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1 STATE OF THE ART

The salient feature of quasi-brittle materials is a complex size edfestructural
strength. Size effect phenomenon manifests itself in form of a strong dependence of
a nominal strength (nominal stress at the failure load) on a characterrsgndion
(size) of the geometrically similar structures, see Fig. 1. Since thetanuges and
spatial variability is inherently present in nature, the nominal strengtlcédain
variability. The size effect is also characterized/accompanied bgltaege of the
nominal strength variability for different structure sizes. Size ¢ffdeenomenon
has a great impact on a safe design and assessment of structures. Theciis eff
not present in current strength theories (either plasticity or elastidityg problem
is that real large structures usually fracture under smaller failuret@adaboratory
size specimens, see Fig. 1.

Nonlinear fracture mechanics Stochastic nonlinear Statistical
and plasticity theory fracture mechanics | theories

|

Main focus of the thesis

Nominal strength oy
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Laboratory Real concrete
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Obr. 1: lllustration of size effect on nominal strength ahé tange of structural sizes of interest in
the thesis

The history of description of size effect can be seen as a history of two fundamen-
tally different approaches — deterministic and statistical explanatibmes first ex-
planation was definitely statistical and dates back to the pioneering wotk ah{l
many others, mainly mathematicians. Phenomenon that larger specimeasuwill
ally fracture under relatively smaller applied load was associattittie statistical
theory of extreme values at that time. Then most re-searchers focused orethe e
getic basis of size effect and the main achievements were purely deistimilLet
us mention e.g. the book of [2] as an extensive source of information. Researchers
used different theories, from early works e.g. [3, 4, 5] considered uncertaintie
volved in concrete fracture. Some authors attempt to explain size bif¢heories
of fractals [6] . Recently, there are attempts to combine last decacl@sv@ments
of both fracture mechanics and reliability engineering e.g. [7, 8, 9, 10] and oth-
ers. Arguments coming from the state of the art represent basis for the need to



combine efficient reliability techniques with present knowledge in the field of non-
linear fracture mechanics. Remarkable development of computer hardware make
the numerical simulation of Monte Carlo type of complex nonlinear responses pos-
sible. The reasons for complex reliability treatment of nonlinear fractuaharecs
problems can be summarized as follows: Nipdeling of uncertaintiegmaterial,

load and environments) in classical statistical sense as random ear@abiandom
processes (fields). The possibility to use statistical information frahmeasure-
ments; (ii) Inconsistency of desigio achieve safety using partial safety factors —
fundamental problem; (iiipize effect phenomena

2 AIMS AND STRUCTURE OF THE THESIS

The title of the thesis "Stochastic fracture mechanics and size effagtjests
the attempt to combine both, the advanced tools of fracture (nonlinear) mechan-
ics and stochastic approaches in order to model the complex behavior of real ma-
terial/structures considering material randomness or variability. Theenfoolis
looks towards complex description and understanding of size effect phenomena.
The main attention is devoted to concrete as a main representative of gtlasibr
material (such as rock, tough ceramics, snow and ice, etc.) and one of the most
important building materials in civil engineering. This thesis is focused mainl
the range of sizes where both phenomena, statistical and deterministic plgys a s
nificant role, see the transitional zone in Fig. 1. This transition representartge
with the most difficult structural scaling theory.

Aims of chapter 3 are to briefly review simulation methods of Monte Carlo type
for efficient structural stochastic assessment and to introduce Latin Hypeegam-
pling (LHS) as a technique suitable for an analysis of computationally intensive
problems which is typical for a nonlinear FEM analysis. In particular the chapter
suggests a new procedure for efficient imposition of statistical correlatrang
input variables. The technique is robust, efficient and very fast.

The following chapter 4 is devoted to efficient simulation of random fields for
problems of stochastic continuum mechanics. In particular, the transformation of
the original random variables into a set of uncorrelated random variables is pre-
sented using an eigenvalue orthogonalization procedure. It is demonstrated that
only a few of these uncorrelated variables with largest eigenvaluesificent for
the accurate representation of the random field. The error induced by such trunca-
tion will be an object of study in this chapter as well. An error assessmeocegure
for simulated samples of random fields is proposed. We show that a clear indication
of the errors in autocorrelation structure is the fulfillment of norms used astolge
functions in algorithm proposed in the preceding chapter.

The next chapter of the thesis is focusedtextile reinforced concretea new
composite material for special purposes. The thesis presents a newly developed m
cromechanical model which is combined with advances stochastic technigaes (ra



dom variables and random processes capturing the spatial variability of uncerta
parameters). These models are given to context with classical approaches a
proved that there must exist (as opposite to Weibull integral) stafiiogth scale.

It is explained why the nonlocal Weibull integral [11, 10, 12] is not general enough
solution for the presented problems. We propose new formulas which are designed
based on asymptotic matching for approximation and prediction of the yarn strength
under various conditions and for the whole range of yarn lengths. These formulas
are compared to available statistical theories of strength of bundles. Taitede
analysis of all substantial effect in the context of tensile test of yarn ethaleleign

of practical procedure of testing and evaluation of yarn strength. It is shown how
to decompose, analyze and compose partial phenomena present in the yarn tensile
test.

The following chapter introduces a new approach to stochastic nonlinear analyzes
of large structures. Standing firmly on teaatistical theory of extreme valuése
text proposes a practical tool for simulation of random scatter (spatiabvéyigin
the context of FEM which is independent of the mesh. In some sense the approach
brings similar features to famowsack bandmodel in deterministic computational
fracture mechanics [13]. Similarly to the crack band model which is prdeed
be theoretically correct and compared to cohesive (fictitious) crack mibeetie-
velopedstochastic crack band mode derived from elaborate theory of ordered
statistics and extreme values [14, 15, 16, 1, 17]. The range of applicability (large
structures) is explained and it is shown that the model performs well in Hee si
regions, where the combination of NLFEM and simulation of random fields is not
useful. This is because in case of large structures the computational demands ren-
der the utilization of random fields inapplicable. The feasibility, correctassk
predictive power of the approach is shown using numerical examples.

The problem oftructural scalingin a broad range of sizes is studied in chapter
6. The behavior of general quasibrittle material is shown to be the complex case of
behavior covering both the plastic and elastic-brittle behavior on two asympioti
tremes of sizes. The work resulted in thew combined size effect formula for crack
initiation problems of quasibrittle failureThe new law covers both the determin-
istic scaling (characteristic material length) and statisticalisg (autocorrelation
length of variable strength) and their interaction over the whole range of Jihes
asymptotic limits are checked with help of deterministic plasticityhef small-size
structures and stochastic-brittle behavior (Weibull type) of the largessiaetures.

A numerical verification of the theoretical consistency with the assumpisoper-
formed with the practical example of Malpasset Dam failure in Frengs £18].

The computational tools used for numerical modeling were not ready at the be-
ginning of author’s doctoral study. In particular the stochastic simulations were
done with simulation software developed by the author. The software constitutes
the core of computer program FREET presented in chapter 7.



3 SIMULATION OF RANDOM VARIABLES

3.1 Introduction

The aim of statistical and reliability analysis of any computational problénahw
can be numerically simulated is mainly the estimation of statispeahmeters of
response variable and/or theoretical failure probability. Pure Monte Canlalasi
tion cannot be applied for time-consuming problems, as it requires large number of
simulations (repetitive calculation of response). Small number of sinouktian be
used for acceptable accuracy of statistical characteristics of respeimg stratified
sampling technique Latin Hypercube Sampling [19, 20, 21]. Briefly, it is a special
type of Monte Carlo numerical simulation which uses the stratification offtee t
oretical probability distribution functions of input random variables. Stratiioa
with proportional allocation never increases variance compared to |Iplsam
and can reduce it. The efficiency of LHS technique was showed first time in work
of [19], but only for uncorrelated random variables. A first technique for generation
of correlated random variables has been proposed by [22]. One approach has been
to find Latin hypercube samples in which the input variables have small correla
tions. Authors of [22] perturbed Latin hypercube samples in a way that reduces off
diagonal correlation — they diminished an undesired random correlation. The tech-
nique is based on iterative updating of sampling matrix, Cholesky decomposition of
covariance/correlation of matriX has to be applied. In their method, as a measure
of the statistical correlation, the Spearman correlation coefficiardad. The esti-
mated correlation matri¥ is symmetric, positive definite (unless some rows have
an identical ordering). Therefore the Cholesky decomposition of the msitnmay
be performed. The technique can be applied iteratively and it can result iy a ve
low correlation coefficient if generating uncorrelated random variables.

3.2 LHS: Sampling and statistical correlation

In the context of numerical simulation methods for structural reliability theor
LHS is based on Monte Carlo type of simulations of vec&drunder prescribed
probability distributions. Realizations are simulated in a special wag/range of
probability distribution functionf;(Y;) of each random variabl¥; is divided into
Ngin equidistant (equiprobable) intervals, whév¥g,,,, is the number of simulations
planned (number of samples for each random variable). The identical probability
1/Ng;,, for layers on distribution function is usually used. The representants of
the equiprobable intervals are selected randomly; realizations are theneablbsi
inverse transformation of distribution function. The selection of midpointeps r
resentants of each layer is the most often used strategy:

yij = F " (vij) = F 1 ((5—0.5) /Nsim) ,  5=1,..., Nsim (1)



wherey; ; is the j-th sample ofi-th random variablé&; (i = 1,..., Ny), F, ' is

the inverse of cumulative distribution function of this random variable. Itaoul
be challenged to this simple methodology. One can criticize reduction of samples
selection to the midpoints in intervals (we call it interwaédiar). Such objection
deals mainly with the tails of PDF, which mostly influences variancayskss and
kurtosis of sample set. This elementary simple approach was already oeebyom
sampling of mean values related to intervals, e.g. [23]:

Yij = Nsim / y- fi(y)dy (2)
wheref; is the probability density function of variabl€; and the integration limits
are:z; ; = F’Z-_l (]/NSzm)

Samples then represent each ong-(y.)
dimensional marginal PDF better in terms’ '
of distance of point estimators from the ex
act statistics. In particular, the mean valu
Is achieved exactly (analytical expressior
preserves the mean) and estimated vafi-......
ance of data is much closer to the originél
one. For some PDFs (including Gaussian,

Exponential, Laplace, Rayleigh, Logisticf; (y;)

Pareto, or others) the integral (2) can bf %\
solved analytically. In case of no or diffi- 2 Yi

cult solution of primitive it is necessary to| ~_ “i/-1| “ij

use an additional effort: numerical solution-—"

of the integral. However, such increaseogf 2. samples as the probabilistic means of
computational effort is worthwhile indeegthtervals

Z.

ij-1 Zj

i,j

Samples selected by both described ways are almost identical close excluding
those in the tails of PDFs. Therefore more difficult method could be used there
only considering the fact that tail samples mostly influence estimatedneariof
sample set. Generally in both cases, regularity of sampling (the rangérdjution
function is stratified) ensures good sampling and consequently good estimation of
statistical parameters of response using small number of simulations.

Having the samples of each marginal random variable ready, we may proceed to
the second step of LHS: statistical correlation imposition. There are drisva
problems related to LHS concerning statistical correlation: First, dwwamgpling
an undesired correlation can be introduced between random variables. For@xampl
instead a correlation coefficient zero for uncorrelated random variablesivedle
correlation, e.g. 0.6 can be generated by random. It can happen especiatlg of ca
very small number of simulations (tens), where the number of interval combination



is rather limited. Second problem we face is: how to introduce prescribestist
correlation between random variables defined by the target correlationx nkatr
Since the currently known techniques for imposition of statistical coroglatn

to the table of samples of random vector have some severe restrictions, &e hav
developed a new scheme based on simulated annealing optimization algorithm.

3.3 Stochastic optimization method Simulated Annealing

The imposition of prescribed correlation matrix into sampling scheme can be
understood as an optimization problem: The difference between the preséfibed
and estimated (generatefi)correlation matrices should be as small as possible. A
suitable measure of the distance betwd€rand S matrices can be introduced; a
possible norm is the maximal difference of correlation coefficients betwegn-m
ces:

3)

or a normFE which takes into account deviations of all correlation coefficients can
be more suitable:

Epax =  max  w;;|S;; — K
1<i<j<Ny

Ny—1 Ny Ny—1 Ny

Eoveral — Z Z Wi j (Si,j — Ki,j)Q/ Z Z \/w_l,] (4)

i=1 j=i+1 i=1 j=i+1

This norm is normalized with respect to the number of considered correlation
coefficients (entries of lower triangle in the correlation matrix). Theesponding
weightsw; ; are included because in real applications it can be a greater confidence
to one correlation coefficient (good data) and a smaller confidence to another one
(just estimation).

The normFE has to be minimized, from the point of view of definition of opti-
mization problem, th@bjective functions and thedesign variablesre related to
orderingin sampling scheme

It is well known that deterministic optimization techniques and simple s&iitha
optimization approaches can very often fail to find the global minimum [24, 25].
They are generally strongly dependent on starting point (in our case the initial con-
figuration of sampling scheme). Such techniques fail and finish with some local
minimum such that there is no chance to escape from it. In our problem we are
definitely facing the problem with multiple local minima. Therefore we neats®
the stochastic optimization method which works with nonzero probability of escap-
ing from local minima. The simplest form is the two-membered evolutioneggyat
which works in two stepsmutation andselection

Step 1 (mutation): In ther-th generation a new arrangement of random permu-
tations matrix used in LHS is obtained using random changes of ranks, one change
is applied for one random variable. Generation should be performed randomly. The
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objective function (norm£) can be then calculated using newly obtained correla-
tion matrix (it is called “offspring norm” and the norifi calculated using former
arrangement is called “parent norm”).

Step 2 (selection)The selection chooses the best norm between the “parent” and
“offspring” to survive: For the new generation (permutation table arrangentent) t
best individual (table arrangement) has to give a value of objective function (norm
FE) smaller than before.

Such an approach has been intensively tested using numerous examples. It was
observed that the method in most cases could not capture the global minimum.
It failed in a local minimum and there was no chance to escape from it, as only
the improvement of the norm resulted in acceptance of “offspring”. More afficie
technique had to be applied. The step “Selection” can be improved by Simulated
Annealing approach, a technique which is very robust concerning the starting point
(initial arrangement of random permutations table). The Simulated Annealing is op-
timization algorithm based on randomization techniques and incorporates asfpects
iterative improvement algorithms. The difference compared to simple apipcs
scribed above is that there is a chance to accept offspring leading to anaorse
and such chance is based on the Boltzmann probability distribution using the dif-
ference between the normisbefore and after random change (parent and offspring
norm). There are two possible branches to proceed in the step 2 (selection):

1. New arrangement (offspring) results in decrease of the aridaturally “off-
spring” is accepted for the new generation.

2. New arrangement does not decrease the nori8uch “offspring” is accepted
with the probability given above (which changes as the temperatahanges).
As a result there is much higher probability that the global minimum is found
in comparison with deterministic methods and simple evolution strategies.

Constant;, relatest’ andT’; however, it can be considered to be equal to one in
our case because both quantities share the same units of correlation meagure. For
nately, our problem is constrained in the sense that all possible elementsadheorr
tion matrix are always within the interval-1; 1). Based on this fact the maximum
of the normE' can be estimated using prescribed and hypothetically “most remote”
matricesK from .S, so the initial setting of parameters can be performed without
the guess of the user and the “trial and error” procedure.

The initial temperature has to be decreased step by step, e.g. using reduction
factor after constant number of iterations (e.g. thousands) applied at current tem
peraturel;,; = T;-0.95. Note that more sophisticated cooling schedules are known
in Simulated Annealing theory [24, 25]. As the number of simulations incredses, t
estimated correlation matrix is closer to the target one. Figure 8 sth@xecrease
of norm during SA-process. Such figure is typical and should be monitored.

11



4 SIMULATION OF RANDOM FIELDS

4.1 Introduction

Stochastic finite element method (SFEM) had facilitated the use of randals fiel
in computational mechanics. Many material and other parameters areaincert
in nature and/or exhibit random spatial variability. Efficient simulation of random
fields for problems of stochastic continuum mechanics is in the focus of both re-
searchers and engineers. Achievements in stochastic finite element &@sroac
increased the need for accurate representation and simulation of randomdields
model spatially distributed uncertain parameters.

The spatial variability of mechanical and geometrical properties of a syeteim
intensity of load can be conveniently represented by means of random fields. Be-
cause of the discrete nature of the finite element formulation, the random field must
also be discretized into random variables. This process is commonly known as
random field discretization. Various methods have been developed for the repre-
sentation and simulation of random fields utilized within the framework ofNSFE
[26, 27]. In following we will deal with random fields simulation based @n
thogonal transformation of covariance matiixconnection with different types of
Monte Carlo simulation. These methods produce stationary and ergodic Gaussian
processes. We will focus on error assessment of simulated fields andtidgminf
LHS methodology thoroughly discussed in the preceding chapter.

Since the computational effort in reliability problem is proportional to the num-
ber of random variables it is desirable to use small number of random variables to
represent a random field. Simulation of the random field by a few random variables
is especially suitable for problems where theoretical failure probabtioulsl be
calculated. To achieve this goal, the transformation of the original randoablesi
into a set of uncorrelated random variables can be performed through an eigenval
orthogonalization procedure [27]. It is demonstrated that a few of these uncorre-
lated variables with largest eigenvalues are sufficient for the atecrgpresentation
of the random field. The error induced by such truncation will be an object of study
in this chapter as well.

4.2 Orthogonal transformation of covariance matrix

Suppose that a spatial variability of random parameter is described by the Gaus-
sian random field(x), x = (x, y, z) is the vector coordinate which determines the
position on the structure. A continuous fieldlr) is described by discrete values
a(x;) = a(z;,vi, z;), wherei = 1, ..., N denotes the discretization point.

As the randomness of the spatial variability ini@rensional nature is gener-
ally not isotropic, the autocorrelation function of the spatial homogeneous random
field is supposed to be a function of the distances between two pdints |Ay|

12



and|Az|. The following commonly used exponential form of an autocorrelation
function is considered:

} AP (IAYNTY (] Ar P
Raamx,Ay,Az)—exp[ ( > . > 5)

in which d,,d, andd, are positive parameters calledrrelation lengths With
increasingl a stronger statistical correlation of a parameter in space is imposed and
opposite.

The random variables needed for discrete representation of random field in dis-
cretization points can be transformed to the uncorrelated normal form bysodbiti
an eigenvalue problem [27]. In order to reduce the computational effort, an eigen-
value orthogonalization procedure can be employ@gx = AP’ , whereCxx
is the covariance matrix. The matrik represents the orthogonal transformation
matrix (eigenvectors). The covariance matrix in the uncorrelatedespars the
diagonal matrixA = C'yy, where the elements of diagonal are the eigenvalues
(A1, A2, ..., Ay) of covariance matrixC'xx.

Usually, not all eigenvalues have to be calculated and considered for npxt ste
(simulation) as the fluctuations can be described almost completely by atew ra
dom variables. This can be done by arranging the eigenvalues in descending order,
calculating the sum of the eigenvalues up to ik eigenvalue and dividing it by
trace of A. The reduction of number of random variables in fact depends on rela-
tionships between total dimensions and discretization of the structure (model) a
given correlation lengths.

Let the chosen number of important dominating random variables by eigenvalue
analysis b&Vy,. Now, the eigenvector matrik denotes the reduced eigenvector ma-
trix containing only the respective eigenvectors to fjemost important eigenval-
ues. Then the vector of uncorrelated Gaussian random vari¥bies Y1, Y5, ...,

Y, ] can be simulated by a traditional way (Monte Carlo simulation). The random
variables of vectok” have mean zero and standard deviatjon, /A2, . . ., \/An, -

The transformation back into correlated space yields the random \Ecfandom
field) by the relation:

X = dY (6)

Latin Hypercube Sampling utilization

An increased efficiency of the approach using reduced set of dominant variables
can be gained by usage of variance-reduction techniques (such as LHS) for simu-
lation of uncorrelated random variables [28]. We will show some further ingrov
ments and detailed error assessment of such combined approach. A comparison
with classical Monte Carlo simulation (MCS) reveals the superiocieficy and
accuracy of the method. The key point is that mali»of random variables from
the uncorrelated space is assembled with utilization of stratifiegleaglHS. It is
expected that the superiority of this stratified technique comparing MCSavil ¢
tinue also for accurate representation of random field, thus leading to a decreas

13



of number of simulations needed. This should be proved at least numerically. The
methodology for an assessment of error of simulations is described in the next sec-
tion.

4.3 Error assessment of random field simulation

When any method for random field simulation is used it is required that the sta-
tistical characteristics of the field generated be as close as possitile target
parameters. Generally, the mean values, variances, correlatia@paatial charac-
teristics (statistics) cannot be generated with absolute accurasic iBéormation
about random field is captured by its second moment characteristics, i.ee#te m
function and the covariance function. Some samples of random fields for a parame-
ter are simulated from the population parameters. A certain staifgtie particular
simulation may be very close to or quite far away from the value of corresponding
target parameter. When the seed of the pseudo-random number generator is changed
other random fields are generated and other values of all sample statistitat-ar
urally obtained. Therefore, each of these statistics can be consideradrasom
variable with some mean value and variance. The simulation technique is consid-
ered as best one which gives an estimated mean value of the statesiycslase
to the target mean value and also closest to zero variance of theictatis our
case of zero mean value and unit variance of random field (basic targsticati
parameters) we expect to get estimated mean around zero and var@unce ane.

Reduction of spurious correlation

What are the consequences of spurious correlation to autocorrelation function
variability of simulated random fields? The study has been done for correlation
length 1 m and for two numbers of simulations - an error assessment based on sam-
ples simulations from population is described later. The results are shovg B, F
mean values and the scatterband represented by tesandard deviation of au-
tocorrelation function is plotted. Figure 3a) shows the result for 32 simulations,
spurious correlation is not diminished (LHS-mean-SC). It is obvious that capturing
of target autocorrelation function is weak and the scatterband is large. The ex-
planation is clear, using only 32 simulations leads to large both nd#ms and
Eoverai- WhenNg;,, increases to 64, capturing of autocorrelation function is better,
Fig. 3c), d). Note that now the alternative with diminished spurious coroeldty
SA resulted in excellent function capturing with very small variapilgee figure
3d). This fact corresponds with both norms which are in case d) very smalh It ca
be seen that the spurious correlation at the level of simulation of independent ran-
dom variables influences negatively the autocorrelation function. Theseatiustr
indicate that norms used as objective functions in Simulated Annealing algorithm
can be interpreted as a qualitative prediction of resulting quality of autlation
structure.

14
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Obr. 3: Scatterband of autocorrelation functidh,, (§) for Ng;,,, = 32: a) LHS-mean-SC; b) LHS-
mean-SCD; andVg;,, = 64: ¢) LHS-mean-SC; d) LHS-mean-SCD

Classification of sampling schemes

When any method for random field simulation is used, it is required that the sta-
tistical characteristics of the field generated should be as close ablpassthe
target statistical parameters. Generally, the mean values, slaahelaations, corre-
lation and spectral characteristics (we will use the common terrtissts”) cannot
be generated with absolute accuracy. All possibilities of sampling methotea
summarized as follows: (i) crude Monte Carlo simulation (MCS); (ijihdyper-
cube sampling under original scheme, [19] , (LHS-median); (iii) Latin hypercube
sampling under improved scheme, [23] (LHS-mean). These schemes can be ap-
plied in two alternatives: (1) No attention is paid to spurious cor@atsC); (2)
Spurious correlation diminished (SCD) There are 6 combinations, cases with SC
and SCD, which are sampled by MC, LHS-half and LHS-mean. What is the best
alternative? Naturally, the quality of sampling schemes can be intiyifpredicted
even without numerical experiment, e.g. combination (MCS) and (SC) should def-
initely belong to worst case and combination of (LHS-mean) and (SCD) should be
the most efficient.

The assessment can be done by performing more runs of the same simulation
process with a different random setting of the seed of pseudo random number gen-
erator. Thus samples are artificially generated from the population in tlyislvea
us consider 1D structure of length 10 m (e.g. beam), the structure is divided into
128 discretization points associated with finite elements< 128). The region of
small number of simulations\(s;,,, = 8, 16, 32, 64, 128, 256, 512) has been selected
in parametric study - implicitly it was supposed that the superiority of LHS shoul
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appear for small number simulations (tens, hundreds). Number of¥ups= 30
was selected for estimation of statistics. So the random fields had imb&ated
Nrun X Ngim, times for a statistics of interest. The results are plotted in Fiylean
value: An ability to simulatemean valueof random field is excellent in all alter-
natives of LHS (figures a) and b)), even for very low number of simulations. This
ability is rather poor in case of MCS, mean valuentdéanfluctuates and standard
deviation ofmeanis high in comparison to LHSStandard deviation: The ability

to simulatestandard deviatiorof random field is documented in figures c) and d).
Again, capturing of this statistics is “random” in case of MCS, standardatieni

of standard deviatioms high in comparison to LHS. LHS-half underestimates mean
value ofstandard deviatior{figure c)) for low number of simulations. The capa-
bility of improved sampling scheme LHS-mean is much better and convergence
target statistic (unit standard deviation) is faster. This is a generairéeaf LHS
tested at the level of random variables. An important fact is documentedn-dimi
ishing spurious correlation has small influence on these basic statistiasdainna
field. Note, that if we construct statistics presented in Fig. 4 for diffecorrelation
length of the field, similar trends will be obtained.
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16



5 SIZE EFFECT OF MULTI-FILAMENT YARNS

The tensile failure of fiber-reinforced composites is generally dominatedilby fa
ure of the fiber bundle. The matrix material, whether polymer, ceramic or metal
serves mainly to transfer the load among the fibers through the elasticytigld+
ing, debonding with sliding friction between the fiber and matrix. The matrix can
carry some load in a metal or polymer matrix composite but, after maticking,
carries almost zero load in ceramic matrix composites. The two factotrolling
fiber failure are (i) the statistical fiber strength and (ii) the stoBsgibution along
the fiber direction. The stress along a fiber depends on the applied stress, but also
on precisely how stress is transferred from a broken fiber to the surroundaag int
fibers and matrix environment. This stress transfer is governed by thi glast-
erties of the constituents and by the fiber/matrix interface, and is dificubtain
in the presence of more than one broken fiber. There are two load sharing rules. One
is “global load sharing”, i.e. loads dropped due to fiber break(s) are shared equally
among intact fibers. The other is “local load sharing”, i.e. dropped loads arecarri
preferably by filaments surrounding the broken filaments.

The presented work is focused particularly on fiber bundles under global (equal)
load sharing. In particular we are focusing on size (length) effect of mlamént
yarn under tensile strength test. The available statistical models nftref bun-
dles are reviewed. Deterministic micromechanical computational modébleapia
tracing the whole load-deflection curve has been developed and used for identifi-
cation and study of sources of randomness affecting the evolution of the stiffness
during the loading of yarns in tension. It has been shown that also the stiffness
evolution in the early stages of loading influences the maximum tensile forhe in t
bundle. The model serves as a basis for a complex stochastic analysis of the com-
plex size effects including all mentioned effects employing the random fiield-s
lation technique. Such stochastic modeling framework has been used foriderivat
of new size effect laws for each of the considered sources of randomnesselgparat

In order to introduce the statistical length scale in the Weibull poweif¢avthe
mean size effect, we modify the classical law by introducing the length-depende
function f (1) with the filament lengtli in the following form

o (1) = so[~In(1— P £(1) (7)

wherem is the Weibull modulus (shape parameter of Weibull strength distribution
of fiber strength),s, is the scale parameter of strength distribution &hds the
failure probability. We suggest to approximate the numerically obtained dizet ef
on fibers with local tensile strengtfi described by random field by Eq. (7) with

f (1) expressed by one of the following formulas:

= (g ”)Am or ﬂn:(l”)wl ®)

L1+l l,+1
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This introduces the statistical length scale into (local) Weibull lawonmf of auto-
correlation lengthi, of random strength field.

Since the description of strength by random field still does not suffice to capture
the size effects measured by real experiments, we have also studiedvatupdd
algorithm for back identification alelayed activation of fibers. Shortly, if fibers
between clamps do not have equal length, the longer ones activate in later stages of
the test. If we identify also parameters of stiffness random field (Youngtuhus
of elasticity of elastic-brittle fiber&) we are able to simulate all essential features
of real tensile test, see Fig. 5.
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Obr. 5: Comparison of numerical simulations (gray) with expemnts (black). Left: Simulations
without delayed activation, randomized stiffness and gtienDiagram computed with DA plotted
with dashed line. Right: Simulations with included delayetivation, randomized stiffness and
strength. Diagrams computed with mean values plotted withethfne.

The resulting size effect curve (double plot of length against strength of yarn) is
plotted in Fig. 6.

In addition to the size effect curves obtained from the random process siomglati
Fig. 6 also shows the size effect obtained with the Daniels’s [29] anchSni&0]
models calculated with; = 1600. Assuming that the filaments follow the Weibull
scaling we may construct the bundle power law as a product of Daniels’s prediction
of the mean total strength [29] with the Weibull scalifi@) = (Io/1)"/™

I 1/m l 1/m
p(l) = f() = (f) = so-m et (70) : 9)

Based on the lessons learned from the numerical analysis we have suggested ap-
proximation formulas describing the size effect laws due to the random strength or
stiffness along the bundle. The obtained results have been verified with thefhelp
the available analytical and numerical fiber bundle models by Smith and Daniels
However, the available fiber bundle models could not be used for modeling the re-
sponse measured in the yarn tensile test, because they impose practicelieuna
veable assumptions of regular force transmission in the clamping and do not capture
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Obr. 6: Size effect curves obtained numerically for the mnizedf?, ¢, f; together withE and all
three parameters simultaneously.

the disorder in the structure of filaments in the bundle.
6 ENERGETIC-STATISTICAL SIZE EFFECT

6.1 Introduction and development of the new law

The size effect on nominal strengtty, of concrete structures has basically two
explanations, deterministic (energetic) and statistical (probabjlistite former is
caused by the stress redistribution on the fracture process zone, whictifssiant
structure sizes about the same. The latter is explained by higher probability of low
local strength for large structures.

Practical and simple approach to incorporate the statistical siz# affe the de-
sign or the assessment of very large unreinforced concrete structures $sarci a
dams, foundations and earth retaining structures, where the statisteadfect
plays a significant role) is important. Failure load prediction can be done without
simulation of Monte Carlo type utilizing the energetic-statistical sitect formula
in mean sense together with deterministic results of FEM nonlinear fraotare
chanics codes.

We propose a new improved law with two scaling lengths (deterministic @and st
tistical) for combined energetic-probabilistic size effect on the nomtnahgth for
structures failing by crack initiation from smooth surface. The role of these
lengths in the transition from energetic to statistical size effect efoll type is
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clarified. Relations to the recently developed deterministic-energetienergetic-
statistical formulas are presented. We also clarify the role andpiateof two
material lengths: deterministic and statistical.

The deterministic energetic size effect formula for crack initiatiamfrsmooth
surface reads [31, 2, 32]:

1/r
TDb :| (10)

ox (D) = £ [1+D+lp

whereoy is the nominal strength depending on the structural sizéParameters

f~ Dy andr are positive constants representing the unknown empirical parameters
to be determined. Parametér represents solution of the elastic-brittle strength
which is reached as a nominal strength for very large structural sizes xpbaent

r (a constant) controls the curvature and the slope of the law. The exponent offers a
degree of freedom while having no effect on the expansion in derivation of the law
[31, 2]. Parameteb, has the meaning of the thickness of cracked layer. Variation of
the parameter Db moves the whole curve left or right; it represents therdeistic
scaling parameter and is in principle related to grain size and dinesdnsition

from elastic brittle 0, = 0) to quasibrittle 0, > 0) behavior.

By considering the fact that extremely small structures (smaller thgarmust
exhibit the plastic limit, a parametéy is introduced to control this convergence.
The formula (1) represents the full size range transition from perfectlyiplast
havior (whenD — 0;D < [,) to elastic brittle behavio(D — oo; D > D)
through quasibrittle behavior. Parameter Ip governs the transition to jastic
small sizesD (crack band models or averaging in nonlocal models leads to horizon-
tal asymptote). The case bf # 0 shows the plastic limit for vanishing size D and
the cohesive crack and perfectly plastic material in the crack bothgtsestijuiva-
lent plastic behavior. For large sizes the influencg decays fast and therefore the
cases of, # 0 are asymptotically equivalent to caselpf= 0 for large D.

The large-size asymptote of the deterministic energetic size effect farib) is
horizontal:on(D)/ f, = 1, see Fig. 7a). But this is not in agreement with the results
of nonlocal Weibull theory as applied to modulus of rupture [12], in which the large-
size asymptote in the logarithmic plot has the slepe/m corresponding to the
power law of the classical Weibull statistical theory [1]. In view ofttheoretical
evidence, there is a need to superimpose the energetic and statisticagh8aoiih
superimposition is important, for example, for analyzing the size effectrincae
bending fracture of arch dams, foundation plinths or retaining walls.

The statistical part of size effect and the existence of statistingthescale have
been investigated in detail by the previous chapter for the particular cagasst
fibers. By incorporating the result into the formula (10) we get a final law:

1/r
Lo r”/m+ D, |
Lo+ D l,+ D

(11)
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This formula exhibits the following features:

e Small size left asymptote is correct (deterministic), parameterygs to fully
plastic transition for small sizes.

e Large size asymptote is the Weibull power law (statistical size gffestraight
line with the slope -n/m in the double-logarithmic plot of size versus nominal
strength)

e The formula introduces two scaling lengths: deterministig)(and statisti-
cal (Ly). The mean size effect is partitioned into deterministic and stedisti
parts. Each have its own length scale, the interplay of both embodies behavior
expected and justified by previous research. Paranigielfrives the transi-
tion from elastic-brittle to quasibrittle ant, drives the transitional zone from
constant property to local Weibull via strength random field. Note that the au-
tocorrelation lengtli, has direct connection to our statistical lendtf This
correspondence is explained in papers in the author’s dissertation [18].

Having the summation in the denominators limit both the statistical and deter-
ministic parts from growing to infinity for smalD. So it remedies the problem that
the previous energetic-statistical formulas [12] intersect the detetmilag at the
sizeD = D, and therefore gives higher mean nominal strength prediction for small
structures compared to the deterministic case. Note thanfer oo it degener-
ates to deterministic formula (10). The same appliesyif— oo. The interplay
of two scaling lengths using the ratig /D, is demonstrated in [18]. The question
arises what is in reality the ratib,/D,? Since both scaling lengths are in concrete
probably driven mainly by grain sizes, we expégt~ D,, so the simpler law with
Lo = D, should be an excellent performer for practical cases.

6.2 Superimposition of deterministic and statistical size effects

As was already mentioned deterministic modeling with NLFEM can capture only
deterministic size effect. A procedure of superimposition with statispart should
be established. Such procedure of the improvement of the failure load (nominal
stress at failure, deterministic size effect prediction) obtained by aneanlfracture
mechanics computer code can be as follows:

1. Suppose that the modeled structure has characteristic dimabsidrhe nat-
ural first step is to create FEM computational model for this real sizehiat t
level the computational model should be tuned and calibrated as much as pos-
sible (meshing, boundary conditions, material etc.). Note that we obtain a pre-
diction of nominal strength of the structure (using failure load corresponding
to the peak load of load-deflection diagram) for size but it reflects only
deterministic-energetic features of fracture. Simply, the strengtisimlly
overestimated at this (first) step, the overestimation is morefsignt as real
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structure is larger. Result of this step is a point in the size effect plot presented
by a filled circle in Fig. 7 a).

deterministic NLFEM
computation O

2

2. Scale down and up geometry of our ccfr\n- _,_
putational model in order to obtain the 1
set of similar structures with charactét-
istic sizesD;,i = 1,...,N. Based on | [ RS
numerical experience a reasonable nygm--
ber is around 10 sizes and depends o
the sizes cover transition phases. Thére-

best fit (10)

fore, sizesD; should span over large re-

gion from very small to very large sizes? [z Plastic limit -—=—-- b)
Then calculate nominal strength for each L

sizeoy;,i = 1,..., N. Note that for two 2 mean nominal

very large sizes nominal strengths should strength 0O

be almost identical as this calculation fal- | Weibull
lows energetic size effect with horizontal | power law

asymptote. If not, failure mechanism ig ----- T * —————————— = 5—-6

not just only crack initiation, other phgfg -
nomena (stress redistribution) plays more -
significant role and the procedure sug
gested here cannot be applied. The com-
putational model has to be mesh-objective gz ----------t----------- Plastic limit - c) :
in order to obtain objective results (eg. L
crack band model, nonlocal damage con- |-
tinuum) for all sizes. 8
In order to ensure that phenomenon of
stress redistribution (causing the size &f-
fect for the range of sizes) is correctly |
captured, well tested models are recorg- [
mended for strength prediction. A spegiz
attention should be paid to the selectipp -——L—+— 1 . 11 :
of constitutive law and localization lim- 0.1 1 H /g) 100 1000
iter. The result of this step is a set of point b

(circles) in the size effect plot as showngsr. 7: Illustration of superimposition steps. a) Steps 1-4;
Fig. 7 a). b) Step 5 - determinatioh,; c) Final formula

mean size effect
law (11)  —

T—_
-

3. The next step is to obtain the optimum fit of the deterministic-energetic formula
(10) using the set oV pairs ({D;,on;} : @ = 1,...,t,...,N). Since the
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deterministic formula is generally nonlinear in fitted parameters g 1 or
l, # 0) the algorithm for nonlinear regression fit is needed.

The parametet, can be excluded from the fit based on the plastic analysis
[18]. Fit of the parametef,. can also be avoided because this limit can be esti-
mated from nonlinear FEM analysis as the value to which the nominal strength
converges with increasing size. So we can be prescribe (for very lee®,s
on/f- = 1 as asymptotic limit. The result of this step is illustrated by a fitted
curve to the set of points in figure 7a).

. There are three remaining parameters which should be substituted into sta-
tistical-energetic formula (11)n, m and L,: Parametern is the number of
spatial dimensionsn(= 1, 2 or 3). Parameter. represents the Weibull mod-
ulus of FPZ with Weibull distribution of random strength. Recent study [32]
reveals that, for concrete and mortar, the asymptotic value of Weibull modulus
m ~ 24 rather thani2, the value widely accepted so far. Ratigm there-

fore represents the slope of MSEC in size effect plotifor~ co. This means

that for extreme sizes the nominal strength decreases, for two-dimensional (2D
similarity (n = 2), as the—1/12 power of the structure size. Note, that for dif-
ferent material the asymptotic value of Weibull modulus is different, eg. for
laminates much higher thahi. Result of these 4 steps are shown for illus-
tration in Fig. 7a). Parametdr, is now only remaining parameter to be de-
termined. As it represents statistical length scale it seems to bevéhaill

need to utilize a statistical software incorporated into your NLFEM code. But
there is much simpler alternative based on simple calculation of locéduiVe
integral. Once the mean strength of a large structure is known (a square in the
size effect plot, one can pass a straight line of slepg'm through the point
(Weibull asymptote). Graphically, the intersection of the statissgimptote

with deterministic strength for infinite structure size (horizontal asynepttt

gives the statistical scaling length éanaxis L, see figure 1b), see [18].

. As all parameters of statistical-energetic formula are determnuadinal stre-

ngth can be calculated for any size. Using real size of the strudurhe
prediction of corresponding nominal strengtf; can be done using (11). This
prediction will be generally different (lower) from initial determingspredic-

tion, Fig. 7c). The larger structure the larger difference is. The formula will
provide us the strength prediction for the mean strength. Additionally, a scatter
of strength can be determined just using the fundamental assumption of Weibull
distribution. For the distribution we know two parameters, shape parameter

is prescribed initially, and scale parametersn be calculated easily from pre-
dicted mean and Weibull modulus.
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7 FREET SOFTWARE

A multi-purpose probabilistic software for statistical, sensitivity aatability
analyzes of engineering problems has been developed [33]. The software is based
on efficient reliability techniques described above and the computationalsdarne |
plemented by the author in C++ programming language. The GUI (graphical user
interface) is being implemented by Dr. Rusina in C++. The software is designed i
the form suitable for relatively easy assessment of any user-defined aimopat
problem written in C++, FORTRAN or any other programming languages. The ap-
proach is general and can be applied for basic statistical analysis of coropaligt
intensive problems. The basic aim of statistical analysis is to obtain timeagi®n
of the structural response statistics (failure load, deflections, crac&ssss, etc.).

The FREET software integrated with the ATENA software were used to capture
both the statistical and deterministic size effect obtained from expeatsn Prob-
abilistic treatment of nonlinear fracture mechanics in the sense of extvalne
statistics has been recently applied for crack initiation problems wéitihbits
Weibull-type the statistical size effect [18].
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Obr. 8: Imposing of statistical correlation

8 CONCLUSIONS

Simulation of random variables

In chapter 3 the new achievement is mainly the new efficient technique of im-
posing the statistical correlation based on Simulated Annealing. The techrique i
robust, efficient and very fast and has many advantages in comparisorovmtérf
techniques. The increased efficiency of small-sample simulation technique LHS
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can also be achieved by the proper selection of samples representing tlesl layer
probability content of random variables. The methods are implemented by author
and constitutes the computation core of the multipurpose software package FREET
for statistical, sensitivity and reliability analysis of computationalljpems. A fu-

ture work is recommended in: (i) Implementation of advanced method for proba-
bilistic analysis, in particular response surface, FORM and Importancg|$w;

(if) Further research in simulation of random vectors with prescribedisaneous
probability density function or just marginals and covariances.

Simulation of random fields

Chapter 4 confirms the superior efficiency of LHS and correlation control in the
context of sample simulation of random fields. An attempt has been done to show
better the role of correlation control - diminishing spurious correlation in random
field simulation and importance of sampling schemes for simulation of uncorre-
lated random variables. It has been shown that a spurious correlation influences
significantly the scatter of estimated autocorrelation function of siradleandom
fields. A clear indication of this scatter is the fulfillment of norms used asabbe
functions in Simulated Annealing algorithm to diminish spurious correlatioheat t
level of underlying random variables. The quality of simulated samples of random
fields should be assessed. An error assessment procedure has been proposed anc
performed for six alternatives of sampling schemes. Diminishing spurious-cor
lation does not influence the capturing of these statistics but does influence signif-
icantly a realization of autocorrelation function of a random field. A future work
is recommended in: (i) Study, development and implementation of simulation of
non-Gaussian stochastic fields; (ii) The newly developed tools of stochastic compu-
tational mechanics in the form of stochastic finite element method (SFENM)awl
enable complex numerical investigations. We expect both (i) verificatiorewfy
achieved theoretical results (e.g. in the form of the proposed size effefbt qua-
sibrittle failure at crack initiation) and (ii) numerical computationsexlrexamples
focused on the influence of nonlinearities on failure probability estimations.

Size effect of multi-filament yarns

The performed stochastic simulations with the available experimental éata r
vealed the existence of statistical length scale that could be capturattdgucing
an autocorrelation of random material properties. This represents the departure
from the classical Weibull-based models that are lacking any kind of lergtle-s
The introduced model delivers a quasi-ductile response of the bundle from the en-
semble of interacting linear-elastic brittle components with irregulapgrties. In
this respect the present approach falls into the category of lattice modelsaise
model quasi-brittle behavior of concrete. It should be noted, that due to the pos-
sibility to trace the failure process in a detailed way both in the exparirand in
the simulation, the modeling of multi-filament yarns provides a unique opportunity
to study the local effects in quasi-brittle materials. The possibilitg¢aeralize
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the results for other quasi-brittle materials is worth further intensivdiss; The
obtained statistical material characteristics turned out to be ofatruportance

for robust modeling of crack bridges occurring in the cementitious textile compos-
ites. The "well designed” microstructure of the yarn and of the bond layer in the
crack bridge may significantly increase the overall deformation cap@iittility)

of structural elements. The lessons learned from the present study will bedapplie
in a more targeted development of new yarn and textile structures with aavetpr
performance of crack bridges. Development of micromechanical model of bond
behavior and its coupling with the developed models will be pursued next.

Energetic-statistical size effect

We have presented a broader theoretical treatment of connections between fiber
bundle models and size effect of concrete structures. It has been shown hoav the s
tistical size effect at fracture initiation can be captured by a s&ichfinite element
code based on extreme value statistics, simulation of the random field afiahate
properties and chain of bundles transition. The computer simulations of the sta-
tistical size effect in 1D based on stability postulate of extreme vaisteibutions
match the test data. However, in some cases the correct behavior cannoevedc
for other tests using a 1D treatment. A proper way of treating the strestritadis
tion is by the proposed macro-elements in 2D (or 3D), the scaling of which is based
on the fiber bundle model capturing partial load-sharing and ductility in the finite
element system. A simple and effective strategy for capturing theststati size
effect using stochastic finite element methods is developed which overdbmes
problematic feature of stochastic finite element method: How to capturestisist
cal size effect for structures of very large sizes. The idea is to eallatrecursive
stability property from which the Weibull extreme value distribution iswet. Us-
age of combination of a feasible type of Monte Carlo simulation and computational
modeling of nonlinear fracture mechanics renders a probabilistic treatment ef com
plex fracture mechanics problems possible. The approach may be understood as
a computational trick based on extreme value theory similar to its countenpar
deterministic nonlinear analysis of fracture - crack band model. The interplay of
deterministic and statistical lengths of quasibrittle structures hasdiaefed and
the analytical formula for the nominal mean strength prediction of crack tioria
problems has been derived and proposed. The law features two separate scaling
lengths of structures governing two different sources of size effect: digiistit
and statistical. The role of these two lengths in the transition from energeti
statistical size effect of Weibull type is explained. A practical procediirsuper-
imposition of the deterministic and statistical size effects aticir@tiation has been
suggested. It requires only a few NLFEM analysis using scaled sizes so the neces
sity of time consuming statistical simulation is avoided. The predictiorbeasione
without any special Monte Carlo simulation, which is usually used to dealthé
influence of uncertainties on structural strength.
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Summary in Czech

Predlazera prace shrnuje ysledky dosaere autorem Bhem doktors&ho stu-
dia a ktee jsou podrob@é rozvedeny v diser&ai praci autora. No& pinosy Ize
spafovat ve Ctyfech oblastech: (1) simulaceamodrych veli¢in a vektoti typu
Monte Carlo se zaBienim na statistickou korelaci mezi véilhami; (2) simulace
nahodrych pol v kontextu stochastiék metody konénych prvki a zan&eni na
posouzenpresnosti simulovaych vzorkl s ohledem nalizné metody poaité (i
simulaci; (3) Wvoj mikromechanickho modelu z& ovan svazku vaken pouite-
ho jako Wztuz do textilem vyztidereho betonu; zde se autor zéihna vliv delky
svazku na pevnost ovliémou fiznymi zdroji nahodnosti a prostor@proneénlivosti
materalowch paramefi, byly navzeny procedury a vztahy pro podchycégchto
vlivll a (4) vlivem velikosti betonoxch konstruke na jejichinosnost; zde jefpd-
stavena no& metoda pro podchycestatisticle slazky vlivu velikosti podi@era
teoril extremrich hodnot a éle je sledo@n komplexi vliv velikosti (statisticla i
deterministick slazka a jejich interakce). V poslednttvrie oblasti pace vedla
k navizeri a owereni noveho vztahu pro komplexwliv velikosti.
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