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KLÍČOVÁ SLOVA
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1 Introduction

During my research activities, I have conducted methodological research in structural safety
and reliability quantification, nonlinear fracture mechanics modeling and utilization of soft
computing methods for solving inverse problems in materials and structural engineering. In
this thesis, a part of this research focused on the use of soft computing methods in the
reliability-based design and assessment of structures will be presented.

When developing methodologies and tools for inverse and forward reliability analyses, spe-
cial emphasis was placed on the implementation of the most effective and powerful methods,
models and procedures with respect to its primary focus on time-consuming tasks solved via
nonlinear finite element method analysis. Examples of practical applications include deter-
mining the load-bearing capacity, reliability and remaining service life of existing concrete
bridges (see the examples of the post-tensioned concrete bridge made of precast MPD-type
girders in Fig. 1, top left, and the two-span reinforced concrete beam bridge in Fig. 1, top
right) or reliability-based design optimization of mass-produced T– and TT–shaped structural
elements (Fig. 1, bottom left and right).

In the thesis, methodological approaches for two types of reliability tasks will be pre-

Figure 1: Examples of the analysed structures: inverse reliability analysis of the post-tensioned
concrete bridge made of MPD girders (top left), the reinforced concrete beam bridge (top right),
and reliability-based design optimization of T– and TT–shaped LDE 7 roof girders (bottom left and
right).
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sented: (i) reliability-based design of structures and (ii) metamodel-assisted reliability assess-
ment of structures. In both cases, the uncertainties inherently present in the structure–load–
environment system (e.g. material properties, geometrical imperfections, dead load, live load,
wind, snow, corrosion rate, etc.) are taken into account using a fully probabilistic approach.

2 Reliability-based design of structures

To achieve desired level of reliability in limit state design is generally not an easy task. Tra-
ditional approaches simplified the problem by considering the uncertain parameters to be
deterministic, and accounted for the uncertainties through the use of empirical safety factors.
These factors are usually derived based on the past experience. But, they cannot guarantee
required reliability level; they do not provide information on the influence of individual param-
eters on reliability. Also it is difficult (almost impossible) to design structures with uniform
reliability levels among components.

Uncertainties in design variables and problem parameters are inevitable and must be con-
sidered in an optimization task, if reliable optimal solutions are to be found. For a canonical
deterministic optimization task, the optimum solution usually lies on a constraint surface or
at the intersection of more than one constraint surfaces (Figure 2). However, if the design
variables or some system parameters cannot be achieved exactly and are uncertain with a
known probability distribution of variation, the deterministic optimum (lying on one or more
constraint surfaces) will fail to remain feasible in many occasions. In such scenarios, a stochas-
tic optimization problem is usually formed and solved, in which the constraints are converted
into probabilistic constraints meaning that probability of failures (of being a feasible solution)
is limited to a pre-specified value.

When performing either reliability assessment or advanced engineering design, it is essential
to take uncertainties into account using a probabilistic analysis. Reliability assessment requires
forward reliability methods for estimating the reliability. On the other hand, the engineering
design requires an inverse reliability approach to determine the design parameters to achieve
desired target reliabilities.

Figure 2: A comparison of deterministic and reliable solutions.
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A “trial and error” procedure is generally used to determine the values of design parame-
ters related to the design of particular limit states (both ultimate and serviceability, according
to current standards). Design parameters (material properties, geometry, etc.) are changed
step by step in order to satisfy specified limit states. This problem leads to the use of op-
timization methods. The task of achieving target reliability levels, expressed by theoretical
failure probabilities or reliability indices, is much more difficult. The reliability problem is
generally described by the limit state function and basic random variables. Design parameters
can be deterministic or they can be associated with random variables described by statistical
moments and a suitable model of probability distribution function (PDF). They affect the
theoretical failure probability – a reliability indicator which cannot be easily calculated and
requires an approximation method or the application of simulation techniques. The “trial
and error” approach can also be used for the task of achieving target reliability levels, but its
shortcomings are obvious.

While forward reliability methods have been applied widely and successfully in reliability
engineering in various fields, inverse reliability approaches have not received the same degree
of both attention and application, although they are particularly useful due to their important
role in engineering design. The reason is that they are mathematically much more difficult – it
is necessary to amalgamate forward reliability methods with other mathematical approaches
of the optimization type. Inverse reliability problems appear when, for example:

1. Target reliability is specified in a design (ultimate and/or serviceability limit states).
In this case, the design parameters must be determined to achieve the given reliability
level.

2. Reliability-based design code is being calibrated. Code design procedures usually include
performance and load safety factors, which are used to account for uncertainties and to
produce a design with the desired reliability. To achieve this objective, the performance
and load factors may be calculated using the inverse reliability approach.

3. A target quality is specified for a manufactured product. Several design parameters in
the manufacturing process, ranging from material properties to process implementation,
may have to be obtained in order to ensure that the processed product meets a pre-
specified quality or tolerances with a desired reliability.

The methodology proposed by author attempts to overcome the shortcomings of existing
inverse reliability methods. It utilizes artificial neural network (ANN) and a computational
time is reduced by using a small-sample Latin hypercube sampling (LHS) simulation technique
in ANN-based inverse problem proposed by Novák and Lehký [1], Lehký and Novák [2].

2.1 Reliability problem formulation

Classical reliability theory introduces the basic concept of structural reliability more formally,
treating it as a response variable (e.g. deflection, stress, ultimate capacity, etc.) or safety
margin Z (in the case that the function expresses a failure condition) which is the function of
basic random variables X = X1, X2, . . . , Xn (or random fields):

Z = g(X1, X2, ..., Xn), (1)

where the function g(X) represents a functional relationship between elements of vector X
(computational model). Elements of vector X can be statistically correlated. If g(X) repre-
sents a failure condition then it is called the limit state function or the performance function.
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The structure is considered to be safe if:

Z = g(X) = g(X1, X2, ..., Xn) > 0. (2)

The limit state function can be an explicit or implicit function of basic random variables
and it can take a simple or rather complicated form. Usually, the convention is that it takes
a negative value if a failure event occurs; Z ≤ 0, and the survival event is defined as Z > 0.
The performance of the system and its components is described considering a number of limit
states (multiple limit state functions). The aim of reliability analysis is the estimation of
unreliability using a probability indicator called the theoretical failure probability, defined as:

pf = P(Z ≤ 0). (3)

More formally, this probability is defined as:

pf =

∫
Df

fX(X) dX, (4)

where the domain of integration is limited to the failure domain Df where g(X) ≤ 0,
fX(X) is the joint probability density function of basic random variables (and also of other,
deterministic quantities), and in general, its marginal variables can be statistically correlated.
The explicit calculation of integral in Equation (4) is generally impossible. Therefore a large
number of efficient stochastic analysis methods have been developed during the last decades.
For practical calculations failure probability pf can be substituted by the reliability index β,
which makes the inverse reliability problem numerically more feasible to solve:

β = −Φ−1(pf), (5)

where Φ is the distribution function of the standardised normal distribution. The variable
safety margin in the original space of random variables together with the failure probability
and reliability index is shown in Figure 3.

Figure 3: Safety margin, failure probability and Cornell’s reliability index.
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2.2 Inverse reliability method

The inverse reliability problem is the problem to find design parameters corresponding to
specified reliability levels expressed by reliability index or by theoretical failure probability. In
general, an inverse problem involves finding either a single design parameter to achieve a given
single reliability constraint or multiple design parameters to meet specified multiple reliability
constraints. The design parameters can be deterministic or they can be associated with random
variables. Therefore, we include in addition to the vector of basic random variables X =
X1, X2, . . . , Xi, ..., Xn the vector of design deterministic parameters d = d1, d2, . . . , dk, ..., dp
and the vector of the design parameters of random variables r = r1, r2, . . . , rl, ..., rq. Note
that the design parameters of random variables can be statistical moments of the first and/or
second order. To consider higher statistical moments as design parameters is mathematically
possible but useless from the practical point of view. In case of mean value one need to choose
if either standard deviation or coefficient of variation will be fixed.

In the case of multiple limit states we have several safety margins Zj and target failure
probabilities pf,j or reliability indices βj, where j = 1, 2, ...,m is number of limit state functions.
The inverse problem can be stated generally as:

Given : pf,j or βj

Find : d or/and r (6)

Subject to : Zj = g(X,d, r)j = 0, for j = 1, 2, ...,m.

Table 1 shows alternatives which can occur for one variable (deterministic or random);
design parameters to be found are marked by question mark.

Table 1: Design parameters alternatives.

Variable Deterministic
Random

Mean CoV
d1 ? – –
r1 – ? prescribed
r2 – prescribed ?
r3, r4 – ? ?
Note: d1 is deterministic design parameter, r1 − r4 are

design parameters associated with random variables.

A general soft computing-based inverse method is proposed and applied for solving inverse
reliability problem, which aim is determination of the design parameters in order to achieve
the prescribed reliability level. The inverse analysis is based on the coupling of a stratified LHS
simulation method and an ANN. ANN as a cornerstone of the method is used as a surrogate
model of unknown inverse function describing relation between the design parameters and
corresponding reliability indicators.

P = f−1
ANN(I), (7)

where P = d ∪ r is the vector of all design parameters (determinist and random ones) and
I = β ∨ pf is the vector of reliability indicators.

9



ANN has already been used for inverse reliability problems by some authors (Shayanfar
et al. [3], Cheng et al. [4]). A novelty of the approach suggested here is the utilization of
the efficient small-sample simulation method LHS [5,6] used for the stochastic preparation of
the training set utilized in training the ANN. For that purpose, the design parameters (e.g.
mean values or standard deviations of selected random variables) are considered as random
variables with a scatter reflecting the physical range of design values. Subsequently, the
calculation of reliability is performed using appropriate simulation or approximation method,
e.g. the First order reliability method (FORM). Once the ANN has been trained, it represents
an approximation consequently utilized in a following way: To provide the best possible set of
design parameters corresponding to prescribed reliability. The whole procedure is illustrated
by a simple flow chart as shown in Figure 4 and is implemented as follows:

Figure 4: A flow chart of proposed inverse reliability method.

1. The limit state functions g(X,P)j have to be defined first. This can be done at the level
of explicitly defined formula or at the level of a computational model using the appro-
priate Finite element method (FEM) software. The functions have to be approximately
calibrated via “trial and error” procedure using design parameters P; the initial calcu-
lation uses a set of the initial design parameters resulting in a rough agreement with the
target reliability indicators I. An initial estimation of the design parameters has to be
made based on engineering judgment and computational simulation. The parameters
are estimated only roughly and therefore identification should follow as the next step.

2. Design parameters are considered as random variables described by a probability distri-
bution; the rectangular distribution is a “natural choice” as the lower and upper limits
represent the bounded range of the physical existence of design parameters. However,
other distributions can also be used, e.g. Gaussian. Random realizations of design
parameters are generated using LHS simulation method (see vector P in Figure 5).
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3. A multiple calculation of reliability indicators related to the limit state functions using
random realizations of design parameters is performed and a statistical set of the relia-
bility indicators I is obtained (see Figure 5). Note that the selection of an appropriate
number of simulations is driven by many factors, mainly by the complexity of the prob-
lem (computational demands), the structure of the neural network and the variability
of design parameters. No general rule can be therefore suggested.

4. Random realizations P (outputs of ANN) and the random responses – reliability indi-
cators related to the limit states I (inputs of ANN) – serve as the basis for the training
of an appropriate ANN. This key point of the whole procedure is illustratively sketched
in Figure 5 for m = 2 and p+ q = 2 (see the definition of the inverse reliability problem
at the beginning of this section).

5. The trained ANN is ready to provide an answer to the key task: To give the best
design parameters so that the stochastic calculation may result in the best agreement
with target reliability indicators, which is performed by means of a network simulation
using target reliability indicators as an input. This results in an optimal set of design
parameters Popt.

6. The last step is the verification of the results – the calculation of reliability indica-
tors related to limit state functions using the optimal parameters Popt. A comparison
with target reliability indicators will show the extent to which the inverse analysis was
successful.

Figure 5: A schematic view of the artificial neural network-based inverse reliability method.

Note that the important step of the ANN-based inverse reliability method is the design
of appropriate ANN structure (step 4), i.e. selection of the appropriate number of hidden
layers and the corresponding number of neurons, the choice of transfer functions, etc. For
more details about ANN theory and design see e.g. [7–9]. Let’s just mention here that the
number of inputs (reliability indicators corresponding to limit states) and the number of output
neurons (design parameters) are known in advance.

In the case of inverse reliability analysis a double stochastic analysis is needed for the
training set preparation for ANN (steps 2 and 3 of the procedure). In the outer loop random
realizations of design parameters are generated using the LHS simulation technique. The inner
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loop represents the reliability calculation for one particular realization of design parameters.
Here, the FORM or other approximation method [10] is recommended due to computational
demands, as Monte Carlo (MC) type simulation techniques require a very high number of
simulations for small failure probabilities (thousands, millions). The number of simulations in
outer loop is driven by ANN and only tens of simulations are usually needed.

When solving the inverse reliability problem, finding the value of a design parameter can be
difficult because it can have several solutions for the same design requirement. Figure 6 gives an
illustration of such an issue. For the reliability index, there is an interval in feasible domain in
which the inverse reliability task has more than one solution. In such a case, the original direct
inverse reliability method may fail to locate all the solutions or even fail to achieve convergence
if the initial design parameter is not chosen carefully. Two problems remain: 1) how to
locate all solutions in the feasible domain, and 2) how to choose among multiple solutions.
The only robust method is to consider all the feasible values of the design parameters, in small
increments, repeating the forward reliability analysis, and choosing the solution corresponding
to the target reliability level. Unfortunately, such a procedure is extremely computationally
demanding. For such cases, a hybrid inverse reliability method (IRM) can be used combining
the ANN-based inverse method with bisection method [11].

Figure 6: Example of relation between design parameter and reliability index.

The proposed hybrid method is able to locate solutions one by one as long as one can isolate
intervals for them. This can be done using the equivalent deterministic analysis. Then, with
initial design point u and initial design parameter d0, the IRM is performed and an upgraded
design parameter d is obtained. Once d is out of the given interval, instead of the IRM, the
bisection method is used to obtain the upgraded d by linear interpolation or taking average of
the bounds, which ensures the solution being in the interval. In the process of the iteration,
the interval is narrowed using the newly obtained d. Conditional on the newly obtained d, the
u vector is upgraded. The process is then repeated to seek the new d. The iterations repeat
until the convergence is reached. The next solution can be obtained by providing another
set of bounds and proceeding throughout the entire feasible domain. Selection of the most
suitable solution can be then based on sensitivities to the reliability index. The advantage of
this hybrid method is that it will never fail to find the solution with a reasonable convergence
speed, since the bisection method will only be used when the solution is outside the bounds.

Since inverse reliability analysis combines ANN with multiple stochastic calculations, two
software tools named DLNNET [12] and IRel [13] has been developed to automate such time-

12



consuming tasks. DLNNET is the artificial neural network software which is combined with
the FReET software for statistical, sensitivity and reliability analyses [14, 15]. Inverse relia-
bility software IRel works as a master program which manages the whole process of inverse
reliability analysis and controls communication between DLNNET and FReET. The ANN-
based reliability method, together with the developed software, has been tested and applied
on a number of theoretical and practical applications (e.g. the post-tensioned concrete bridge
in Fig. 1 top left). For details, see [16–19].

2.3 Inverse reliability-based optimization

In order to find a unique solution to an inverse reliability problem with multiple design param-
eters, their number has to be equal to the total number of reliability constraints. In practice,
however, the number of design parameters may be larger than the number of intervening con-
straints. In such case, one could find and infinite number of solutions satisfying the reliability
constraints. A unique optimum solution could be obtained by introducing an optimization
with an objective function related, for example, to structural cost. The problem thus be-
come one of RBO problem which can be solved directly using small-sample double-loop RBO
method.

As discussed above, in RBO, the reliability requirements are considered as nonlinear con-
straints in the optimization, requiring repeated forward reliability analysis. Since reliability
calculation of complex structural systems is usually extremely time-consuming, an alternative
approach called the inverse reliability-based optimization (IRBO) method was proposed. In
contrast to traditional reliability-based optimization, this method permits the separation of the
ordinary optimization method and the inverse reliability analysis [20]. The latter is performed
to provide the equality constraints which can be eliminated by substituting them into the
objective function. Any general optimization method can be used to obtain the independent
(free) design parameters by performing optimization. In order to further reduce a compu-
tational effort the Aimed multilevel sampling (AMS) optimization method is employed [19]
together with the small-sample simulation technique called Latin hypercube sampling [5].

The IRBO procedure illustrated by a simple flow chart in Figure 7 is implemented as
follows:

1. According to number of reliability constraints, the free and dependent design parameters
are determined.

2. Nonlinear optimization on the free design parameters is carried out. When requiring
the evaluation of the objective function, an ANN-based inverse reliability analysis [16] is
used to calculate dependent design parameters conditional on the upgraded free design
parameters, thus the calculation of the objective function.

3. The iteration is repeated until convergence at the free design parameters is reached.

The simplest heuristic optimization method is to perform Monte Carlo type simulation
within a design space and select the best random vector realization with regard to optimization
criteria [21], [22]. Such a procedure clearly does not converge quickly toward a functional
optimum and the quality of the solution depends on the number of simulations. The exact
location of the optimum using only a simple simulation is highly improbable. The scatter
of the results of such optimization is very high in the case of small sample analysis, and
strongly dependent on the number of simulations. This approach however is very simple and
requiring no knowledge of the features of the objective function. In addition, it is transparent,
understandable and relatively easy to apply from the engineering point of view.

The AMS optimization method was first suggested in [23]. Its basic idea is to sort the
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Figure 7: Flowchart of the inverse reliability-based optimization method.

course of the simulation into several levels. Advanced sampling within a defined space will be
performed at each level. Subsequently, the sample with the best properties with regard to the
definition of the optimization problem will be selected. Design vector di,best, which corresponds
to the best realisation generated in the ith level, is determined as a vector of the mean values
of the random variables selected for simulation within the next level of the AMS algorithm.
Subsequently, the sampling space is scaled down around the best sample [24]. Another LHS
simulation is then performed in this reduced space. This leads to a more detailed search in
the area around the samples with the best properties with regard to the extreme value of the
function. More detailed description of this method can be found in [19].

3 Metamodel-assisted reliability assessment of structures

According to current codes, structural design and load-bearing capacity assessment can be
performed using both deterministic and probabilistic approaches. If the more advanced prob-
abilistic approach is used, the reliability level related to a particular limit state is quantified via
reliability indicators such as failure probability or reliability index, see Equations (3)–(5). In
practice, nonlinear FEM simulation is a well-established approach to the analysis of structures.
The response of a structure under serviceability as well as ultimate limit state conditions can
be virtually simulated quite realistically. Nonlinear analysis using advanced material models
of concrete and steel reinforcement which consider fracture properties, plasticity, relaxation,
etc., enables the exploitation of reserves which are usually neglected or diminished in the codes
or in linear analysis. From the failure probability calculation point of view, the utilization
of FEM simulation means that the limit state function (LSF) g(X) is not available as an
explicit, closed-form function of the input variables. This reaffirms the need to use some of
the available simulation or approximation methods.

The simulation methods are in general random numerical experiments which thus require
a full analysis of the system for each generated set of loading and structural parameters. This
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means that a time-consuming structural analysis based on the FEM needs to be performed
many times (ranging from several hundreds to millions of repetitions, depending on the ex-
pected failure probability value). This is the reason the utilization of the Monte Carlo method,
a straightforward and well-established simulation method, is not feasible. As a partial solu-
tion, some variance reduction techniques can be employed, e.g., importance sampling [25],
directional simulation [26], conditional expectation [27], and Latin hypercube sampling [5],
which is often combined with the evaluation of Cornell’s safety index, where the PDF of
the safety margin is approximated by a normal distribution; see, e.g., [28]. Even with these
improvements, the calculation is still quite time consuming.

Approximation methods (also known as metamodels, surrogate models, or response surface
methods) seem to be the right alternative to simulation methods, which require enormous
computational effort when calculating the failure probability of complex structural systems.

3.1 ANN-based response surface method

The general principle of the response surface method (RSM) is to replace the original LSF with
an approximated (simpler) function whose evaluation is not so time consuming. The failure
probability calculation is then performed via the utilization of classical simulation methods but
with the approximated function instead of the original one. In original formulation of RSM,
the LSF is approximated using a polynomial type function [29, 30]. Metamodels, which have
gained popularity among researchers over the last few decades include polynomial chaos [31],
support vector machine [32], and the Kriging [33, 34]. Nevertheless, with an increasing space
of random variables, the number of discrete points (evaluations of the original LSF) needed
to construct the response surface increase hand in hand with the time needed for reliability
calculation. Therefore, in the case of large structures such as bridges, it is necessary to
develop more efficient procedures that will reduce the number of evaluations of the original
LSF to a minimum. Therefore, a small-sample artificial neural network-based response surface
method (ANN-RSM) has been proposed. The ANN is used here as a surrogate model for the
approximation of the original LSF. Thanks to its ability to generalize, ANN is more efficient
at fitting the LSF even with a small number of simulations compared to the above-mentioned
response surfaces. A stratified LHS method is utilized in the effective design of experiments
in order to select the best neural network training set elements.

The small-sample ANN-RSM is based on the general methodology of inverse analysis [1,16].
The process of ANN-RSM application is divided into two main phases (see also Fig. 8): (1) the
approximation phase, where the original LSF (in its explicit or implicit form) is approximated
by a suitable ANN using a series of numerical experiments where the input random variables
are selected according to the LHS simulation scheme and (2) the reliability calculation phase,
where the approximated LSF is used instead of the original one in combination with classi-
cal simulation or approximation methods (e.g., Monte Carlo, FORM) for the calculation of
reliability indicators (reliability index, failure probability).

The whole procedure is schematically illustrated using a simple flowchart in Figure 8, and
can be itemized as follows:

1. Random realizations of input basic variables (possibly correlated) of an analyzed stochas-
tic problem are sampled using the stratified LHS simulation method. The number of
simulations depends on the complexity and required accuracy of the analyzed problem.
In general, tens of simulations are used.

2. Evaluations of the original LSF are performed repeatedly for an individual vector of
realizations of input random variables, and corresponding LSF values are calculated.
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Figure 8: A flow chart of proposed inverse reliability method.

The FEM analysis can be used for the calculation of the original LSF.
3. The set of LSF values, together with a corresponding set of input random variables,

serves as an ANN training set using an appropriate optimization technique (gradient
descent methods, evolutionary methods, stochastic methods, etc.).

4. The trained ANN is subsequently used as a surrogate LSF for reliability analysis where
reliability indicators are calculated via the utilization of classical simulation or approxi-
mation methods. In the case of simulation methods, millions of simulations can be used
thanks to the extremely high speed of surrogate LSF evaluation compared to the original
LSF.

5. In the case of poor convergence in the process of ANN training, or low accuracy, ad-
ditional samples can be added using the hierarchical subset Latin hypercube sampling
(HSLHS) strategy [35]. The approximated LSF can be further improved using a new
anchor point near the design point according to:

XM = X̄ + (XD − X̄)
g̃(X̄)

g̃(X)− g̃(XD)
, (8)

where the function g̃(X) is used to obtain an estimate of the “design point”, XD, for
the surface g̃(X) = 0 based on the assumption of uncorrelated Gaussian variables. Once
XD is found, g̃(XD) is evaluated and a new anchor point, XM, for interpolation is
chosen on a straight line from the mean vector X̄ to XD. This new anchor point in the
multidimensional space of random variables is used as a set of updated mean values of
such variables for new LHS sample generation, which is then located closer to the failure
domain. In the case of standard deviations, we recommend reducing their size by half
in each iteration to achieve even faster convergence.

6. The sensitivity analysis of the input random variables should also be performed before
generating the additional samples. In the case of low dependence of the input random
variable on the structural response, the variable can be omitted from the stochastic
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model, which can in some cases significantly reduce the number of additional simulations.

For a detailed theory of the ANN-RSM method and its application to the assessment of
several bridge structures, see Lehký and Šomod́ıková [10].

3.2 Inverse response surface method

As described in previous section, the response surface is an alternative to the real LSF. How-
ever, in contrast to the forward approach, when designing the structure, the function values
that are used to construct the response surface are not available until the desired design vari-
ables are determined. Therefore, an inverse response surface method (IRSM) was proposed. It
is based on a coupling of the adaptive RSM of Bucher and Bourgund [36] and the ANN-based
inverse reliability method described in Section 2.2. The method is inspired by the procedure
of Li [20], which combined the RSM with the Newton-Raphson iterative algorithm to solve
inverse reliability problem [37]. The method proposed in this paper utilizes ANN and LHS
methods which makes it more robust, efficient and therefore feasible for solving time-consuming
problems such as structural design.

An iterative scheme to upgrade the response surface and, at the same time, to accomplish
the inverse reliability analysis is proposed as follows:

1. In the first step of the IRSM, with the initial values for the design parameters, the
initial response surface is constructed using foregoing RSM (polynomial, ANN, Kriging
or any other metamodel can be employed). Based on this approximate response surface
the ANN-based inverse reliability analysis is carried out and a new estimate of design
parameters is obtained as well as the design point.

2. In the second step, the new anchor point is calculated from the design point using
Equation (8). It serves together with the previously obtained design parameters for the
response surface update. Based on this updated response surface the ANN-based inverse
reliability analysis is carried out again to seek the new design parameters and the design
point.

3. This process is repeated until the convergence is achieved at the design parameter with
acceptable tolerance.

A graphical representation of the evolution of the response surface during the iterative
process is given in the application section in Figure 10. For a detailed theory of the IRSM
method its verification and practical application to the the post-tensioned concrete bridge
mentioned in the Introduction (Figure 1 top left), see [38, 39].

4 Examples and applications

The presented methodologies for forward and inverse reliability analyses have been tested and
applied to a wide range of theoretical and practical applications. For simplicity, illustration
and due to the limited scope of the thesis, only two simple examples will be presented in this
section, one on the IRBO of a simple steel beam and the other on the use of ISRM in solving
a simple reliability problem. For application to more complex problems, I refer the reader
to the following papers. In [16], the ANN-based inverse reliability method was tested and
applied to various classes of problems – both linear and nonlinear cases with single as well as
multiple design parameters, and with independent basic random variables as well as random
variables with prescribed statistical correlations. In the paper [19], the reliability-based design
optimization of a post-tensioned bridge structure made of MPD girders was addressed. The
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application of ANN-based RSM to various bridge structures is presented in [10]. The paper [39]
details the application of adaptive IRSM method for prestressed concrete bridge.

4.1 Application of inverse reliability-based optimization

The first example represents a simple practical application of proposed IRBO procedure. Fig-
ure 9 shows simply supported beam made from thin-walled rectangular profile. Beam was
subjected to a concentrated load in the middle. The span of beam was assumed 3.048 m,
treated as a deterministic variable. Modulus of elasticity E, load P and cross-section dimen-
sions t, B, H were taken as random variables. Their statistics are given in Table 2. The
dimensions t and B were considered as the free design parameters, H was chosen as dependent
design parameter. The goal is to find the dimensions of the cross-section t, B, H to ensure that
the mid-span deflection exceeds 0.001016 m only with a given probabilities and corresponding
reliability indices βtarget. The goal is to minimize cross-sectional area and meet all constraint
conditions as close as possible.

Figure 9: Scheme of the beam and cross-section.

Table 2: Stochastic model.

Variable Distribution Mean value CoV
L (m) Deterministic 3.048 –
E (GPa) Normal 200 0.1
P (kN) Normal 4.448 0.1
t (mm) Normal ? 0.1
B (mm) Normal ? 0.1
H (mm) Normal ? 0.1

Optimization problem might be formulated as follows:
Find: the mean values of t, B and H, denoted by tm, Bm and Hm.
Minimize: Cross-sectional area Ac

Ac = BmHm − (Bm − 2tm)(Hm − 2tm). (9)

Subject to reliability constraint β = βtarget for limit state function:

G = 1.016− PL3

48EI
109, (10)

where:

I =
1

12
BH3 − 1

12
(B − 2t)(H − 2t) (11)
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and simple geometric constraints:

0.00254 m ≤ tm ≤ 0.0127 m, Bm ≥ 0.0127 m, Hm ≤ 0.381 m. (12)

Reliability analysis was carried out using the FORM method; the starting values were
means and the tolerance for convergence was 10−6. Randomization of design parameters
for training set preparation is displayed in Table 3. CoV stands for coefficient of variation,
Std means standard deviation. One hundred random samples were generated using Latin
hypercube sampling method. The ANN consisted of one hidden layer with five nonlinear
neurons (hyperbolic tangent transfer function) and an output layer with one output neuron
(linear transfer function) which corresponds to the dependent design parameter H. The ANN
has three inputs which correspond to the two free design parameters t and B, plus one target
reliability index βtarget. Optimization was performed using AMS optimization method [23,24].
Geometric constraints were set according to Equation (12). The whole optimization process
was divided to 10 levels with 300 simulations per level. A total of 3000 simulations were
performed per optimization task.

Table 3: Randomization of design parameters for training set preparation.

Variable Distribution Mean value Std min max
tm (mm) Rectangular 3.25 0.0433 2.5 4
Bm (mm) Rectangular 210 51.962 120 300
Hm (mm) Rectangular 325 43.301 250 400

The IRBO was carried out for different βtarget and the optimum solutions are summarized
in Table 4. The results show good accuracy of the obtained solution. At the same time, the
activation of different geometrical conditions for different values of the required reliability is
evident.

Table 4: Optimization results for different target reliability indices.

βtarget tm Bm Hm Ac βt
(–) (mm) (mm) (mm) (mm2) (–)
1 2.54 127 259.51 1937.67 0.997
3.09 2.54 127 350.40 2399.36 3.085
5 2.54 297.05 381 3418.70 5.001

4.2 Application of inverse response surface method

An explicit nonlinear LSF function adopted from [40] has been selected to show the IRSM
procedure and demonstrate the validity and accuracy of the method. The complex solution of
the function can be found in [41]. Here, the simplified form of the original function with only
one standard normal variableX1 and an identified deterministic parameter d (see the stochastic
model in Table 5) was used in order to give the graphic interpretation of the proposed iteration
scheme. An explicit function was defined as:

g(X) = e[0.4(X1+2)+6.2] − e[d] − 200. (13)
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The target reliability index is considered as βtarget = 2.688, expected design parameter is
d = 5.163 (calculated using 10 million Monte Carlo simulations of the original LSF). In order
to construct the response surface and to perform ANN-based inverse reliability analysis the
design parameter d has been treated as a uniformly distributed random variable. Two cases
with the initial range, where the parameter d is inside this range (case 1) and out of the range
(case 2), respectively, were used; see Table 6.

Table 5: Stochastic model.

Variable Distribution Mean value Std
X1 Normal 0 1
d Deterministic ? –

Table 6: Randomization of the design parameter.

Variable Distribution Mean value Std min max
d – case 1 Rectangular 6 1.155 4 8
d – case 2 Rectangular 7 0.577 6 8

ANN-based response surface with two input neurons corresponding to variable X1, and
design parameter d, one linear output neuron corresponding to the value g(X) and eight
nonlinear neurons in hidden layer has been used to substitute the original LSF in Equation 13.
The training set consists of 30 random samples of input parameter generated by LHS method.
The gradient descent method with momentum was used for the ANN training.

Based on the constructed response surface the ANN-based inverse reliability analysis has
been carried out. Utilized ANN consisted of two nonlinear neurons in a hidden layer and a
linear output neuron corresponding to the design parameter d. There was one input to the
network corresponding to reliability index. In order to create the training set, the reliability
calculations using 1 million Monte Carlo simulations have been performed with 30 random
samples of design parameter. After ANN training, the ANN was ready to provide the best
design parameter related to the initial response surface. This was performed by means of a
network simulation using target reliability index as an input.

With an updated design parameter, an updated response surface has been constructed
for the next iteration. The stochastic model has been changed with respect to the updated
design parameter and the new anchor point calculated according to Equation 8, i.e. random
sampling was performed in a region closer to the design point. Standard deviation of the design
parameter has been reduced to half of the original value in order to speed up the process and
improve its convergence.

Table 7 shows the values of design parameter and reliability index during iteration process.
In this case, the results reached the good accuracy after only two iterations. Let’s note that
reliability index β was calculated by 1 million Monte Carlo simulations of response surface.
Figure 10 shows how response surface approaches the real LSF (gorig) graphically. In the
figure, there are two response surfaces, each depicted for both initial (“ini”) value as well as
updated (“upd”) value of the design parameter in each iteration (1 and 2). Figure 10 also
shows design points of all response surfaces (white bullets), i.e. the points that has the highest
contribution to the probability integration.
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Table 7: Results of IRSM iterative process.

Design parameters, Identification – Identification – Target
reliability index – iteration 1 – iteration 2 value
d – case 1 5.197 5.163 5.163
β – case 1 2.682 2.691 2.688
d – case 2 5.346 5.163 5.163
β – case 2 1.757 2.689 2.688

Figure 10: Evolution of response surfaces in iterative process for case 2.

From results, we can conclude that, even after couple of iterations, the iterative proce-
dure significantly improves the quality of utilized response surface when performing structural
reliability-based design. Generally, the initial ANN-based response surface approximation and
consequent inverse reliability analysis cannot result in sufficiently accurate design parameter
without RSM update. A number of iterations and successful convergence of the process is
mostly dependent on the shape of the original limit state function and estimation of initial
interval of the design parameter. As shown in case 2, even if the initial interval does not
cover the actual value of the design parameter, the iterative procedure leads to correct results.
This was also confirmed in other tested examples. However, the worse the estimation of the
initial interval is, the worse the convergence of the iterative process can be. If the estimation
is extremely poor then convergence may not be achieved.

Conclusion

Solving reliability-based design and probabilistic assessment of structural reliability are essen-
tial steps in a range of applications. Typical examples are the determination of reliability,
load-bearing capacity and residual lifetime of aging bridges subjected to gradual deterioration
which brings increasing level of uncertainty to its parameters. Reliability assessment and op-
timization are also an integral part of the development of mass-produced components or are
used in the calibration of standards, etc. Proposed methods efficiently combines several tech-
niques from stochastic mechanics and soft computing, which are usually utilized separately,
in order to drastically reduce computational effort when performing reliability-based design
and assessment of complex systems. In general, for complex systems, the response surface
method is the only way to approach both forward analysis and inverse analysis since there is
no other method which can give the solution with an acceptable level of computational effort.
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When utilizing response surface method for inverse problems, the iterative procedure should
be performed to ensure accuracy of reliability-based design and reliability assessment.

Reducing computation time is also extremely important for reliability-based optimization.
When using the double-loop RBO method, performing the inner reliability loop is a com-
putationally and time consuming part. Therefore, the proposed IRBO method permits the
separation of the conventional optimization method and the inverse reliability analysis. It
uses a surrogate model to explicitly approximate the inverse reliability with respect to design
variables and reliability indicators. The outputs of the surrogate model are the values of the
so-called dependent design variables related to the prescribed reliability constraints. Since
these are equality constraints, no checks on the reliability constraints are required. Compared
to the original double-loop RBO method, only a limited number of reliability analyses are
required to construct the surrogate model. This leads to a drastic reduction in computational
burden.

Future activities in research and teaching

Soft computing methods have become very popular in recent years, and in combination with
traditional mathematical methods offer great potential to solving various types of engineering
problems. Author plans to continue development of these methodologies with emphasis on
their practical application, which requires a combination of several methods and software tools.
Although the application of the presented methods will never be possible “in one click”, for
their practical use, user-friendly software tools need to be developed that are easy to use for
users without deep knowledge of the whole methodology. Author already has experience in the
development of similar software for the use of artificial neural networks in the identification
of mechanical fracture parameters of quasi-brittle materials or inverse reliability analysis.
Author’s team is developing a computing environment based on the so-called node editor. The
user links pre-programmed functional blocks (nodes) in the form of interfaces to individual
programs and methods. This creates a visually clear flow chart (algorithm) of the solved
task. Such a concept offers easy design of relatively complex procedures and also easy future
extensibility with newly developed methods.

In terms of soft computing methods, the parallel use of multiple neural networks has great
potential. Such a construct made up of many neural networks which are jointly used to solve
a particular task is called a neural network ensemble (NNE). The fundamental mathematical
idea of NNE rationally originates from “the weak law of large numbers in probability”. From
a practical point of view and with a view to minimizing computational effort, this theory will
be combined with the mathematical optimization concept that “many could be better than
all”. It entails picking out excellent neural networks and eliminating the poorer ones via a
specific procedure. The use of NNE can significantly improve the generalization capability
and accuracy of the surrogate model while maintaining acceptable computational demands.

It is planned to further strengthen the research team with talented students from all
levels of study and postdocs from cooperating foreign institutions. Priority will be given to
applying for basic and applied research projects and cooperation with industrial partners on
the implementation of theoretical knowledge into practice. The international prestige of the
team will be strengthened through continued international collaboration, making international
internships available to students and researchers, teaching and invited lectures at foreign
institutions, and serving on international committees and organizations.

Within the teaching activities, the author wants to continue to incorporate the latest re-
search findings into teaching at all levels of study, and thus contribute to improving the quality
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of teaching and preparing highly qualified graduates. It s also planned to continue individual
work with students, supervising bachelor’s, master’s and dissertation theses. Talented students
will be offered the opportunity to participate in research activities and support their mobility
to foreign universities and conferences. Such motivated students may continue their scientific
career at the university in the future or find employment in industry with the potential to
collaborate on applied research projects.
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[14] Novák, D., Vořechovský, M., Rusina, R. FReET – Program Documentation:

User’s and Theory Guides, version 1.5, Brno/Červenka Consulting, Czech Republic, 2012,
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Shrnut́ı

Předložená práce představuje část výzkumné činnosti autora zaměřené na využit́ı metod soft
computing při spolehlivostńım návrhu a posouzeńı stavebńıch konstrukćı. Při vývoji metodik
a nástroj̊u pro inverzńı a dopřednou analýzu spolehlivosti byl kladen zvláštńı d̊uraz na im-
plementaci co nejefektivněǰśıch a nejvýkonněǰśıch metod, model̊u a postup̊u s ohledem na
jejich primárńı zaměřeńı na časově náročné úlohy řešené pomoćı nelineárńı analýzy metodou
konečných prvk̊u. V práci jsou postupně představeny metodické postupy pro dva typy úloh
spolehlivosti: (i) spolehlivostńı návrh konstrukćı a (ii) posouzeńı spolehlivosti konstrukćı s
využit́ım metamodelováńı. V obou př́ıpadech jsou zohledněny vstupńı nejistoty, které jsou
přirozeně př́ıtomny v celém systému konstrukce–zat́ıžeńı–prostřed́ı (např. vlastnosti materiálu,
geometrické imperfekce, stálá zat́ıžeńı, nahodilá zat́ıžeńı, v́ıtr, sńıh, mı́ra koroze atd.), a to s
využit́ım plně pravděpodobnostńıho př́ıstupu.

Spolehlivostńı návrh a optimalizace konstrukćı patř́ı mezi tzv. inverzńı úlohy, kdy pro
analyzovaný mezńı stav a jemu odpov́ıdaj́ıćı požadovanou úroveň spolehlivosti definovanou
tzv. ukazateli spolehlivosti (pravděpodobnost poruchy či index spolehlivosti) hledáme hodnoty
tzv. návrhových parametr̊u. Ty mohou být deterministické nebo se může jednat o statistické
charakteristiky náhodných veličin. Předmětem návrhu často bývá sada návrhových parametr̊u
a je požadováno splněńı požadované spolehlivosti pro v́ıce mezńıch stav̊u. Běžnou prax́ı při
deterministicky definované úloze je použit́ı metody pokus–omyl. Ta je však pro řešeńı výše
definované inverzńı úlohy spolehlivosti nepoužitelná. Nab́ıźı se využit́ı př́ımé spolehlivostńı
dvousmyčkové optimalizace, která však může být v př́ıpadě konstrukćı řešených nelineárńı
metodou konečných prvk̊u poměrně časově náročná. Práce proto představuje metodu inverzńı
analýzy spolehlivosti založenou na umělé neuronové śıti a stratifikované simulačńı metodě
Latin hypercube sampling. Základńım stavebńım kamenem metody je umělá neuronová śı̌t,
která slouž́ı jako náhradńı model neznámé inverzńı funkce popisuj́ıćı vztah mezi návrhovými
parametry a odpov́ıdaj́ıćımi ukazateli spolehlivosti. Stratifikovaná simulačńı metoda pak slouž́ı
pro efektivńı návrh tzv. uč́ıćı množiny nezbytné pro nastaveńı parametr̊u śıtě.

Aby bylo možné nalézt jedinečné řešeńı inverzńıho problému spolehlivosti s v́ıce návrhovými
parametry, muśı být jejich počet roven celkovému počtu spolehlivostńıch okrajových podmı́nek.
V praxi však může být počet návrhových parametr̊u větš́ı než počet limituj́ıćıch ukaza-
tel̊u spolehlivosti. V takovém př́ıpadě existuje nekonečný počet řešeńı vyhovuj́ıćıch daným
spolehlivostńım podmı́nkám. Jedinečné optimálńı řešeńı by bylo možné źıskat zavedeńım op-
timalizace s ćılovou funkćı vztahuj́ıćı se např́ıklad k ceně konstrukce či jej́ı opravy. Z úlohy se
tak stává problém spolehlivostńı optimalizace, který lze řešit výše uvedenou dvousmyčkovou
metodou. Ta umožňuje oddělit optimalizačńı část (vněǰśı smyčka) a část spolehlivostńı (vnitřńı
smyčka). Pro co nejefektivněǰśı vyřešeńı úlohy se dále nab́ıźı nahradit vnitřńı spolehlivostńı
smyčku výše uvedenou metodou inverzńı spolehlivosti založenou na umělé neuronové śıti. Ve
srovnáńı s klasickou dvojmyčkovou metodou je pak zapotřeb́ı provést pouze omezený počet
spolehlivostńıch analýz, což vede k výraznému sńıžeńı výpočetńı náročnosti.

Jak je uvedeno výše, úroveň spolehlivosti vztahuj́ıćı se k určitému mezńımu stavu je
kvantifikována pomoćı ukazatel̊u spolehlivosti, jako je pravděpodobnost poruchy nebo index
spolehlivosti. V praxi se k numerickým analýzám konstrukćı využ́ıvá lineárńı či nelineárńı
simulace metodou konečných prvk̊u (MKP). Z hlediska výpočtu pravděpodobnosti poruchy
znamená využit́ı MKP absenci funkce poruchy v explicitńım uzavřeném tvaru, a tedy nutnost
použ́ıt některou z dostupných simulačńıch nebo aproximačńıch metod pro stanoveńı ukaza-
tel̊u spolehlivosti. Druhá část práce proto pojednává o využit́ı metamodelováńı při stanoveńı
spolehlivosti konstrukćı. V práci je představena aproximačńı metoda plochy odezvy (response
surface method) založená na umělé neuronové śıti, která slouž́ı jako náhradńı model p̊uvodńı
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funkce poruchy. Ve výchoźı konfiguraci je funkce poruchy nahrazena v celém oboru hodnot,
následně je provedeno zpřesněńı aproximace v oblasti poruchy přesunem k tzv. návrhovému
bodu. Jelikož vyč́ısleńı náhradńı funkce je v porovnáńı s p̊uvodńı funkćı poruchy o několik
řád̊u rychleǰśı, výpočet ukazatel̊u spolehlivosti pak může proběhnout s pomoćı vhodné sim-
ulačńı metody, např. Monte Carlo.

Posledńı představenou metodou je metoda inverzńı plochy odezvy (inverse response surface
method). Jak vyplývá z názvu, svoje uplatněńı najde při využit́ı náhradńıho modelu v rámci
spolehlivostńıho návrhu. Na rozd́ıl od př́ımé analýzy spolehlivosti totiž nejsou při návrhu kon-
strukce známy hodnoty funkce spolehlivosti, které se použ́ıvaj́ı ke konstrukci plochy odezvy
(náhradńıho modelu), a to proto, že nejsou známy hodnoty návrhových parametr̊u. Pro tyto
účely byla navržena metoda inverzńı plochy odezvy, kdy docháźı k postupnému adaptováńı
plochy odezvy ruku v ruce s postupným zpřesňováńım hodnot návrhových parametr̊u za po-
moćı inverzńı analýzy spolehlivosti představené v prvńı části práce.

V posledńı části práce jsou pro názornost ukázány na dvou vybraných jednoduchých ap-
likaćıch postupy a d́ılč́ı výsledky spolehlivostńı optimalizace a metody inverzńı plochy odezvy.
Pokročileǰśı a praktičtěǰśı aplikace na reálné konstrukce je pak možné naj́ıt v odkazovaných
publikaćıch autora.

27


	1 Introduction
	2 Reliability-based design of structures
	2.1 Reliability problem formulation
	2.2 Inverse reliability method
	2.3 Inverse reliability-based optimization

	3 Metamodel-assisted reliability assessment of structures
	3.1 ANN-based response surface method
	Inverse response surface method

	4 Examples and applications
	4.1 Application of inverse reliability-based optimization
	4.2 Application of inverse response surface method

	Conclusion
	Future activities in research and teaching
	References
	Czech abstract (Shrnutí)



