1)

Kr,0,1,N(~r2) Kr,1,1,N(~r2) · · · Kr,M,1,N(~r2) Kr,0,2,N(~r2) · · · Kr,M,J,N(~r2)

· · ·
Kz,0,1,N( ~rP ) Kz,1,1,N( ~rP ) · · · Kz,M,1,N( ~rP ) Kz,0,2,N( ~rP ) · · · Kz,M,J,N( ~rP )


.

The matrices in equation (5.16) on page 35 are

A =


Am,1

Am,2
· · ·
Am,J

 ,F =



Cr,m(r1, z1)

Cϕ,m(r1, z1)

Cz,m(r1, z1)

Cr,m(r2, z2)
· · ·

Cz,m(rL, zL)


, (A.4)
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M =



Kr,m,1,N(r1, z1) Kr,m,2,N(r1, z1) · · · Kr,m,J,N(r1, z1)

Kϕ,m,1,N(r1, z1) Kϕ,m,2,N(r1, z1) · · · Kϕ,m,J,N(r1, z1)

Kz,m,1,N(r1, z1) Kz,m,2,N(r1, z1) · · · Kz,m,J,N(r1, z1)

Kr,m,1,N(r2, z2) Kr,m,2,N(r2, z2) · · · Kr,m,J,N(r2, z2)

· · ·
Kz,m,1,N(rL, zL) Kz,m,2,N(rL, zL) · · · Kz,m,J,N(rL, zL)


.

A.2 Derivatives of the Gaussian function

It is useful to know the derivatives of the exponential function in (5.6) and (5.7). If the
series (5.8) are calculated with N equals to five, it is necessary to know the derivatives
up to the ninth order. Substituting v = z − zj and s = σdz, these derivatives are

g = exp

(
−v

2

s2

)
,

dg

dz
= −2v

s2
exp

(
−v

2

s2

)
,

d2g

dz2
=

[
4v2

s4
− 2

s2

]
exp

(
−v

2

s2

)
,

d3g

dz3
=

[
−8v3

s6
+

12v

s4

]
exp

(
−v

2

s2

)
,

d4g

dz4
=

[
16v4

s8
− 48v2

s6
+

16

s4

]
exp

(
−v

2

s2

)
, (A.5)

d5g

dz5
=

[
−32v5

s10
+

160v3

s8
− 120v

s6

]
exp

(
−v

2

s2

)
,

d6g

dz6
=

[
64v6

s12
− 480v4

s10
+

720v2

s8
− 120

s6

]
exp

(
−v

2

s2

)
,

d7g

dz7
=

[
−128v7

s14
+

1344v5

s12
− 3360v3

s10
+

1680v

s8

]
exp

(
−v

2

s2

)
,

d8g

dz8
=

[
256v8

s16
− 3584v6

s14
+

13440v4

s12
− 13440v2

s10
+

1680

s8

]
exp

(
−v

2

s2

)
,

d9g

dz9
=

[
−512v9

s18
+

9216v7

s16
− 48348v5

s14
+

80640v3

s12
− 30240v

s10

]
exp

(
−v

2

s2

)
.
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B Fourier series of displaced circle and
ellipse

Analysis of multipole field components arising due to perturbations discussed in chapter 6
and 7 can be explored from a pure geometrical point of view. It is necessary to introduce
equations of a circle and an ellipse in polar coordinates. In the case of a displaced circle
with radius ρ and center in (a, 0) (figure B.1, left), the equation is

r(ϕ) = a cosϕ+

√
ρ2 − a2

2
+
a2

2
cos 2ϕ. (B.1)

For an ellipse with center in the origin (0, 0), major semiaxis ρ + e, and minor semiaxis
ρ− e (figure B.1, right), the equation is

r(ϕ) =
ρ2 − e2√

ρ2 + e2 + 2ρe cos 2ϕ
. (B.2)

  

  

  

    

    
  

  

  

  

Figure B.1: Displaced circle with radius ρ and center in (a, 0) (left), ellipse with center in the
origin, major semiaxis ρ+ e, and minor semiaxis ρ− e (right).

Coefficients of the Fourier series are calculated as

C0 =
1

2π

∫ 2π

0

r(ϕ) dϕ,

Cm =
1

π

∫ 2π

0

r(ϕ) cos(mϕ) dϕ. (B.3)

The analysis is performed in Maple [51]. Non-zero Fourier coefficients up to m = 5
for different perturbation parameters a and e from 0 to 100 µm are shown in figure B.2.
Parameter ρ is equal to 1 mm. These parameters are chosen similarly to the parameters
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Figure B.2: Dependency of non-zero Fourier coefficients up to m = 5 for the displaced circle
(left) and the ellipse (right) on the displacement and elliptic parameters a and e. Radius of the
circle ρ is 1mm.

of lens pole pieces discussed in chapter 7. A tilt is similar to a misalignment — the only
difference is, that the parameter a is not constant, but depends on the z coordinate along
the optical axis.

According to these results, a misalignment and a tilt causes parasitic dipole, quadrupole
field, and really weak and negligible octupole field. An ellipticity causes parasitic quadrupole
and octupole field. It is not necessary to explore higher order multipole fields, because
their effects would be insignificant, which is confirmed, for example, in figure 6.8 on page
45, where not so weak octupole field has no visible effect on particle trajectories, which
is in agreement with [10]. Consequently, a suitable approximation is substituting mis-
alignments and tilts by parasitic dipole and quadrupole field, and ellipticities by parasitic
quadrupole field.
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C Modification of the wavelet inter-
polation for 2D fields

The algorithm introduced in section 5.3 can be easily modified to evaluate the axial field
and its high order derivatives from calculated 2D fields. An application of the wavelet
interpolation to 2D fields is illustrated on the unperturbed magnetic objective lens of K.
Tsuno [43] (figure 4.2 on page 28), discussed in section 4.3.

In the case of the rotationally symmetric magnetic field, the magnetic flux ΦB is solved
by EOD [36] in Q mesh points. Using (5.6) with respect to power series (3.23)

ΦB(r, z) ≈
J∑
j=1

N−1∑
i=0

(−1)i
2π

(2i+ 2)4i(i!)2
d2i+1

dz2i+1

{
exp

[
−(z − zj)2

(σdz)2

]}
r2i+2A0,j

=
J∑
j=1

Kj,NA0,j. (C.1)

Unknown parametersA0,j are calculated by the least squares fit. In the matrix notation

A = (M′ ·M)\M′ · F, (C.2)

with A as the vector of length J including the unknown parameters A0,j, M as the matrix
of size Q× J including the coefficients Kj,N from equation (C.1), and F as the vector of
length Q consisting of the magnetic flux ΦB(r, z). The matrices are

A =


A0,1

A0,2

· · ·
A0,J

 ,F =


ΦB(r1, z1)

ΦB(r2, z2)
· · ·

ΦB(rQ, zQ)

 , (C.3)

M =


K1,N(r1, z1) K2,N(r1, z1) · · · KJ,N(r1, z1)

K1,N(r2, z2) K2,N(r2, z2) · · · KJ,N(r2, z2)

· · ·
K1,N(rQ, zQ) K2,N(rQ, zQ) · · · KJ,N(rQ, zQ)

 .
The vector S of the standard deviations SD(A0,j) is calculated as

S =

√
(M ·A− F′) · (M ·A− F)

Q− J

√
diag(inv(M′ ·M)). (C.4)

Finally, the axial field B0 is evaluated according to equation (5.6), its standard devi-
ations using (5.13), and any of its derivative via (5.11).
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The axial field and its first seven derivatives of the unperturbed magnetic objective
lens are smooth (figure C.1), which is necessary for further analysis of optical properties
and aberrations.
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Figure C.1: Axial field B0 of the magnetic objective lens of Tsuno [43] and its first seven
derivatives. The excitation of the lens is 10 500A-turns, which corresponds to the performance
of the objective lens in the 200 kV scanning transmission electron microscope.
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function
K{r,ϕ,z},m,j,N coefficients used in the algorithm based on the wavelet interpolation
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on the wavelet interpolation
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zo z coordinate of the object plane
zi z coordinate of the Gaussian image plane
wi = xi + iyi complex position of the particle in the Gaussian image plane
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γi deflection in the Gaussian image plane
LD coma of deflection
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CF defocus with field curvature
CS spherical aberration
ρ radius of the circle
Q number of mesh points in the area of interest used in the

modification of the wavelet interpolation for 2D fields
Kj,N coefficients used in the modification of the wavelet
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