
Deep Learning Concepts and Datasets for Image Recognition: Overview 2019

Case Study: Pedestrian Detection

Dr. Karel Horak*
a,b

, Prof. Robert Sablatnig
b

a
Brno University of Technology, Czech Republic

b
Computer Vision Lab, Vienna University of Technology, Austria

Our goal is to detect pedestrians on images from on-board camera (Advanced driver-assistance systems)

SSD-Lite-Pedestrian-detection with MobileNet v2 as feature extractor on Mixed Dataset

Deep Learning Architectures

There is a lot of different architectures of Convolutional Neural Networks designed for image recognition:

Objects detectors:

• R-CNN family – Region-based CNN (R-CNN, Fast R-CNN, Faster R-CNN, R-FCN, Mask R-CNN)

• SSD – Single Shot MultiBox Detector

• YOLO – You Only Look Once

• RetinaNet – uses ResNet as backbone

Objects classifiers:

• AlexNet

• VGG16

• GoogleNet

• ResNet – Residual Neural Network

Deep Learning Architectures

Q: How to choose the proper one?

A: Find solution of optimization problem – searching of unknown parameters in high-dimensional space.

Only three dimensions are displayable here, nevertheless we have much more than only these to analyse!

batch size
training dataset

CNN type

Fast R-CNN Faster R-CNN SSD Lite YOLO RetinaNet …

COCO

Kitti

Pascal VOC

Night Pedes

Combination 1

Combination 2

10

20

30

40

50

…

SSD Lite trained on Pascal VOC dataset, with batch size of 20 and…

…input size 300x300 pxl,

learning rate 0.05,

stride 10,

…

Deep Learning Architectures

We know how to solve optimization tasks, but two problems arise:

1. Principal (theoretical) problem of solution: adjoining items on axes does not create neither sequential nor

linear space (e.g. as ordinal numbers 1, 2, 3, …) => not measured values (combinations) can not be interpolated

or estimated => only brute force optimization can be used.

Unfortunately, brute force solution

necessarily creates the other one

problem…

Deep Learning Architectures

We know how to solve optimization tasks, but two problems arise:

2. Practical problem of solution: measuring (= training) each type of the CNN on each available dataset (lots of

variants and even more combinations of them) with each admissible value of each parameter (batch size, input

size, learning rate, stride, networks structure,…) is not computable neither on any current hardware nor cloud!

Try to estimate number of all solution

in this space and time needed to train:

tens of CNNs x hundreds of datasets

x thousands of parameters values

=~ 10
8

solutions and above

=> almost 4000 years of computing!

Deep Learning Architectures

Chosen “enforced” solution:

Best practise = use pretrained network to fix some parameters at least (mainly CNNs structure and basic

parameters as stride and learning rate).

What dimensions remained to optimize? CNN type, datasets and their combinations, input size, dataset volume

(we evaluated 10, 100, 500, 800, 2k and 5k images sets).

Implementation Details

Two meta-architectures of objects detectors were selected for training:

a) Faster R-CNN with Resnet101 as a backbone network

b) SSD Lite with Mobilenet v2 as a backbone network

Libraries used: TensorFlow-gpu 1.12 + Object Detection API

GPU used for training phase:

Nvidia GeForce MX 150 v1/2 GB

Nvidia Titan X - 12 GB

Datasets Used – Publicly Available

COCO (used for testing, not training): contains 328k images in 80 categories, 250k labelled people

Kitti (complex dataset of 2D, 3D and Bird’s eye views): contains 15k images, 2k labelled pedestrians

Pascal VOC: 20 categories

CityShapes: contains 25k images in 30 categories, 3.5k labelled persons (+metadata: temperature and GPS)

Datasets Used – Proprietary Ad-hoc Dataset

Because of not any night images are present in the previous datasets at all, we have created the one:

Night Pedestrian: contains 227 images in one category of persons, 815 labelled pedestrians.

Note the LabelIMG tool has been used to manual annotations of pedestrians.

Detector Accuracy – object hit or missed and how much?

Problem: practically, any detector does not predict exact pixel position (caused by pooling, stride, pyramid

scale, etc.) – difference between detectors (results in position) and classifiers (results in labels).

Q: How to evaluate an accuracy of the detector once it is trained?

A: Intersection of Union (IoU) method = an evaluation metric used to measure the accuracy of an object

detector on a particular dataset.

Requirements: in order to apply IoU to evaluate the object detector we need:

1. The ground-truth bounding boxes (i.e., the hand labelled bounding boxes

from the testing dataset that specify where our object is in the image).

2. The predicted bounding boxes by the detector.

Detector Accuracy – object hit or missed and how much?

Intersection over Union is simple overlapping ratio - score (i.e. one number):

Good practise: Intersection over Union score > 0.5 is normally considered a “good” prediction.

Detectors Efficiency

As soon as we know score, we know if prediction

corresponds to the ground-truth box (by means of

given threshold for score):

1. score > thr → increase value of TP

2. score <= thr → increase value of FP

3. for all ground-truth boxes never detected

increase value of FN

Note TN does not apply: background detection

Detectors Efficiency

As soon as we know TP and FP values, the

mAP (mean Average Precision) serves as a

Detector efficiency indicator:

Training Phase Example

Measured parameters of training phase on limited dataset (204 images) for Faster R-CNN and SSD Lite:

Architecture Faster R-CNN SSD Lite

Speed [FPS] 7.52 47.3

Dataset volume 10 100 800 2000 5000 800 5000

mAP [%]

{small,medium,large}

24.81

{1, 7, 19}

37.94

{1, 12, 35}

64.53

{8, 22, 48}

55.18

{10, 29, 54}

75.15

{30, 53, 70}

19.28

{1, 5, 21}

28.12

{2, 6, 31}

Learning time [min] 351 411 378 (677) (4946) 737 (1692)

Images learned: 204

Pedestrians/image: 4.38

Average object width: 43.95 pxl

Average object height: 111.23 pxl

Small objects: 68

Medium objects: 420

Large objects: 405

Testing Phase – Kitti Dataset Validation

Now, we are interested much more in precision instead of in learning time:

Images classified: 1179

Pedestrians/image: 2.54

Average object width: 43.66 pxl

Average object height: 103.21 pxl

Small objects: 142

Medium objects: 1495

Large objects: 1355

TP FP FN TN Precision Recall F1-score

F.R-CNN 800 1664 665 1328 0 0.71 0.56 0.63

F.R-CNN 5k 2733 64 259 0 0.98 0.91 0.94

SSD Lite 800 698 345 2294 0 0.67 0.23 0.35

SSD Lite 5k 501 384 2656 0 0.57 0.16 0.25

Testing Phase – CityPersons Dataset Validation

Now, we are interested much more in precision instead of in learning time:

Images classified: 398

Pedestrians/image: 7.93

Average object width: 47.47 pxl

Average object height: 117.23 pxl

Small objects: 210

Medium objects: 1457

Large objects: 1490

TP FP FN TN Precision Recall F1-score

F.R-CNN 800 724 578 2433 0 0.56 0.23 0.32

F.R-CNN 5k 1137 765 2020 0 0.60 0.36 0.45

SSD Lite 800 252 300 2905 0 0.46 0.08 0.14

SSD Lite 5k 501 284 2656 0 0.57 0.16 0.25

Results Evaluation

Conclusions:

• Mixed training dataset (Kitti + Pascal VOC + CityPersons + Night Pedes) results in lower false positive

detection in comparison with single Kitti dataset (video).

• Approx. 500 images are needed to train a model to basic usable level and 5k+ images for robust detection.

• Detection speed on laptop with low-end GPU Nvidia GeForce MX 150 v1/2 GB:

a) Faster R-CNN 1.2 FPS

b) SSD Lite 12 FPS (can be considered as real-time for ADAS)

• Dataset volume: 10, 100 and 500 are not enough => negligible mAP

Again, our goal was to detect pedestrians on images from on-board camera (Advanced driver-assistance systems)

