‘ J ‘ VYSOKE UCENI TECHNICKE V BRNE
7/ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKACNICH
TECHNOLOGII

USTAV RADIOELEKTRONIKY

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
DEPARTMENT OF RADIO ELECTRONICS

PHONOTACTIC AND ACOUSTIC
LANGUAGE RECOGNITION

FONOTAKTICKE A AKUSTICKE ROZPOZNAVANI JAZYKU

DOKTORSKA PRACE
DOCTORAL THESIS

AUTOR PRACE PAVEL MATEJKA
AUTHOR

VEDOUCI PRACE PROF. MILAN SIGMUND
SUPERVISOR

BRNO 2008






Abstract

This thesis deals with phonotactic and acoustic techniques for automatic language recognition
(LRE).

The first part of the thesis deals with the phonotactic language recognition based on co-
occurrences of phone sequences in speech. A thorough study of phone recognition as tokenization
technique for LRE is done, with focus on the amounts of training data for phone recognizer and
on the combination of phone recognizers trained on several language (Parallel Phone Recognition
followed by Language Model - PPRLM). The thesis also deals with novel technique of anti-
models in PPRLM and investigates into using phone lattices instead of strings. The work on
phonotactic approach is concluded by a comparison of classical n-gram modeling techniques and
binary decision trees.

The acoustic LRE was addressed too, with the main focus on discriminative techniques
for training target language acoustic models and on initial (but successful) experiments with
removing channel dependencies. We have also investigated into the fusion of phonotactic and
acoustic approaches.

All experiments were performed on standard data from NIST 2003, 2005 and 2007 evaluations
so that the results are directly comparable to other laboratories in the LRE community. With
the above mentioned techniques, the fused systems defined the state-of-the-art in the LRE field
and reached excellent results in NIST evaluations.
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Abstrakt

Prace pojednava o fonotaktickém a akustickém piistupu pro automatické rozpoznavani jazyka.

Prvni ¢ast prace pojednava o fonotaktickém piistupu zalozeném na vyskytu fonémovych
sekvenci v TeCi. Nejdfive je prezentovan popis vyvoje fonémového rozpoznavace jako tech-
niky pro prepis Te¢i do sekvence smysluplnych symboli.  Hlavni duraz je kladen na
dobré natrénovani fonémového rozpozndvace a kombinaci vysledki z nékolika fonémovych
rozpoznavacu trénovanych na ruznych jazycich (Paralelni fonémové rozpoznavéani nésledované
jazykovymi modely (PPRLM)). Prace také pojednava o nové technice anti-modely v PPRLM
a studuje pouziti fonémovych grafi misto nejlepsiho prepisu. Na zavér prace jsou porovnany
dva pfistupy modelovani vystupu fonémového rozpoznavace — standardni n-gramové jazykové
modely a binarni rozhodovaci stromy.

Hlavni piinos v akustickém piistupu je diskriminativni modelovani cilovych modelu jazyku
a prvni experimenty s kombinaci diskriminativniho trénovani a na ptiznacich, kde byl odstranén
vliv kandlu. Prace déle zkoumad ruzné druhy technik fuzi akustického a fonotaktického ptistupu.

Vsechny experimenty jsou provedeny na standardnich datech z NIST evaluaci konané v letech
2003, 2005 a 2007, takze jsou pifmo porovnatelné s vysledky ostatnich skupin zabyvajicich se
automatickym rozpoznavanim jazyka. S fazi uvedenych technik jsme posunuli state-of-the-art
vysledky a dosahli vynikajicich vysledka ve dvou NIST evaluacich.
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Chapter 1

Introduction

Automatic spoken Language Recognition (LRE) is the process of classifying an utterance as
belonging to one of a number of previously encountered languages. Automatic, because the
decision is performed by machine. It is implied that the process is independent of content,
context, task or vocabulary and robust with regard to speaker identity, sex, age as well as to
noise and distortion introduced by the communication channel.

1.1 Problem Specification

As with speech recognition, humans are the most accurate language recognition systems on the
world today [2, 3], assuming that they know the language (speak it). Within a second of hearing,
people are able to determine if it is a language they know. If it is a language they do not know or
are not familiar with, they often can make subjective judgment about a similarity to a language
they know, e.g. ”sounds like Czech” or might describe that it is nasal (French), harsh (German),
sing-song (Mandarin), rhythmic, guttural, etc. But the accuracy of their judgments is much less
precise than the machine [3].

An obvious difference between languages are different words, but when confronted with an
unknown language, it is nearly impossible to tell where words begin and end [4]. Perceptual
experiments provide some clues [2, 5]. Speakers are sensitive to sounds not found in languages
familiar to them, like click-sounds in a number of southern African languages. There are more
subtle patterns in the frequency of occurrence of certain sounds and combinations. For instance
Hawaiian has very small number of consonants. The cluster /sr/ is very common in Tamil, but
not found in English at all. Hindi has four different consonants that are all likely to sound like
/t/ to person speaking with stress language.

The differences are not necessarily only in phonemes or words, but also in the sounds of them.
There are tonal languages like Mandarin or Japanese and stress ones like English or German.
The function of tone is different across languages. In some languages, tone has a predominately
lexical function. It is used almost exclusively to distinguish and contrast word meanings, for
example word ba in Mandarin (Table 1.1) [6]. Tone may also be used grammatically: it is used
to distinguish words, but is also used to mark sentences as in Japanese (Table 1.2).

In general, there are a variety of cues that humans or machines can use to distinguish
languages. We know that the following characteristics differ from language to language:

e Phonetics - Though the human speech system is potentially capable of an unlimited
range of sounds, in any language there is a limited number of recurrent, fairly distinctive
speech units (phones/phonemes). Many languages share a common subset of phonemes.

1



1 Introduction

’ Word ‘ Tone intonation | Meaning

ba high to uproot
ba mid eight
ba fall-rise to hold
ba low a harrow

Table 1.1: Mandarin tone use

Word ‘ Grammatical function Meaning
iimono - intonation 1 sentence It is good thing.
iimono - intonation 2 Adj+Noun good thing
iimono - intonation 3 Adj Phrase good quality

Table 1.2: Japanese grammatical use of tone

Phoneme frequencies may differ, i.e., a phoneme may occur in two languages, but it may be
more frequent in one language than in the other. The number of phonemes in a language
ranges from about 15 to 50, with peak at 30 [7].

Phonotactics - Not only do phoneme inventories differ from language to language, but
also does the phoneme combination or sequence of allowable phonemes. Some combinations
that occur frequently in one language are illegal in another. Phonotactics helps to recapture
some of the dynamical nature of speech lost during feature extraction.

Prosody - Prosody is concerned with the "music” as opposed to the ”lyrics” of speech.
Languages have characteristic sound patterns which can be analyzed in terms of duration
of phonemes, speech rate, intonation (pitch contour), and stress (short term energy).

Morphology - Vocabulary - Conceptually, the most important difference between lan-
guages is that they use different sets of words - that is, their vocabularies differ. Thus, a
non-native speaker of English is likely to use the phonemic inventory and prosodic patterns
of her/his native language, but will be judged to speak English if the vocabulary used is
that of English.

Syntax - The ways in which words can be legally strung together also potentially distinc-
tive information. Even when two languages share a word, e.g. the word ”bin” in English
and German, the set of words which can precede and follow the word will be different.

All information extracted from sources mentioned above are complementary and can be

valuable to a LID system.

1.2 Motivation

There are 6000 million people on the world and 64% of them speak 14 languages (see Figure 1.1)
from around 3000 world known languages [1]. To communicate with the others, it is at first
necessary to know which language we are dealing with.

There are three main field of applications of language recognition nowadays. Probably the

most dominant field are national security services for monitoring communications. The main
focus is to route the call to appropriate officers knowledgeable in particular language or to large
vocabulary speech recognition (LVCSR), keyword spotting (KWS), ....
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Chinese (16.7%)

Italian (1.3%)

French (2.0%)
Indonesian (2.2%)

Malayan (2.2%)
German (2.3%)

Other (36.5%)

Bengali (2.7%)
Portuguese (2.7%)
Japanese (2.8%)

Arabic (3.3%)

Russian (4.5%) English (9.2%)

Hindi (5.8%) Spanish (5.8%)

Figure 1.1: Word language distribution [1]

Alternatively, LID might be used in ”call-centers” to route an incoming telephone call to a
human switchboard operator fluent in the corresponding language. When a caller of a language
line does not speak any English, a human operator must attempt to route the call to an ap-
propriate interpreter. Much of the process is trial and error and requires connections to several
human interpreters before the appropriate interpreter is found. The delay in finding appropriate
human interpreter can be in the order of minutes as reported by Muthusamy [8]. Such delay
can be devastating in emergency situation. An automatic language recognition system that can
quickly determine the most likely languages of the incoming call might cut the delay by one or
two orders of magnitude and ultimately save human lives.

There is lot of audiovisual data accessible through Internet and browsers similar to Google
or Yahoo will need information about language of audio in which they are going to look for
information. These system might use LID as a pre-processing of its own search.

In recent years there is increasing number of published papers on international conferences
which means that the demand and requirements for automatic language recognition systems are
steadily increasing.

1.3 Original contributions of this thesis

In my opinion, the original contributions — “clamis of this thesis” can be sumarized as follows:

e Detailed study of phone recognizers on different multilingual telephone databases with
varying amount of training data.

e Analyzing the suitability of different phone recognizers for language recognition.
e Application of anti-models in phonotactic language recognition.

e Comparison of different representations of phone recognizer output (string vs. lattices)
and of different modeling techniques (n-gram language models vs. binary decision trees).



4 1 Introduction

e Detailed analysis of feature extraction for acoustic language recognition.
e Study of discriminative training for acoustic language recognition.

e Experimental validation on standard NIST 2003, 2005, 2007 LRE data.

1.4 Structure of the thesis

Approaches to Language Recognition are described together with the detailed literature overview
in Section 2. Since the phone recognizer is the most important part of phonotactic approach
Section 3 describe the development of our phone recognizer. The description of the experimental
setup is given in Section 4. Next two Section 5 and 6 describe in detail approaches based on
phonotactic and acoustic respectively. The results of the system used for Language Recognition
Evaluation 2005 and 2007 are presented in Section 7 and Section 8. Conclusions and discussions
can be found in Section 9.



Chapter 2

Approaches and State of the Art

2.1 Structure of the LID system

There are lot of approaches to language recognition. Generally we can say that the process of
language recognition (Figure 2.1) can be described as follows:

e feature extraction — speech signal is converted into stream of vectors which should con-
tain only that information about given utterance that is important for its correct recog-
nition. An important property of feature extraction is the suppression of information ir-
relevant for correct classification. Currently the most popular features are Mel Frequency
Cepstral Coefficients (MFCC) and their modification Shifted Delta Cepstra (SDC) [9], but
features based on energy, fundamental frequency, articulatory features and time evolution
of all mentioned features are not rare too (see Section 2.7).

e classification — directly to final classes (target languages) or to meaningful units, which
are used for further statistical processing. For this classification, any kind of classifier such
as Gaussian Mixture Models (GMM), Neural Networks (NN), Support Vector Machines
(SVM), Radial Basis Functions (RBF), etc. can be used.

e statistical models — in some structures of LID, this sub-system is used further as sta-
tistical modeling on units produced by classification. Conventional ways of modeling are
Language model (n-grams, binary decision trees) or SVM.

e fusion — possible merging with other systems implemented often by Liner Logistic Re-
gression (LLR), NN, GMM.

e thresholding and decision is used for making hard decisions (True or False).

3 Tokenization ! threshold
Speech | |

Feature - | Statistical "
—>| . >| Classification - >  Score Decision
4* i '| Extraction | Models
:_ :_ I

Figure 2.1: General language recognition scheme
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Figure 2.2: Phone Recognition followed by Language Model (PRLM)

2.2 Modeling the acoustics

This modeling attempts to find the discriminative information in acoustic data. Features derived
from short-term spectra, prosodic information like fundamental frequency and its time trajectory,
loudness on particular parts of the speech and its time evolution, intonation, can be taken into
account. Gaussian Mixture Models is the state of the art system [10, 11, 12, 13, 14] to capture
acoustic events in the language and different acoustic events across the recognized languages. For
example, thousands of Gaussian components can be trained for each language on features which
prove discriminability between languages, usually the same features as in speech recognition. The
test utterance is assigned to the language represented by the GMM with the highest likelihood.
Recently, other technique were used to model acoustic information for LID such as Support
Vector Machines and Neural Networks [12].

2.3 Phonotactics

2.3.1 Phone Recognition followed by Language Model (PRLM)

We can consider phonemes as meaningful units, because words in all languages consist of different
sets of phonemes [15]. We can use phone recognizer to tokenize speech into phonemes even if we
do not know the target language. Such transcription is then similar to a phonetic transcription
of the unknown words or sentences by known phonemes.

The goal is to have the most precise phone recognizer or at least a recognizer making consis-
tently the same errors. The statistical modeling of phonemes is on the top of recognizer’s output.
N-gram language models of phoneme sequences are conventional way to compute similarity of
unknown incoming speech to known languages. The whole process is shown in Figure 2.2. When
test (unknown) speech comes, a phoneme string is produced and compared to all trained statis-
tical models. Unknown sentence belongs to the language with the highest similarity score. The
threshold on this score can be applied to decide if the unknown speech belongs to language in
or out of our set.

Parallel Phone Recognition followed by language models (PPRLM) (see Figure 2.3) is a way
how to increase accuracy and robustness of this approach [12, 16, 17, 18]. If we have phone
recognizers trained on different languages, we can run them in parallel and fuse output score
of all PRLMs. Recognizers trained with different languages can behave differently on incoming
unknown speech and a mistake of one recognizer can be corrected by another one. On contrary
one well trained phone recognizer can perform better then the fusion of several poor ones [18].

There is also a possibility to use tokenizers trained on unlabeled data. Since labeling is
the most expensive part of collecting the database, we can have access to much more training
material for the tokenizer. Such tokenizer can be an Ergodic Hidden Markov Model (EHMM) [19,
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Figure 2.3: Parallel Phone Recognition followed by Language Models (PPRLM)

20]. Another approach to train tokenizer on huge amount of data is to make transcription with
known well trained recognizer and train new one with this transcription [21, 22].

2.4 LVCSR : Large Vocabulary Continuous Speech Recognition

Almost all big laboratories on the world have experience with LVCSR, systems. With more
accurate LVCSR systems, the approach based on tokenizing speech on the word level and then
modeling sequence of words became popular method for LID [23, 24]. Generalization of such
systems is however more difficult and fewer languages can be reliably detected with them as
developing full-fledged LVCSR is far more difficult than phone recognition.

The best way could be to use LVCSR systems of all languages represented in the test set
and then fuse score out of all to decide about the result, but this is a bit utopia with the present
state of multi-lingual LVCSR.

2.5 Evaluation Metric

The LID performance is evaluated separately for test segments of each duration and is done
according to NIST [25, 26] per-language, considering each system is a language detector rather
than recognizer. A standard detection error trade-off (DET) curve [27] is evaluated as a plot
of probability of false alarms against the probability of misses with the detection threshold as
parameter and equal priors for target and non-target languages. Equal error rate (EER) is the
point where these probabilities are equal. The total EER of the whole LID system is the average
of language-dependent EERs.

In addition, the false alarm and miss probability are combined into a single number that
represents the cost performance of a system, according to an application-motivated cost model:

C(LT; LN) = CMiss' PTarget’ PMiss(LT) + C'FA' (1 - PTarget)' PFA(LT7 LN) (21)

where Lt and Ly are the target and non-target languages, and Chyiss, Cra and Prg,ge are
application model parameters. The application parameters are usually set to:

Cwmiss = Cra =1 and PTarget =0.5

For LRE 2007 in addition to the performance numbers computed for each target/non-target
language pair, an average cost performance will be computed:
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1 C]\/[iss' PTarget' PMiss (LT)
Ni +ZLN CFA'PNonfTarget'PFA(LTvLN) (22)
Lo | +Cra- Pout—of—set- Pra(Lr, Lo)

Cavg =

where N, is the number of languages in the (closed-set) test, Lo is the Out-of-Set ”language”
(including both ”unknown” languages and "known” but out-of-set languages),

2.6 NIST Campaigns

National Institute of Standards and Technology (NIST) ! started Language Recognition Eval-
uations for comparative results all over the word and give support to new efforts in this field.
The first NIST Language Recognition Evaluation took place in 1994 and the evaluation data
contained speech from OGI multi-language telephone speech corpus [28] - monologue speech.
The results are listed in Table 2.1.

’ Test Site ‘ Error % ‘
Lincoln Labs 3
OGI Y.Yan 8
ITT 8
OGI Berkling 8
MIT 16
Lockheed 24

Table 2.1: Error on standard NIST 1994 evaluation test set

The evaluation in 1996 demonstrated that systems using parallel language dependent to-
kenizers had the best language recognition performance. The evaluation data contained con-
versational speech merged from several different databases. These were mainly Switchboard
(wide-band and narrow-band) and OGI multi-language telephone speech data. Selected results
are reported in Table 2.2.

Test Site EER [%] || Segment length
30s | 10s | 3s

MIT 1996 9.9 | 194 | 294
OGI 1996 11.8 | 209 | 30.7
MIT 2003 6.6 | 14.3 | 25.5
OGI 2003 7.7 | 11.9 ] 22.6

Table 2.2: Equal Error Rate on NIST 1996 evaluation test set for PPRLM systems from 1996
and 2003

The 2003 NIST Language Recognition Evaluation [25] was very similar to the one in 1996.
The primary evaluation data consisted of excerpts from conversations in twelve languages from
the CallFriend Corpus [29]. These test segments had durations of approximately three, ten and
thirty seconds. Six sites from three continents participated in the evaluation. The results were

Lhttp:/ /www.nist.gov
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significantly better than from the previous evaluation. The comparative results from selected
sites, which were published immediately after the evaluation, are listed below in Table 2.3:

e MIT? PPRLM [12] - based on six HMM phoneme recognizers trained on OGI Stories
e MIT GMM - acoustic approach with Gaussian Mixture Models

e MIT SVM — acoustic approach with Support Vector Machines

e MIT Fuse — merged system incorporating all MIT systems mentioned above

e OGI? PPRLM [17] - based on six HMM phone recognizers trained on OGI Stories

e OGI 3BT TRAP PRLM — one English phone recognizer trained on NTIMIT based on long
temporal trajectories [30]

| SYSTEM EER [%] || 30s | 10s | 3s |

MIT Fuse 2.8 7.8 20.3
MIT GMM 4.8 9.8 19.8
MIT SVM 6.1 16.4 | 28.2
MIT PPRLM 6.6 14.3 | 25.5
OGI PPRLM 7.71 | 11.88 | 22.60
3BT TRAP PRLM 12.71 | 22.71 | 32.19

Table 2.3: Equal Error Rates on NIST 2003 evaluation test set

The most successful was system MIT Fuse incorporating acoustic and phonotactic approach,
but the complexity and real-time factor was disadvantage of this system. Acoustic based systems
from MIT outperformed all mentioned phonotactic systems.

The 2005 and 2007 NIST Language Recognition Evaluation are described in detail in Sec-
tions 7 and 8.

NIST evaluations clearly show that they are the main technology push in this scientific field.
If one group shows that some technology is very powerful then all at the next possible conference
other groups report better performance with this technique, often extended and more thoroughly
tuned and tested.

2.7 The State of the Art

According to Muthusamy, there were only fourteen published papers in English in the field of
automatic language recognition before year 1992 [5, 31]. The main reason for that is probably
that there were no big or standard multilingual databases designated for language recognition.
Early attempts to LID were based on matching spectral frames of test message to templates
created during training [32, 33]. Cimarusti [34] ran a polynomial classifier on 100-element LPC
derived feature vectors. Foil [35] examined both formant and prosodic feature vectors and
Goodman [36] extended it by better classification distance metric and refining feature vector.

2MIT - Massachusetts Institute of Technology
30GI - Oregon Graduate Institute
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With the improvement of speech processing techniques, more sophisticated methods were
used. Sugiyama [37] performed vector quantization classification based on LPC features. Naka-
gawa [10] and Zissman [11] applied Gaussian mixture classifiers. Almost all systems mentioned
above used frame-level classification. Hidden Markov Models which are able to model sequence
of features in time, have also been applied to LID. House and Neuberg [38] applied HMM to
original phone transcription without using real speech and proved phonotactic information can
be excellently used for LID. Savic [39], Nakagawa [10] and Zissman [11] applied HMMs to fea-
ture vectors automatically derived from unlabeled speech. Li [40] tested a new syllabic spectral
features with k-nearest neighbor matching.

With the creation of transcribed multi-language speech databases [28], new LID systems have
been proposed. Muthusamy [15] presented the broad-category segmentation and fine phonetic
classification which are very capable of discriminating between English and Japanese. Hazen
[41], Zissman [16] and Tucker [21] used a phone recognizer with following language modeling by n-
grams (PRLM). Later Zissman [16, 42] and Yan [17, 43] extended this by using multiple language-
dependent phone recognizers (PPRLM). Jayram [44] used a sub-word recognizer instead of
phone recognizer. Andersen [45] have explored the possibility of using just phonemes, which
discriminate the best between languages. Tucker [21] and Lamel [22] used single-language phone
recognizer to label multilingual training data, which were then used to train language-dependent
phone recognizers.

Large-vocabulary continuous speech recognition (LVCSR) has been also employed in lan-
guage recognition [23, 24]. Test utterance in such system is recognized in a number of languages
and the language recognition decision is based on the likelihood of the output word sequences
reported by each recognizer.

In recent years, there have been renewed approaches to extract prosody information from
speech by Cummins [46] and Adami [47]: both use fundamental frequency and band amplitude
envelope. Berkling [48] and Metze [49] use confidence measures to improve LID and Hombert [50]
uses only 'rare’ segments which are discriminative (i.e. rare) and robust (i.e. easy to identify).
Navratil [51] uses binary decision tries instead of conventional n-gram language models and
Harberck [52] explored variable length n-gram (multigrams). Wong [53] presented methods to
improve Gaussian mixture models such as unknown language rejection and background model-
ing. Dan and Bingxi [54] used discriminative criterion for training GMM system and Campbell
et al. [55] used with success support vector machines instead of GMM for classifying acoustic
features. Kirchhoff [56] tried to use parallel streams of articulatory features followed by n-gram
modeling.

PPRLM systems performed very well during several last NIST evaluations and there is
space to improve it, because usually used OGI database to train tokenizer does not contain
enough data to train phoneme recognizers well as I showed in [18]. T used more data to train
phone recognizers on different databases with relative improvement 57% on EER. Another way
to avoid problem with the amounts of transcribed data is to use methods which do not need
transcriptions. Torres—Carrasquillo [19] used an Ergodic HMM to tokenize speech to units based
on the data. Another approach to improve PPRLM is to use phoneme lattices instead of hard
strings as Gauvain proposed in [57].

Modeling the inter-language, -speaker and -session variability became a necessity of the
automatic systems as it happened in speaker recognition. One of the latest comparison of
several approaches were performed by MIT and BUT groups [13, 58].

In contrast to the machine based systems, Leeuwen [3] did a human benchmark tests and
compared the human and machine performance on NIST 2005 data. The result is that if human
know the language they perform far better than machine and if they do not know it then machine
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outperforms them.

2.7.1 Detailed Literature Overview

e before 1992: detailed description of main papers before year 1992 is part of Muthusamy
work [5, 31].

e 1993: Muthusamy’s [5] dissertation on segmental approach to LID discusses which
acoustic, broad phonetic and prosodic information is needed to achieve automatic LID.
First experiments were conducted on 4 language task with high quality speech. On the
basis of these results he further investigated these approaches with 10 language corpus
of telephone speech [28]. Experiments with features based on pairs and triples of broad
phonetic categories, spectral features (PLP) and pitch-based features were carried out on
two languages (English vs. Japanese) and on ten language task. The extension of frequency
occurrence, segment ratios and duration were also explored. With a system containing all
above features merged together, he obtained accuracy 48.5% on short utterances (avg.
13.4 sec) and 65.6% on long utterance (avg. 50 sec) on ten-language task. He came
up with conclusion that information on phonetic level instead of broad phonetic might be
required to distinguish between languages with greater accuracy. A perfect overview of the
literature and development of multi-language database OGI are great parts of his thesis.
Perceptual experiments were also conducted, in which trained listeners identified excerpts
of speech of one-, two-, four- and six-second durations as one out of ten languages. The
average performance over all languages rose from 37.0% to 43.0% to 51.2% to 54.6% with
increasing duration of speech segments.

e 1995: Yan'’s [43] dissertation provided a partial unification by studying the roles of acous-
tic, phonotactic and prosodic information. Two novel information sources (backward LM
and context-dependent duration model) were introduced. The best accuracies of 91% (45
second segments) and 77% (10 second segments) on nine language task were published.
For the best system, he used a set of six phone language-dependent recognizers based on
HMM followed by language modeling of phone sequence for each language.

e 1996: Schultz et al. [24] used large vocabulary continuous speech recognition system
(LVCSR). They compared language recognition system based on phone level and word
level both with and without language model (LM). In the first attempt, bigram LM was
implemented, but trigram in the second stage gained better results. On four language
task, word-based system with trigram modeling of words (accuracy 84%) outperformed the
phone-based system with trigram modeling of phones (82.6%) significantly. They claim:
The more knowledge is incorporated in the word-based language recognition system, the
better performance.

e 1999: Berkling [48] examined various ways to derive confidence measures for LID system.
Three types of confidences were proposed. (1) Scores are polled according to the winner —
the target set contains scores of the correctly identified utterances. (2) Scores are pooled
according to the input — the target set contains all scores where the input and the language
model correspond to the same language. (3) The third method does not separate target
and background but pools all winning scores into a single set regardless of whether or
not the input utterance was correctly or incorrectly classified. She used phone recognizer
followed by language models (PRLM) to evaluate which confidence measure is better.
Experiments were conducted on NIST 1996 evaluation data. She also studied adding new
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features (phone duration, phoneme frequency of occurrence ...) for improving confidence
measure.

1999: Hombert and Maddieson [50] described using 'rare’ segments for LID system.
Detailed description of broad phonetic classes their representation and behavior in different
language families is provided, because segments which are rare and easy to identify are
extremely valuable in LID system.

1999: Harbeck and Ohler [52] proposed to use multigrams (n-grams with variable
length) for phonotactic modeling of token string. English and German from OGI Stories
were used for testing with accuracy 73% on 10 second utterances and 84% on 30 seconds.
They got 84% and 91% respectively using interpolated 3-grams. As they supposed, the
results significantly dropped while using short utterances. It does not outperform baseline
system, but it can be used as additional information for merging.

2001: Navratil [59] deals with a particularly successful approach based on phonotactic-
acoustic features and presents systems for language recognition as well as for unknown-
language rejection. An architecture with multi-path decoding, improved phonotactic mod-
els using binary-tree structures and acoustic pronunciation models serves for discussion on
these two tasks.

2002: Jayram et al [44] proposed a parallel sub-word recognition (PSWR) language
recognition system which is an alternative to conventional Parallel Phone Recognition
(PPR) system. Sub-Word Recognizer (SWR) is based on automatic segmentation followed
by segment clustering and HMM modeling. PSWR outperformed PPR on six language
task with 10 sec of testing utterance only on training set (90.2%) about 4% and it was 1%
worse on testing set (62.3%).

2002: Torres-Carrasquillo [9] used with success the Shifted Delta Cepstra (SDC) for
Gaussian mixture modeling and in [19] he used Ergodic-HMM to train some meaningful
classes based on the untranscribed data. He compared this method with conventional
PRLM and GMM approaches. Santosh Kumar wrote a paper about the theory behind
EHMM for LID in 2005 [60].

2003: Dan & Bingxi [54] used a discriminatively trained GMM for LID. They used
Minimum Classification Error (MCE) criterion to estimate new GMM parameters. The
results with GMM-UBM acoustic system trained under Maximum Likelihood was 73.1%
on 3 languages (English, Mandarin, French) and the one trained under MCE criterion was
75.5%. The conclusion was that discriminative training helps in distinguishing between
languages.

2003: Adami [47] proposed to use the temporal trajectories of fundamental frequency
and short-term energy to segment and label the speech signal into a small set of discrete
units that he used also for speaker recognition. He had 5 tokens which were combination
of rising and falling of these two trajectories. He obtained 35% equal error rate on NIST
2003 LID evaluation with 30s utterances on 12 languages. He derived new features with
his own segmentation.

Adding duration of these 5 symbols decreased EER to 30%. He verified this information
was complementary with phone-based system (24%) and by fusing these two systems he
obtained 21.7%.

2003: MIT group [12, 55] evaluated three approaches — phone recognition, Gaussian
mixture modeling and support vector machine classification and fusion of all above. They
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outlined the differences and progress from the NIST 1996 evaluation to NIST 2003 eval-
uation. Results for NIST evaluation 2003 are in Table 2.3. Main improvement in GMM
approach is due to using gender-dependent GMM and feature mapping techniques to chan-
nel independent feature space. In phone-based LID system, new phoneme sets were used
and trigram distributions were added to the language models, with language dependent
weights for the trigrams, bigrams and unigrams.

e 2004: Gauvain [57] used a phonotactic approach, trained on 3 languages (Arabic, Spanish
and English). But for training and testing phonotactic model, he used phone lattices. He
improved baseline system from 6.8% to 4% on NIST 2003 LID 30 sec. test set. Further
improvement was gained by replacing linear averaging of scores by neural net classifier,
this resulted in equal error rate of 2.7%.

e 2004: Wong, Siu [61] used a conventional phonotactic approach based on HMM (3states,
6mixtures, 53phonemes) trained on English with LID accuracy 84% on 45sec long utter-
ances from OGI Stories (6 languages = English, German, Hindi, Japanese, Mandarin,
Spanish). They used a discrete HMM (DHMM) to correct phone recognizer. The idea is
to train DHMM to convert recognized phoneme to the true one according to transcription
to particular language. This can be done in language dependent and independent way.
Then the language model is trained on original transcription or further training data can
be taken from text corpora of target languages. Language independent DHMM performed
with accuracy 67.5% and language dependent 66.7%.

e 2004: Campbell et al [12, 55| used a support vector machine (SVM) as a classifier
instead of Gaussian mixture models (GMM). The features for SVM were Shifted delta
cepstra used successfully in GMM. The results are in Table 2.3.

e 2006: MIT group [13] describe their system for NIST 2005 LRE with several subsys-
tems - Gaussian mixture components and support vector machines classifying shifted delta
cepstra, parallel phone recognition followed by n-gram language model and binary tree lan-
guage model and parallel phone recognition followed by language model or support vector
machines operating on phone lattice.

e 2006: BUT group [58] describe their system for NIST 2005 LRE with several subsystems,
see Chapter 7.

e 2006: Leeuwen and Briimmer [62] come up with two new approaches: Gaussian Mix-
ture Model technique with channel dependency adopted from speaker recognition, and
Multi-class Logistic Regression system, which operates similarly to a Support Vector Ma-
chine (SVM), but can be trained for all languages simultaneously. Both approaches brought
significant improvement on NIST LRE data. They also address the important issue of cal-
ibration.

e 2006: Burget [14] used discriminatively trained acoustic models with Maximum Mutual
Information criterion and improved the state of the art results with acoustic system by
50% relative, see Chapter 6.

e 2006: Matéjka [63] used the boosting models in phonotactic language recognition,
see Section 5.5.

e 2006: White [64] presented idea of modeling cross-stream dependencies in parallel phone
recognition followed by n-gram language model.

e 2007: Campbell [65] explored the ability of a single speech-to-text system to distinguish
multiple languages.
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e 2007: Castaldo [66] explored a set of properly selected time-frequency features as an
alternative to the commonly used Shifted Delta Cepstral features. He shows that signifi-
cant performance improvement can be obtained estimating a subspace that represents the
distortions due to inter-speaker variability within the same language, and compensating
these distortions in the domain of the features.

e 2008: Leeuwen and Brummer [67] used Linear Discriminant Analysis back-end to train
detector for language with very small amount of training data.

e 2008: Farris [68] investigated methods of reducing the amount of labeled speech needed
for training LID systems. Starting with a small training set, an automated method is used
to select samples from a corpus of unlabeled speech, which are then labeled and added to
the training pool. The process iteratively continues till convergence.

2.8 Conclusion

In the phonotactic approach, the tokenizer (phone recognizer) seems to be the week part of
the systems. Lots of LID systems use monophone phone recognizer trained on OGI stories
database [28] employing Hidden Markov Models with 3 states and up to 20 Gaussian mixtures.
OGI stories have only approximately 1 hour of training data per language. This is a controversy
to the wise sentence "more data better data” known in LVCSR. The first solution is to train
phone recognizers on different database where more data is available [18, 57, 69]. The other
thing is to use more complex structure of phoneme recognizer [18, 70, 71| and since we train on
more data we can use for example more Gaussian components in HMM or more sophisticated
training techniques [72]. Another weak parts are in the phone recognizer output representation
and modeling. One of the first works modeling different from language models come from
Navratil [59]. Output representation where strings are replaced by lattices was investigated by
Gauvain [57]. The issue of amount of training data, different structures of phone recognizers
and also modeling of phonotactic dependencies of languages are all addressed in this thesis.

The main improvement of acoustic approach was done in feature extraction [9], by increasing
the number of Gaussian mixture components in GMM, different methods of training GMM [54,
14] and by employing a support vector machines [55] as classifiers of acoustic features. A part
of this thesis focuses on discriminative training techniques of Gaussian mixture models. The
problem feature extraction and discriminative training of GMM are addressed too.

To achieve the best performance, it is necessary to merge information from various sources.
Table 2.3 and [12, 13, 58] show clearly how much improvement can be obtained by proper fusion.



Chapter 3

Phone Recognition

3.1 Introduction

Our goal is to design a front-end module that would deliver language and task independent
posterior probabilities of sub-word units such as phonemes together with an information about
their temporal extent. There should be no language model or any other constraint because
this system will be used for language recognition®. In phonotactic language recognition, a good
tokenizer (phone recognizer) is the most important part [18, 71]. I show later that the accuracy of
the whole LID system depends crucially on the accuracy of the tokenizer. Therefore, developing
a high performance phone recognizer is the first task in building successful phonotactic language
recognition system.

In this chapter, we are looking closer at the input parameterization and the structure of
classification. Our experimental system is an HMM - Neural Network (HMM/NN) hybrid [73]. Tt
has less parameters comparing to traditional HMM systems, and is capable of handling correlated
multiple frames of features. Context-independent phoneme models are used. In our preliminary
experiments, this system achieved about the same results as a conventional HMM system [30].

The baseline setup uses 13 Mel Frequency Cepstral Coefficients (MFCCs), including C,
deltas and double deltas (referred as MFCC39). Multi-frame input [73] is also studied and
applied.

Next I investigated the TempoRAl Patterns (TRAP) parameterization technique [74]. In
this technique, frequency-localized posterior probabilities of sub-word units (phonemes) are es-
timated from temporal evolution of critical band spectral densities within a single critical band.
Such estimates are then used in another class-posterior estimator which estimates the overall
phoneme probability from the probabilities in the individual critical bands. This technique was
demonstrated efficient in noisy environment. The TRAP technique is compared with MFCC
and with multiple frames of MFCC. The TRAP-based system was simplified with the goal of
increasing processing speed and reducing complexity. Next, the amount of data for training,
length of context for phoneme recognition, mean and variance normalization of features and
effective structure and number of parameters in system is studied.

Note that such recognizer may by also used for other applications like keyword spotting, speaker recognition
or recognition of out-of-vocabulary words.

15
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3.2 Systems description

3.2.1 GMM/HMM system

Conventional phone recognizer based on Hidden Markov Model [30] trained using HTK toolkit?
were taken as a baseline. Conventional feature extraction consist of standard 12 cepstral coef-
ficient plus energy and delta and double delta coefficient was used. These coefficient form 39
feature vector well known as MFCC39. 1 use two setups with one and three states per phoneme.
Phoneme loop forms the recognition network, this means that phonemes can follow each other,
even itself. Phoneme insertion penalty is a constant which plays role in the skipping between
phonemes. This constant is tuned to minimal phoneme error rate. The number of Gaussian
components was tuned to minimal phoneme error rate too.

3.2.2 TRAP system (1BT = One Band TRAP)

In this technique, frequency-localized posterior probabilities of sub-word units (phonemes) are
estimated from temporal evolution of critical band spectral densities within a single critical band.
Such estimates are then used in another class-posterior estimator which estimates the overall
phoneme probability from the probabilities in the individual critical bands. This technique was
demonstrated efficient in noisy environment [74].

Speech signals divided into 25 ms long frames with 10 ms shift. The Mel filter-bank is
emulated by triangular weighting of FFT-derived short-term spectrum to obtain short-term
critical-band logarithmic spectral densities. TRAP feature vector describes a segment of tem-
poral evolution of such critical band spectral densities within a single critical band. The usual
size of TRAP feature vector is 101 points. The central point is the actual frame and there are
50 frames in past and 50 in future. This results in 1 second long time context. The mean and
variance normalization can be applied to such temporal vector. Finally, the vector is weighted
by Hamming window?. This vector forms an input to a classifier. Outputs of the classifier
are posterior probabilities of sub-word classes which we want to distinguish. In our case, such
classes are context-independent phonemes. Such classifier is applied in each critical band. The
merger is another classifier and its function is to combine band classifier outputs into one. The
described techniques yields phoneme probabilities for the center frame. Both band classifiers
and merger are neural nets. The complete system is shown in Figure 3.1.

3.2.3 Simplified system (FN = FeatureNet)

The disadvantage of the system described in Section 3.2.2 is its complexity. Two main re-
quests for real applications are short delay (or short processing time) and low computational
requirements. Therefore I evaluated [75] a simplified version of the phone recognition system.

Band classifiers were replaced by a linear transform with dimensionality reduction. The
PCA (Principal Component Analysis) was the first choice. During visual check of the PCA
basis, these were found to be very close to DCT (Discrete Cosine Transform). The effect of
simplification from PCA to DCT was evaluated too and was found not to increase error rates
reported in this thesis by more than 0.5 %, therefore the DCT is used further. A windowing is
applied before DCT.

2HTK toolkit,htk.eng.cam.ac.uk

3From our experiments is evident that in this setup, Hamming window does not have any effect, because
normalization before Neural net removes it. Only applying projection (DCT, PCA, LDA) preserves the effect of
windowing.
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Figure 3.1: TRAP system

3.2.4 System with split temporal context (LCRC = Left and Right Context)

Many common techniques of speech parameterization like MFCC (Mel Frequency Cepstral Coef-
ficients) and PLP (Perceptual Linear Prediction) use short time analysis. Our parameterization
starts with this short term analysis but does not stop there — the information is extracted from
adjacent frames. We have a block of subsequent mel-bank density vectors. Each vector repre-
sents one point in n-dimensional space, where n is the length of the vector. All these points
can be concatenated in time order, which represents a trajectory. Now let us suppose each
acoustic unit (phoneme) is a part of this trajectory. The boundaries tell us places where we
can start finding information about the phoneme in the trajectory and where to find the last
information. Trajectory parts for two different acoustic units can overlap — this comes from
the co-articulation. The phoneme may even be affected by a phoneme occurring much sooner
or later than the immediate neighbors. Therefore, a longer trajectory part associated to an
acoustic unit should be better for its classification.

We attempt to study the amounts of data available for training classifiers of trajectory parts
as a function of the length of these parts. As simplification, consider the trajectory parts to have
lengths in multiples of phonemes. Then the amounts are given by the numbers of n-grams?.

Table 3.1 shows the coverage of n-grams in the TIMIT test part. The most important column
is the third, numbers in brackets — percentage of n-grams occurring in the test part but not in
the training part.

If we extract information from trajectory parts approximately one phoneme long, we are
sure that we have seen all trajectory parts for all phonemes during the training (first row). If
the trajectory part is approximately two phonemes long (second row), we have not seen 2.26%
of trajectory parts during training. This is still quite OK because even if each of those unseen
trajectory parts generated an error, the PER would increase only by about 0.13% (the unseen
trajectory parts occur less often in the test data). However, for trajectory parts of lengths
3 phonemes, unseen trajectory parts can account for 7.6% of recognition errors and so forth.

This gave us a basic feeling how the parameterization with long temporal context works,
showed that a longer temporal context is better for modeling of the co-articulation effect but
also depicted the problem with insufficient amount of training data. Simply said, we can trust
the classification less if the trajectory is longer because we probably did not see this trajectory
during training. There are two approaches to deal with this problem. The first one is to weigh
trajectory by some window - we are using Hamming one. The second solution is to split the

4Note that I never use those n-grams in phone recognition, it is just a tool to show amounts of sequences of
different lengths!
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N-gram # different # not seen in Error
order N-grams the train part (%)
1 39 0 (0.00%) 0.00

2 1104 25 (2.26%) 0.13

3 8952 1686 (18.83%) 7.60

4 20681 | 11282 (54.55%) | 44.10

Table 3.1: Numbers of occurrence of different N-grams in the test part of the TIMIT database,
number of different N-grams which were not seen in the training part, and error that would be
caused by omitting not-seen N-grams in the decoder.

temporal context.

In this approach, an assumption of independence of some values in the temporal context was
done. Intuitively two values at the edges of trajectory part, which represent the investigated
acoustic unit, are less dependent than two values closed to each other. In our case, the trajectory
part was split into two smaller parts — left context part and right context part. A separate
classifier (again a neural net) was trained for each part, the target units being again phonemes
or states. The output of these classifiers was merged together by another neural net (Figure 3.2).
Now we can look at Table 3.1 to imagine what has happened. Let us suppose the original
trajectory part (before split) was approximately three phonemes long (3rd row). We did not see
18.83% of patterns from the test part of database during training. After splitting, we moved
one row up and just 2times2.26% patterns for each classifier were not seen.
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Figure 3.2: Phone recognizer based on split temporal context (LCRC)

3.3 Experiments

3.3.1 Experimental setup
Software

The Quicknet tool from the SPRACHcore® package, employing three layer perceptron with the
softmax non-linearity at the output, was used in all experiments with neural networks. The
STK toolkit® was used in experiments with conventional HMM. The decoder for experiments
with neural networks was used from STK too.

®The SPRACHcore software packages, www.icsi.berkeley.edu/~dpwe/projects/sprach
SHMM Toolkit STK from Speech@FIT, www.fit.vutbr.cz/speech/sw/stk.html
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Phoneme set

The phoneme set consists of 39 phonemes. It is very similar to the CMU/MIT phoneme set [76],
but closures were merged with burst instead of with silence (bcl b — b). We believe it is more
appropriate for features which use a longer temporal context such as TRAP or multi-frame
MFCC.

Databases

TIMIT database [77] was used for experiments to compare different systems. All SA records
were removed as we felt that the phonetically identical sentences over all speakers in the database
could bias the results. The database was divided into three parts — training (412 speakers), cross-
validation (50 speakers) and test (168 speakers). The original TIMIT training part was split into
two subsets — the training subset and the cross-validation subset. Database was down-sampled
to 8000H z, because in further experiments we will work with telephone data.

Evaluation criteria

Classifiers were trained on the training part of the database. In case of NN, the increase in
classification error on the cross-validation part during training was used as stopping criterion
to avoid over-training. There is one ad hoc parameter in the system, the phoneme insertion
penalty, which has to be set. This constant was tuned to minimum phoneme error rate on
the cross-validation part of the database. Results were evaluated on the test part of database.
Numbers of substitution, deletion and insertion errors are reported, as well as a sum of these
three numbers divided by the numbers of reference phonemes - the phoneme error rate (PER).

As it is difficult to compare results when the number of parameters in the classifier varies, an
important issue, i.e. how to deal with sizes of a classifiers, had to be addressed. One possibility
was to fix the number of parameters in the classifier and always reduce the input vector size by
a linear transformation to fixed size. However, since the dimensionality reduction always implies
a loss of information, a bottle-neck could be created. Therefore, in our experiments, we opted
for a different solution in which the optimal size of classifier — number of neurons in the hidden
layer and/or number of the Gaussian components — was found for each experiment. A simple
criterion — minimum phoneme error rate — was used for this purpose.

3.3.2 Hidden Markov Models with more states

Using more than one state in HMM per acoustic unit (phoneme) is one of the classical approaches
to improve PER. in automatic speech recognition systems. A speech segment corresponding to
the acoustic unit is divided into more coherent parts that ensure better modeling. In our case,
phoneme recognition system based on Gaussian Mixture HMM and MFCC features was trained
using the HTK toolkit [78]. Then, state transcriptions were generated using this system and
neural nets were trained with classes corresponding to states. Coming up from one state to three
states improved PER every time. Improvements are not equal and therefore these results are
presented for each system separately. The improvement is up to 5% absolute (see Table 3.4).

3.3.3 HMM-GMM and HMM-NN

This experiment was done to compare HMM-NN hybrid with the ”conventional” HMM-GMM.
The input consisted of MFCC39 features (12 MFCC coefficients, energy, derivative and acceler-
ation coefficients). The number of parameters — Gaussian components in the case of GMM and



20 3 Phone Recognition

neurons in hidden layer in case of NN — was increased until the decrease in PER was negligible.
The final number of neurons in the hidden layer is 500 and the final number of Gaussian mix-
tures is 256 for one-state models and 500 neurons in hidden layer and 128 Gaussian mixtures
for three-state models (see Table 3.2). This table contains also the numbers of parameters. The
HMM system has about 2% better result in case of one state model at the expense of amount
of parameters in the system.
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Figure 3.3: Phoneme Error Rates [%] for different number a) Gaussians in GMM and b) neurons
in NN hidden layer

’ # states ‘ system ‘ ins ‘ sub ‘ del ‘ PER H parameters ‘
1 GMM 256G | 5.8 | 20.3 | 14.3 | 40.4 819057
NN 500N 10.7 | 23.6 | 8.4 | 42.7 40000
3 GMM 128G | 6.6 | 214 | 7.3 | 35.4 1229057
NN 500N 9.8 1229 | 7.2 | 39.9 81000

Table 3.2: HMM-GMM and HMM-NN on MFCC39 with one- and three-state model

3.3.4 Single frame and multi-frame input with MFCC

Multiple frames of MFCC39 were joined together and formed the input to the neural net. We
were looking for the minimal PER, therefore the number of subsequent frames joined together
was being increased. The best PERs were systematically observed for 500 neurons (Table 3.3).

’ frames H 1 ‘ 3 \ 5 \ 7 \ 9 \ 15 ‘
PER [%] — 1 state 427 |1 379 | 37.6 | 38.1 | 379 | 41.5
PER [%] — 3 states || 39.9 | 36.0 | 35.9 | 36.2 | 36.6 | 39.4

Table 3.3: Effect of using multiframe with MFCC

3.3.5 TRAP and effect of length of the context

The TRAP system, as originally proposed, extracts information from long temporal context.
The length of the context was set to be 1s in the original system [74]. But this length may
depend on the task (recognizing phonemes, words, limited set of the words, ...), on the size
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of classifiers, and on the amount of the training data. This experiment therefore evaluated the
optimal length of the input trajectory for this task. The numbers of neurons in hidden layer of
neural nets were constant — all had 500 neurons, and the TIMIT database was used, therefore
the amount of training data was limited. The length of TRAP was being increased from 50 ms
to 1 s and the PER was evaluated. As can be seen in Figure 3.4, the optimal length is about
200 ms—400 ms. Finding such an optimum length could indicate insufficient training data.
However, the fact that shorter input is effective here, may have implications in applications
where the minimal algorithmic delay is required.
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Figure 3.4: Phoneme Error Rates [%] for different lengths of TRAP

3.3.6 TRAP with more than one critical band

Recent results [79] suggest the advantage of use of up to three critical band trajectories in
individual TRAP probability estimators. In our case, this is done by concatenating Hamming
windowed 310 ms (31 point) long temporal trajectories from three adjacent critical bands to
form a 93-dimensional input vector to each TRAP probability estimator. The individual three-
band time-frequency patches overlap in frequency by two critical bands, thus combining the 1-3,
2-4, 3-5,..., (N-3)-(N-1), (N-2)-N critical bands. The number of individual TRAP probability
estimators in the system is reduced by two since the inputs to the first and the last estimators
overlap with their neighbors only at one critical band.

The resulting PER from the three-band TRAP system is 32.5%. This system has about 3%
absolute improvement over one-band TRAP system. If we add 3 state modeling of phonemes
we get improvement to 31.6%. It is another almost 1%. For comparison with other systems, see

Table 3.4.

3.3.7 Simplified system (FN)

This system is a simplified version of 31 length TRAP system and contains weighting of values
in temporal context by Hamming window where band classifiers were replaced by dimensionality
reduction (DCT) to 15 coefficients. System with one state per phoneme has phoneme error rate
34.8% and the version with three states per phoneme has approximately the same result. The
comparison with all other systems is in Table 3.4.
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3.3.8 System with split temporal context (LCRC)

The feature extraction uses 15 Mel filter bank energies which are obtained in the conventional
way. Temporal evolution of 31 frames of critical band spectral densities are taken as in TRAP
processing, but the temporal trajectory is split into left and right contexts. This allows for
more precise modeling of the whole trajectory while limiting the size of the model (number
of weights in the NN) and reducing the amount of necessary training data. Both parts are
processed by discrete cosine transform (DCT) to de-correlate and reduce dimensionality to 10
coefficients and concatenated over all bands. Two NNs are trained to produce the phoneme
posterior probabilities for both context parts. Third NN functions as a merger and produces
final set of posterior probabilities (see Figure 3.2). An evaluation of such system and comparison
with others is shown in Table 3.4.

3.4 Conclusions on TIMIT

TIMIT database was chosen to compare our phone recognition scheme to the state-of-the-art. I
can say that our LCRC system with three states favorably compares to the best known systems.
Table 3.4 gives a track of improving our system and comparison with some results found in
literature. Since all results from other sides are with sampling frequency 16kHz I also present
our LCRC system trained on 16kHz. It perform with phoneme error rate 24.2%. Further
development of our phone recognizer based on hierarchical structure of neural nets [70] is also
presented in Table 3.4.

3.5 Multi-language Telephone Speech Phoneme Recognition

Based on experiments above I have used LCRC system with three states in further experiments
(if not stated otherwise). The length of 31 frames of the time trajectory in feature extraction is
used in each critical band. This length was chosen based on experiments aiming at minimizing
phoneme error rate (see Section 3.3.5 and [30]). All neural networks have 500 neurons in hidden
layer (if not stated otherwise).

For each language from all mentioned databases, we used the same structure as for TIMIT
— we divided data into three parts. Recognizers were trained on the training part. The increase
in classification error on cross-validation part was used as a stopping criterion in NN to avoid
over-training. Testing of performance was done on the test part.

3.5.1 OGI Stories
Database description

The OGI Multi-language Telephone Speech Corpus [28, 86] consists of telephone speech from
11 languages: English, Farsi, French, German, Hindi, Japanese, Korean, Mandarin, Spanish,
Tamil, Vietnamese. The corpus contains fixed vocabulary utterances (e.g. days of the week)
as well as fluent continuous speech. The current release includes utterances from about 2052
speakers, for a total of about 38.5 hours of speech. I used fluent continuous speech part from the
database where each caller was asked to speak for one minute about any topic. In six languages,
some files, referred to as ”stories”, were selected for hand generated fine-phonetic transcriptions.
The languages were: English(208), German(101), Hindi(68), Japanese(64), Mandarin(70), Span-
ish(108). The numbers in parentheses indicate the number of stories transcribed for each lan-
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System TIMIT 8kHz
PER [%]

HMM/GMM MFCC39 256G 40.4
+ 3 states (128G) 35.4
HMM /NN MFCC39 42.7
+ 3 states 39.9
+ multiframe 5 37.6
+ 3 states 35.9
1 band TRAP system 35.6
+ 3 states 33.9
Simplified system 34.8
+ 3 states 34.7
3 band TRAP system 32.5
+ 3 states 31.6
Split left and right context 32.7
+ 3 states 30.3
+ 3 states + Sentence mean normalization 31.6
+ 3 states + Sentence mean & variance norm. 32.9
+ 3 states 4+ 16kHz 24.2
Schwarz,Matejka: Hierarchical structure of neural nets [70] (16kHz) 21.5
Lamel: Triphone CD-HMM (16kHz) [80] 27.1
Ming: Bayesian Triphone HMM (16kHz) [81] 27.1
Deng: Hidden trajectory model (16kHz) [82] 27.0
Chang: Near—Miss modeling (16kHz) [83] 25.5
Robinson: Recurrent neural nets (16kHz) [84] 25.0
Halberstadt: Heterogenous Measurements (16kHz) [85] 24.4

Table 3.4: Comparison of phoneme error rates on TIMIT

guage. Amount of data with division to training and testing parts for all transcribed languages
can be seen in Table 3.5.

Initial experiments with more languages

First experiments with our best system are reported in Table 3.6. Chanel normalization is
performed even we did not get any improvement on TIMIT database (see Table 3.4). This is
because TIMIT is clean and we suppose the normalization could help on real telephone data.
This was confirmed in experiments: channel normalization helped on real data with gain up to
4.8% absolute in phoneme error rate.

It is hard to compare these phone recognizers because it is hard to find accuracies of phone
recognizers implemented in LID systems of other sites. I found only Yan’s results in his thesis
(1995) [43] see Table 3.6. Phoneme error rates of our recognizers are better from 2% to 7%
absolute. The smallest difference is for German and the highest for Mandarin.

Issue of amount of data

Unfortunately, the amount of transcribed data per language is only about one hour (see Ta-
ble 3.5) which is not enough to train phone recognizer properly [75]. We are not looking on
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Database train [hours] test [hours] cv [hours| phonemes
speech silence | speech silence | speech silence [count]
SPDAT RUSSIAN 14.02  11.89 3.89 3.11 1.57 1.31 53
SPDAT CZECH 9.72 11.31 2.26 2.67 0.91 1.08 46
SPDAT POLISH 9.49 8.98 2.33 2.30 0.88 0.84 41
SPDAT HUNGARIAN 7.86 6.08 1.97 1.50 0.77 0.60 62
OGI ENGLISH 1.71 0.50 0.42 0.11 0.16 0.05 40
OGI SPANISH 1.10 - 0.26 - 0.11 - 39
OGI GERMAN 0.98 0.07 0.24 0.02 0.10 0.01 44
OGI HINDI 0.71 - 0.17 - 0.06 - 47
OGI JAPANESE 0.65 - 0.15 - 0.06 — 30
OGI MANDARIN 0.44 0.20 0.11 0.05 0.03 0.01 45
Table 3.5: Description of OGI and SpeechDat-E databases

SYSTEM LCRC | LCRC | LCRC Yan
PER [%] Smn | Smvn | HMM [43]
OGI English 47.0 45.3 44.8 49.6
OGI German 55.4 51.1 50.6 52.8
OGI Hindi 49.5 45.7 45.9 48.9
OGI Japanese 42.0 41.2 38.8 42.6
OGI Mandarin 54.0 49.9 49.5 56.6
OGI Spanish 42.0 39.6 37.3 43.3

Table 3.6: PER [%] of phoneme recognition trained on OGI database

phoneme error rate in language recognition therefore we can use all data from a database for
training phone recognizers and evaluate the LID error rate. Therefore we merged train and test
sets together. Our test sets are about 15 minutes long in average but this represents about 20%
of transcribed data! After this move we can no more evaluate phoneme error rate on the test
data, as it was seen during the training. However, we can compare results on cross-validation
part and see at least tendencies of phone recognizers. The results (Table 3.7) prove correctness
of our assumption: "more data is better data”.

I used the best recognizer from previous section (LCRC) with sentence mean and variance
normalization for this experiment, and I saw these tendencies in all our tested phone recognizers.

| Language ||ENG | GER | HIN [ JAP | MAN | SPA |
baseline | test 44.8 50.6 | 459 | 3838 49.5 37.3
cv || 521 | 56.1 | 48.9 | 36.1 | 455 | 39.3

| retrained [ cv [ 52.0 | 55.4 | 48.9 [ 37.0 | 42.9 [ 38.0 |

Table 3.7: Phoneme error rate [%] on OGI Stories
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amount of data [hours] 1 3 5 7 10
PER [%] 34.89 | 30.82 | 29.57 | 28.27 | 27.44

Table 3.8: Influence of amount of data for training phoneme recognizer on PER[%] shown on
LCRC phone recognizer (Smn) trained on SpeechDat-E Czech

| SYSTEM PER [%] | LCRC | LCRC Smn | LCRC Smvn |

SPDAT Cgzech 29.2 27.4 27.5
SPDAT Russian 43.1 42.0 40.9
SPDAT Polish 40.0 39.9 394
SPDAT Hungarian 36.4 35.9 36.3

Table 3.9: PER [%)] of phoneme recognition trained on SpeechDat-E database

3.5.2 SpeechDat-E
Database description

The SpeechDat(E) Database (Eastern European Speech Databases for Creation of Voice Driven
Teleservices) [87, 88| consists of telephone speech from 5 languages: Czech(526/526), Hun-
garian(511/489), Polish(488/512), Slovak(498/502) and Russian(1242/1258). The numbers in
parentheses indicate the number of male (first number) and female (second number) speakers.
The databases are balanced also over age groups and dialects. Each utterance is stored in sepa-
rate file and has an accompanying ASCIT SAM label file. I used phonetically balanced sentences
(referred as s,z sentences). There are 12 sentences with average duration 4 seconds of speech
per speaker. Amounts of data with division to training and testing parts for 4 languages can
bee seen in Table 3.5.

Issue of amount of data

The difference between OGI Stories and SpeechDat-E is mainly in amounts of transcribed data.
Therefore I simulate increasing amount of data for phoneme recognition and watched decreasing
phoneme error rate. The results are shown in Table 3.8. If we compare the systems trained on
1 hour and 10 hours, there is an absolute difference of almost 7.5% in PER. It is evident that
the system trained on 1 hour of data is not well trained which may allow us to suspect all the
phone recognizers trained on OGI multilingual database to be also badly trained.

Experiments

We can see that if we have more data we can train phone recognizer well. The results for
languages other than SpeechDat-E are reported in Table 3.9. Channel normalization helped
also for SpeechDat-E database. The improvement is about 2% absolute. Table 3.10 presents
the final system where I increased the size of classifier to 1500 neurons in hidden layer and the
scheduler for neural network learning rate was changed to halve the learning rate if the decrease
in the frame error-rate (FER) on the training (rather than on the cross-validation part) set is
less than 0.5 %. The minimum number of training epochs was set to 12. These changes lead to
improvement of the system of about 2%.
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| SYSTEM LCRC Smn PER [%] || 500 neurons | 1500 neurons

SPDAT Czech 27.4 24.1
SPDAT Russian 42.0 39.0
SPDAT Polish 39.9 36.3
SPDAT Hungarian 35.9 33.3

Table 3.10: PER [%] of LCRC phoneme recognition with sentence mean normalization trained
on SpeechDat-E database with different number of neurons in hidden layer in NN

3.6 Conclusion

The core of the phonotactic approach is phone recognizer. I used phone recognizer based on
the LCRC scheme and trained on the telephone speech from SpeechDat database for further
experiments. The results of these phone recognizers are hard to compare across the languages
since the amount of training data varied as well as channel type, phone set, etc. I compare the
quality of these recognizers in terms of usability in language recognition in Chapter 5.



Chapter 4

LID Experimental Setup

The first part of development was done using the NIST 1996 and NIST 2003 data together with
the CallFriend database. These data are rather easy in comparison with later evaluation data
from NIST 2005 and NIST 2007. Chapters 5 and 6 describe the development before the NIST
evaluation in 2005. This section is an experimental setup for Chapters 5, and 6. Chapters 7
and 8 describe the system development and evaluation for the NIST LRE 2005 and 2007, these
chapters have their own experimental setups given by evaluation data for the particular year.

4.1 NIST 1996 data set

This set was used as development data. There are two subsets — development and evaluation
consisting of 12 languages (Table 4.1) and 3, 10 and 30 second audio files. Development data
consists of approximately 1200 files for each evaluation duration, with roughly 160 files each
for English, Mandarin, and Spanish and 80 messages for each of the other nine languages. The
evaluation set consists of approximately 1500 files for each duration: 480 for English, 160 each
for Mandarin and Spanish, and 80 for each of the other nine languages. English messages were
obtained from both the CallFriend corpus (160) and other English corpora (320) [12].

4.2 NIST 2003 data set

This data set [25] consists of 80 segments with duration of 3, 10 and 30 second duration in
each of 12 target languages (Table 4.1). This data comes from conversations collected for the
CallFriend Corpus but not included in its publicly released version. In addition, there are four
additional sets of 80 segments of each duration selected from other Linguistic Data Consortium
(LDC)! supplied conversational speech sources, namely Russian, conversations of CallFriend
type, Japanese, conversations from the CallHome Corpus, English, from the Switchboard-1
Corpus and cellular English and from the Switchboard Cellular Corpus. Development set for
this evaluation are data from NIST 1996 LID described above. All results in this thesis are
reported on 30 second segments from LRE 2003 set except Chapter 7 and if not stated otherwise.

"http://www.1ldc.upenn.edu
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Arabic (Egyptian) | German Farsi French (Canadian French)
Hindi Japanese Korean English (American)
Mandarin Tamil Vietnamese | Spanish (Latin American)

Table 4.1: The twelve target languages

4.3 Callfriend corpus

The CallFriend corpus of telephone speech was collected by LDC in 1996 primarily to support
projects on Language Identification (LID) and was sponsored by the U.S. Department of Defense.
There are 12 languages (see Table 4.1) with conversations lasting between 5 and 30 minutes.
There are 60 unscripted conversations in each language. All speakers were aware that they were
being recorded. They were given no guidelines concerning what they should talk about. Once
a caller was recruited to participate, he/she was given a free choice of whom to call. Most
participants called family members or close friends.

4.4 Evaluation

For evaluation metric see Section 2.5.

4.5 Score normalization

Final score takes into account likelihoods from all detectors:

log P(L|0) ~ log p(O|L)/T —log >~ p(O|l)/T (4.1)
l
where log p(O|L) is log-likelihood of speech segment O given by GMM (in case of acoustic
approach) or LM (in case of phonotactic approach) for language L, T is number of frames
(phonemes) in speech segment O and the term log > 3, p(O|l) /T can be interpreted as background
model.

4.6 Fusion

Linear combination of scores from separate systems are used according Equation 4.2 where
weights «, 3,7, §, € are tuned by simplex method to find minimal recognition error with the final
score.

finalscore = aGM My + BPRLMpy + yPRLMpy + PRLMey + ePRLMpy, (4.2)

The simplex method is a method for solving problems in linear programming. This method,
invented by George Dantzig in 1947 [89], tests adjacent vertexes of the feasible set (which is a
polytope) in sequence so that at each new vertex the objective function improves or is unchanged.
The simplex method is very efficient in practice, generally taking 2m to 3m iterations at most
(where m is the number of equality constraints), and converging in expected polynomial time
for certain distributions of random inputs.



Chapter 5

Phone Recognition followed by
Language Model - PRLM

I have used our phone recognizers described in Chapter 3 and language model described in
next subsection. At first, different structures of phone recognizer were tested for language
recognition based on one-best phoneme recognition output. Further the lattices instead of one-
best recognition output were used. This chapter is concluded by the description of boosting
models to improve the state-of-the-art language modeling in LID.

5.1 Language models

The goal of a Language Models (LM) is to estimate the probability of a symbol sequence,

N

P(wy,wa, ..., wy) which can be decomposed as a product of conditional probabilities:

A

P(wy,wa, ..., wy) = [ Pwi |wi, ..., wi1) (5.1)

—

Il
A

(2

Limiting the context in Equation 5.1 results in:

m
P(wy,wa, ..., wy) ~ Hp(wi | Wiyt Wis1) (5.2)
=1

for n > 1 with values of n in the range of 1 to 4 inclusive are typically used, and there are
also practical issues of storage space for these estimates to consider.

Estimates of probabilities in n-gram models are commonly based on maximum likelihood
estimates — that is, by counting events in context on some given training text:

C(Wi—pt1,. .-, w;)
C(Wi—nt1,- ., wi—1)

p(wi|wi_n+1, e ,’LUi_l) = (53)

where C(.) is the count of a given word sequence in the training text.

5.2 String based system

This section presents the results with phone recognizer producing the one-best output (string)
which is used for phonotactic modeling.

29
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5.2.1 Training

Language model of 3rd order was used to capture phonotactic statistics of each language.
Phoneme insertion penalty (PIP) in the decoder is a constant which must be tuned for the
specific task. This constant influences the output phoneme strings and can vary for different
applications such as phoneme recognition or language recognition. Here, it was tuned with the
best LID performance as criterion (for more details see my Technical Report [90]).

5.2.2 Testing

During recognition, the test sentence is passed through the phone recognizer. The resulting string
of phonemes is processed by all phonotactic models for each, the likelihoods of all trigrams are
multiplied. The problem of unseen trigrams is solved by assign them the empirically tuned value
—6 in the logarithm with base 10. If the trigram probability is lower than this value it is used
instead of the estimated one. Likelihoods are normalized over all languages (see Section 4.5).
Finally we have scores for all target languages. Test sentence belongs to target language with
the maximal score.

5.2.3 Different phoneme tokenizers

I introduced several structures of phone recognizers in the previous chapter. Table 5.2.3 shows
the performance of LID systems along with phoneme error rates of phone recognizers used. 1
used Hungarian SpeechDat-E database for this experiment, because I obtained the best EER
with this language (see Table 5.4). All systems had 500 neurons in hidden layer in neural net
which was trained to produce three phoneme state posterior probabilities for Viterbi decoder.
Sentence mean normalization was used in the phone recognizers. This experiment proved the
statement that EER is dependent on how good is the phone recognizer.

’ System H EER [%)] \ PER [%)] ‘
MFCC39 NN/HMM hybrid system 9.0 45.1
Simplified system = FN 5.6 38.6
Split left and right context = LCRC 4.8 36.4

+ Sentence mean normalization 4.4 35.9
+ Sentence mean & variance norm. 5.1 36.3

Table 5.1: Comparison of EER of several setups of Hungarian phone recognizer tested on NIST
2003 LID (30sec)

5.2.4 OGI Stories vs. SpeechDat-E - influence of amount of training data for
phone recognizer

OGI Stories

We know that if we use more data for training phone recognizers it helps on the PER (see
Section 3.5.1 and 3.5.2), but does it generalize for LID too? As equivalent to Table 3.7 with
phoneme error rates, I report LID performance in Table 5.2 for increasing amount of training
data for phone recognizer for OGI Stories database.
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SpeechDat-E database

To simulate the EER for tokenizer trained on more data than 1 hour I present Table 5.3 and
Figure 5.1 with tokenizer trained on Czech SpeechDat-E (PRLM BUT-CZ) from 1 to 10 hours.
If we compare “PRLM BUT-OGI wholeDB” results with “PRLM BUT-CZ” trained on 1 hour,
we can say, that the EER are similar. But with second system, we can go further with increasing
amount of training data for phone recognizer. There is a saturation of EER after 7 hours of
training data (with this database) with the best achieved results 5.42% which is almost 4%
absolutely better than the equivalent system trained on 1 hour of data. It is evident that the
systems trained on 1 hour of data are not well trained.

Parallel PRLM

The results of parallel ordering of phone recognizers are in the last column of Table 5.2 for
phone recognizers trained on OGI Stories and in Table 5.4 for SpeechDat-E. If we compare EER
in these tables, we can see that 3 out of 4 PRLM system trained on SpeechDat-E outperform
PPRLM system trained on 6 languages from OGI Stories.

Language | ENG | GER | HIN [ JAP | MAN | SPA || fusion

PRLM BUT-OGI 11.83 | 11.67 | 9.75 | 11.42 | 15.08 | 14.08 6.92
PRLM BUT-OGI wholeDB | 10.58 | 10.33 | 8.92 | 9.08 | 12.83 | 11.33 5.58

Table 5.2: EER [%] of single PRLMs trained on OGI Stories and tested on 30 second task from
NIST 2003 LID evaluation

amount of data [hours] 1 3 5 7 10
PER [%] 34.89 | 30.82 | 29.57 | 28.27 | 27.44
EER [%] 90.17 | 6.50 | 6.67 | 5.42 | 5.42

Table 5.3: Influence of amount of training data for phoneme recognizer on PER[%] and EER[%]
(LID NIST 2003 30sec) with LCRC SpeechDat-E Czech phone recognizer

PRLM duration [s]/EER [%]
system 30s ‘ 10s ‘ 3s

Hungarian || 4.42 | 13.8 28.9
Russian 4.75 | 15.6 28.3

Czech 542 | 16.7 33.3
Polish 6.75 | 17.8 31.9
fusion 2.42 | 8.08 | 19.08

Table 5.4: EER [%)] of single PRLMs and PPRLM on NIST 2003 LID evaluation

5.2.5 Comparison of systems

Table 5.5 gives a comparison to the results of the best systems known from literature before
2005. All PRLM systems used in this experiment were tuned on NIST 1996 LID evaluation
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Figure 5.1: DET Plots of systems trained on different amounts of data on Czech Language on
30sec task from NIST LID 2003

data [90]. The testing was performed on NIST 2003 LID evaluation data. Results of OGI [91]
and MIT PPRLM [12] employing HMM phone recognizers trained on 6 languages from OGI
stories are in the first rows of the table. The system labeled ”FUSE MIT” was based on merging
of output of PPRLM mentioned above, Gaussian Mixture Model and Support Vector Machine
trained on acoustic features [12]. Our PPRLM system trained on OGI Stories (PPRLM BUT-
OGI wholeDB) outperformed OGI and MIT ones by about 1% on the 30 second task, which is
significantly better at the confidence level of 95% from Gaussian approximation. This is proving
the superiority of our LCRC FeatureNet phone recognizer. Our best result was achieved with
PPRLM trained on four languages from SpeechDat-E database — this system favorably compares
to system "FUSE MIT” even though no acoustic modeling was included.

SYSTEM EER(%) 1996 2003
30s 10s 3s 30s 10s 3s

PPRLM OGI — - - 7.7 11.9 22.6
PPRLM MIT [12] 9.6 11.9 24.6 6.6 14.2 25.5
FUSE MIT [12] 2.7 6.9 17.4 2.8 7.8 20.3
PPRLM BUT-OGI 5.16 9.85 19.69 | 6.92 11.67 22.17
PPRLM BUT-OGI wholeDB || 4.29 879 18.63 | 5.58 11.08 21.58
PPRLM BUT-SPDAT 1.48 5.66 15.83 | 2.42 &8.08 19.08

Table 5.5: Comparison of EER [%] on NIST 1996 and 2003 evaluations



5.3 String based system - New baseline 33

system / EER [%] || baseline | + WB-LM || + new phnrec + WB-LM
duration [s] 30 30 30 10 3
Hungarian 4.4 3.7 3.1 10.6 23.7
Russian 4.8 4.4 3.0 9.6 22.2
Czech 5.4 4.8 3.8 11.9 25.0
Polish 6.8 6.7 6.0 14.4 28.4

Table 5.6: New baseline results for NIST LRE 2003.

5.3 String based system - New baseline

Table 5.6 summarizes new baseline results. The obvious shortcoming in previous phonotactic
modeling — use of hard constant to replace unseen trigrams — was fixed by back-off language
models with Witten-Bell discounting. This improved slightly the resulting EER. However, more
improvement was obtained from improving the phone recognizers, mainly by increasing the
number of hidden layer from 500 to 1500 (see Section 3.5.2 for description and Table 3.10
for improvement of phoneme error rates). Both changes together lead to about 30% relative
improvement in EER. The right part of Table 5.6 denotes the new baseline of separate systems.

5.4 Phoneme Lattices

I have shown that it is not important when the tokens (phonemes) come from a language different
from the target one. However, we have to take into account that the tokenizer, as all speech
recognition techniques, is not 100% accurate. Common practice in LVCSR, acoustic information
retrieval, etc. is to use richer structure at the end of decoder: lattices instead of strings. The idea
behind using the phoneme lattices is to avoid some of the approximation made in the baseline
(one-best) system. The language of spoken segment probably can be better approximated by
taking the summation over the phone sequences presented in phone lattice instead of using just
the most likely one. In LID, this approach was pioneered by Gauvain et al. [57] with good
results.

Training

Let us consider the language recognition as a problem of finding maximum of Equation 5.4,
where L* is the hypothesized language, f(O|H, L, \) is the likelihood of the speech segment O
given the acoustic models A, phone sequence H and the language L. The probability P(H|L) is
estimated using the language n-gram model (see Equation 5.2).

L* = argmaz ZH: f(O|H, L, \)P(H|L) (5.4)

Similarly to training n-gram language models from strings, we can use phone lattices to
obtain better maximum likelihood (ML) estimates. In both cases, the ML training relies on
finding maximum of P(H|L) that maximizes Equation 5.2. If we consider that H is the string
of phones (the best path through lattice) then the estimates of n-gram probabilities are just
approximations. We can overcome this problem by summing likelihoods over all path in the
lattice.
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H training on string ‘ training on lattice

scoring string 3.1 3.1
scoring lattice 3.6 2.3

Table 5.7: Experiments with phoneme strings and lattices on NIST LRE 2003 on 30sec duration.

Finding estimates of n-gram probabilities can be done iteratively by using EM algorithm.
Given the current estimates M’ of these probabilities for particular language, the next esti-
mates are computed as the expectation of the n-gram frequencies C(hq, ..., hy,) which can be
approximated by taking n-gram frequencies given the phone lattice L. This gives us

E[C(hy,...,hn)|0,\, M|~ >~ Pley,...,ex)IL) (5.5)
h(ei)=h;

where the right part represent the sum of the lattice posterior probabilities of all sequences
of n links corresponding to the phone n-gram (hq,...,hy) and is computed by means of the
forward-backward algorithm

Pley,...,en|L) = aler)B(en) Hf(ei) (5.6)

where «(ep) is the forward probability of starting node of the link e, G(ey) is the backward
probability of the end node of the link e and £(e;) is the posterior probability of the link e. Now
the new estimates can be used to recompute the posterior probabilities in the lattice (acoustic
probabilities stay unchanged, only the language probability change) for the new EM iteration.
The EM procedure can be initialized with uniform distribution as suggested by Gauvain [57] or
with the estimates computed from the string.

Testing

Scores for test segments are computed from phone lattices. Triphone expanded phoneme lattices
are generated without any language model. Partial scores are given by trigram probabilities
corresponding to triphone links weighted by their respective posteriors. The total score of
segment is then computed as a sum of partial scores according to Equation 4.1.

Experiments

I have generated phoneme lattices only from acoustic scores without introducing any phonotactic
constraints. Language models for each language are computed from n-gram frequencies given
by all phone lattices belonging to language L.

All four combinations of LM-estimation and scoring (see Table 5.7) were tested. In the table,
we see that training on lattice and scoring on raw strings does not bring any improvement and
training on strings and scoring lattices even degrades performance of the system. The most in-
tuitive lattice-lattice setup performs the best bringing approximately 25% relative improvement
in EER (see Figure 5.2).
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Figure 5.2: String vs. lattice based approach to LID on 30 sec segments from 2003 LID NIST

5.5 Anti-models

Anti-models are inspired by boosting training techniques and discriminative-like training. Anti-
model is a language model modeling the space where target model makes mistakes [63]. Its
training works in the following way: we will denote all utterances belonging to language L as set
SZF and all utterances not belonging to language L as set S . First, the training of phonotactic
model LMZr of each language L is done in standard way using only set Slf. Then, all training
utterances are scored by all phonotactic models and posteriors of utterances are derived:

' > P(HA|LM])’

(5.7)

where H, is the r-th training utterance representing phoneme sequence and p(Hr\LMZF) is the
likelihood provided by phonotactic model LML+.

For language L, the parameters of anti-model LM should be trained on all segments from
S mis-recognized as L. We can however use all utterances H, € S; and weight their trigram
counts by posteriors P(H,|L). Obviously, an utterance from S; with high probability to be mis-
recognized as L will contribute more to the anti-model than an utterance correctly recognized
as language G where G # L (see Figure 5.3).

I have tested three flavors of anti-model training:

1. LM is estimated from segments of S; but also from SZ. We could call this model
“normalizing model” rather than anti-model.

2. LM is estimated only from segments of S; with posterior weighting of trigram counts
(Equation 5.7).
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Figure 5.3: Illustration of the training of anti-models.

PRLM lattice lattice + anti-models
duration 30s || 10s | 3s | 30s || 10s | 3s |

Hungarian 23 | 73194 1.8 | 6.6 18.8

Russian 23 | 7.7 | 188 | 2.0 | 6.8 18.9
Czech 34 194|214 2.7 | 88 21.3

Table 5.8: EER [%] with using lattice and lattice + anti-models on LRE NIST 2003

3. LM is estimated only from segments of S;, but in addition to posterior weighting, the
trigram counts are also inversely weighted by the priors of different languages in S; . For
example, when we train anti-model for Arabic and we see 90% English and 10% of Tamil
in S}, the counts of English segments are divided by 0.9 and these of Tamil by 0.1.

In all three cases, the final score of test utterance H is obtained by subtracting the weighted
likelihood of anti-model from the target model:

log $(H|L) = logp(H|LM}") — k logp(H|LM] ), (5.8)

where the constant k£ needs to be tuned experimentally.

In all anti-model experiments, language models were trained and evaluated on lattices and
Witten-Bell discounting was used. Figure 5.4 presents the resulting EERs of the system for
different settings of k. For k = 0 (no anti-model), all results are equal to EER=2.25% as already
reported in Table 5.7. We see that all three anti-models improve the results. The normalizing
LM; is the worst, and the position of its minimum EER is very sensitive on optimal tuning of
k. On the other hand, “pure” anti-model does well with a stable minimum at k£ = 0.3. The anti-
model using all data from S is preferred. The results were verified also with other test segment
durations (10s and 3s), another phone recognizers and different target data (NIST 1996), with
the same stable peak at kK = 0.3. The results for £ = 0.3 for all recognizers are in Table 5.8. The
improvement for Hungarian phone recognizer can be seen also on Figure 5.2.
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