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Kl ı́čová slova
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1 STATE OF THE ART
The salient feature of quasi-brittle materials is a complex size effecton structural

strength. Size effect phenomenon manifests itself in form of a strong dependence of
a nominal strength (nominal stress at the failure load) on a characteristic dimension
(size) of the geometrically similar structures, see Fig. 1. Since the uncertainties and
spatial variability is inherently present in nature, the nominal strength hascertain
variability. The size effect is also characterized/accompanied by thechange of the
nominal strength variability for different structure sizes. Size effect phenomenon
has a great impact on a safe design and assessment of structures. The size effect is
not present in current strength theories (either plasticity or elasticity). The problem
is that real large structures usually fracture under smaller failure loadthan laboratory
size specimens, see Fig. 1.
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Obr. 1: Illustration of size effect on nominal strength and the range of structural sizes of interest in
the thesis

The history of description of size effect can be seen as a history of two fundamen-
tally different approaches – deterministic and statistical explanations.The first ex-
planation was definitely statistical and dates back to the pioneering work of [1] and
many others, mainly mathematicians. Phenomenon that larger specimens willusu-
ally fracture under relatively smaller applied load was associated with the statistical
theory of extreme values at that time. Then most re-searchers focused on the ener-
getic basis of size effect and the main achievements were purely deterministic. Let
us mention e.g. the book of [2] as an extensive source of information. Researchers
used different theories, from early works e.g. [3, 4, 5] considered uncertainties in-
volved in concrete fracture. Some authors attempt to explain size effectby theories
of fractals [6] . Recently, there are attempts to combine last decade’s achievements
of both fracture mechanics and reliability engineering e.g. [7, 8, 9, 10] and oth-
ers. Arguments coming from the state of the art represent basis for the need to
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combine efficient reliability techniques with present knowledge in the field of non-
linear fracture mechanics. Remarkable development of computer hardware makes
the numerical simulation of Monte Carlo type of complex nonlinear responses pos-
sible. The reasons for complex reliability treatment of nonlinear fracture mechanics
problems can be summarized as follows: (i)Modeling of uncertainties(material,
load and environments) in classical statistical sense as random variables or random
processes (fields). The possibility to use statistical information from real measure-
ments; (ii) Inconsistency of designto achieve safety using partial safety factors –
fundamental problem; (iii)Size effect phenomena.

2 AIMS AND STRUCTURE OF THE THESIS
The title of the thesis ”Stochastic fracture mechanics and size effect” suggests

the attempt to combine both, the advanced tools of fracture (nonlinear) mechan-
ics and stochastic approaches in order to model the complex behavior of real ma-
terial/structures considering material randomness or variability. The whole focus
looks towards complex description and understanding of size effect phenomena.
The main attention is devoted to concrete as a main representative of quasibrittle
material (such as rock, tough ceramics, snow and ice, etc.) and one of the most
important building materials in civil engineering. This thesis is focused mainly on
the range of sizes where both phenomena, statistical and deterministic plays a sig-
nificant role, see the transitional zone in Fig. 1. This transition represents therange
with the most difficult structural scaling theory.

Aims of chapter 3 are to briefly review simulation methods of Monte Carlo type
for efficient structural stochastic assessment and to introduce Latin Hypercube Sam-
pling (LHS) as a technique suitable for an analysis of computationally intensive
problems which is typical for a nonlinear FEM analysis. In particular the chapter
suggests a new procedure for efficient imposition of statistical correlation among
input variables. The technique is robust, efficient and very fast.

The following chapter 4 is devoted to efficient simulation of random fields for
problems of stochastic continuum mechanics. In particular, the transformation of
the original random variables into a set of uncorrelated random variables is pre-
sented using an eigenvalue orthogonalization procedure. It is demonstrated that
only a few of these uncorrelated variables with largest eigenvalues are sufficient for
the accurate representation of the random field. The error induced by such trunca-
tion will be an object of study in this chapter as well. An error assessment procedure
for simulated samples of random fields is proposed. We show that a clear indication
of the errors in autocorrelation structure is the fulfillment of norms used as objective
functions in algorithm proposed in the preceding chapter.

The next chapter of the thesis is focused ontextile reinforced concrete, a new
composite material for special purposes. The thesis presents a newly developed mi-
cromechanical model which is combined with advances stochastic techniques (ran-
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dom variables and random processes capturing the spatial variability of uncertain
parameters). These models are given to context with classical approaches and we
proved that there must exist (as opposite to Weibull integral) statistical length scale.
It is explained why the nonlocal Weibull integral [11, 10, 12] is not general enough
solution for the presented problems. We propose new formulas which are designed
based on asymptotic matching for approximation and prediction of the yarn strength
under various conditions and for the whole range of yarn lengths. These formulas
are compared to available statistical theories of strength of bundles. The detailed
analysis of all substantial effect in the context of tensile test of yarn enabled design
of practical procedure of testing and evaluation of yarn strength. It is shown how
to decompose, analyze and compose partial phenomena present in the yarn tensile
test.

The following chapter introduces a new approach to stochastic nonlinear analyzes
of large structures. Standing firmly on thestatistical theory of extreme valuesthe
text proposes a practical tool for simulation of random scatter (spatial variability) in
the context of FEM which is independent of the mesh. In some sense the approach
brings similar features to famouscrack bandmodel in deterministic computational
fracture mechanics [13]. Similarly to the crack band model which is provedto
be theoretically correct and compared to cohesive (fictitious) crack model, the de-
velopedstochastic crack band modelis derived from elaborate theory of ordered
statistics and extreme values [14, 15, 16, 1, 17]. The range of applicability (large
structures) is explained and it is shown that the model performs well in the size
regions, where the combination of NLFEM and simulation of random fields is not
useful. This is because in case of large structures the computational demands ren-
der the utilization of random fields inapplicable. The feasibility, correctnessand
predictive power of the approach is shown using numerical examples.

The problem ofstructural scalingin a broad range of sizes is studied in chapter
6. The behavior of general quasibrittle material is shown to be the complex case of
behavior covering both the plastic and elastic-brittle behavior on two asymptotic ex-
tremes of sizes. The work resulted in thenew combined size effect formula for crack
initiation problems of quasibrittle failure. The new law covers both the determin-
istic scaling (characteristic material length) and statistical scaling (autocorrelation
length of variable strength) and their interaction over the whole range of sizes. The
asymptotic limits are checked with help of deterministic plasticity ofthe small-size
structures and stochastic-brittle behavior (Weibull type) of the large-sizestructures.
A numerical verification of the theoretical consistency with the assumptionsis per-
formed with the practical example of Malpasset Dam failure in French Alps [18].

The computational tools used for numerical modeling were not ready at the be-
ginning of author’s doctoral study. In particular the stochastic simulations were
done with simulation software developed by the author. The software constitutes
the core of computer program FREET presented in chapter 7.
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3 SIMULATION OF RANDOM VARIABLES

3.1 Introduction

The aim of statistical and reliability analysis of any computational problem which
can be numerically simulated is mainly the estimation of statisticalparameters of
response variable and/or theoretical failure probability. Pure Monte Carlo simula-
tion cannot be applied for time-consuming problems, as it requires large number of
simulations (repetitive calculation of response). Small number of simulations can be
used for acceptable accuracy of statistical characteristics of response using stratified
sampling technique Latin Hypercube Sampling [19, 20, 21]. Briefly, it is a special
type of Monte Carlo numerical simulation which uses the stratification of the the-
oretical probability distribution functions of input random variables. Stratification
with proportional allocation never increases variance compared to IID sampling,
and can reduce it. The efficiency of LHS technique was showed first time in work
of [19], but only for uncorrelated random variables. A first technique for generation
of correlated random variables has been proposed by [22]. One approach has been
to find Latin hypercube samples in which the input variables have small correla-
tions. Authors of [22] perturbed Latin hypercube samples in a way that reduces off
diagonal correlation – they diminished an undesired random correlation. The tech-
nique is based on iterative updating of sampling matrix, Cholesky decomposition of
covariance/correlation of matrixY has to be applied. In their method, as a measure
of the statistical correlation, the Spearman correlation coefficient isused. The esti-
mated correlation matrixS is symmetric, positive definite (unless some rows have
an identical ordering). Therefore the Cholesky decomposition of the matrixS may
be performed. The technique can be applied iteratively and it can result in a very
low correlation coefficient if generating uncorrelated random variables.

3.2 LHS: Sampling and statistical correlation

In the context of numerical simulation methods for structural reliability theory,
LHS is based on Monte Carlo type of simulations of vectorY under prescribed
probability distributions. Realizations are simulated in a special way: the range of
probability distribution functionfi(Yi) of each random variableYi is divided into
NSim equidistant (equiprobable) intervals, whereNSim is the number of simulations
planned (number of samples for each random variable). The identical probability
1/NSim for layers on distribution function is usually used. The representants of
the equiprobable intervals are selected randomly; realizations are then obtained by
inverse transformation of distribution function. The selection of midpoints as rep-
resentants of each layer is the most often used strategy:

yi,j = F−1
i (vi,j) = F−1

i ((j − 0.5) /NSim) , j = 1, . . . , NSim (1)
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whereyi,j is thej-th sample ofi-th random variableYi (i = 1, . . . , NV ), F−1
i is

the inverse of cumulative distribution function of this random variable. It could
be challenged to this simple methodology. One can criticize reduction of samples
selection to the midpoints in intervals (we call it intervalmedian). Such objection
deals mainly with the tails of PDF, which mostly influences variance, skewness and
kurtosis of sample set. This elementary simple approach was already overcome by
sampling of mean values related to intervals, e.g. [23]:

yi,j = NSim

∫ zi,j

zi,j−1

y · fi (y) dy (2)

wherefi is the probability density function of variableXi and the integration limits
are:zi,j = F−1

i (j/NSim).

Samples then represent each one-
dimensional marginal PDF better in terms
of distance of point estimators from the ex-
act statistics. In particular, the mean value
is achieved exactly (analytical expression
preserves the mean) and estimated vari-
ance of data is much closer to the original
one. For some PDFs (including Gaussian,
Exponential, Laplace, Rayleigh, Logistic,
Pareto, or others) the integral (2) can be
solved analytically. In case of no or diffi-
cult solution of primitive it is necessary to
use an additional effort: numerical solution
of the integral. However, such increase of
computational effort is worthwhile indeed.

NSim

1

zi,jzi,j-1

zi,jzi,j-1

yi,j

yi

yi

fi ( )yi

Fi ( )yi

1.0

0

j-1

j

Obr. 2: Samples as the probabilistic means of
intervals

Samples selected by both described ways are almost identical close excluding
those in the tails of PDFs. Therefore more difficult method could be used there
only considering the fact that tail samples mostly influence estimated variance of
sample set. Generally in both cases, regularity of sampling (the range of distribution
function is stratified) ensures good sampling and consequently good estimation of
statistical parameters of response using small number of simulations.

Having the samples of each marginal random variable ready, we may proceed to
the second step of LHS: statistical correlation imposition. There are generally two
problems related to LHS concerning statistical correlation: First, duringsampling
an undesired correlation can be introduced between random variables. For example
instead a correlation coefficient zero for uncorrelated random variables undesired
correlation, e.g. 0.6 can be generated by random. It can happen especially in case of
very small number of simulations (tens), where the number of interval combination
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is rather limited. Second problem we face is: how to introduce prescribed statistical
correlation between random variables defined by the target correlation matrix K.
Since the currently known techniques for imposition of statistical correlation in
to the table of samples of random vector have some severe restrictions, we have
developed a new scheme based on simulated annealing optimization algorithm.

3.3 Stochastic optimization method Simulated Annealing

The imposition of prescribed correlation matrix into sampling scheme can be
understood as an optimization problem: The difference between the prescribedK

and estimated (generated)S correlation matrices should be as small as possible. A
suitable measure of the distance betweenK andS matrices can be introduced; a
possible norm is the maximal difference of correlation coefficients between matri-
ces:

Emax = max
1≤i≤j≤NV

wi,j |Si,j − Ki,j| (3)

or a normE which takes into account deviations of all correlation coefficients can
be more suitable:

Eoveral =

√

√

√

√

NV −1
∑

i=1

NV
∑

j=i+1

wi,j (Si,j − Ki,j)
2/

NV −1
∑

i=1

NV
∑

j=i+1

√
wi,j (4)

This norm is normalized with respect to the number of considered correlation
coefficients (entries of lower triangle in the correlation matrix). The corresponding
weightswi,j are included because in real applications it can be a greater confidence
to one correlation coefficient (good data) and a smaller confidence to another one
(just estimation).

The normE has to be minimized, from the point of view of definition of opti-
mization problem, theobjective functionis and thedesign variablesare related to
ordering in sampling scheme

It is well known that deterministic optimization techniques and simple stochastic
optimization approaches can very often fail to find the global minimum [24, 25].
They are generally strongly dependent on starting point (in our case the initial con-
figuration of sampling scheme). Such techniques fail and finish with some local
minimum such that there is no chance to escape from it. In our problem we are
definitely facing the problem with multiple local minima. Therefore we need touse
the stochastic optimization method which works with nonzero probability of escap-
ing from local minima. The simplest form is the two-membered evolution strategy
which works in two steps:mutation andselection.

Step 1 (mutation): In ther-th generation a new arrangement of random permu-
tations matrix used in LHS is obtained using random changes of ranks, one change
is applied for one random variable. Generation should be performed randomly. The
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objective function (normE) can be then calculated using newly obtained correla-
tion matrix (it is called “offspring norm” and the normE calculated using former
arrangement is called “parent norm”).

Step 2 (selection):The selection chooses the best norm between the “parent” and
“offspring” to survive: For the new generation (permutation table arrangement) the
best individual (table arrangement) has to give a value of objective function (norm
E) smaller than before.

Such an approach has been intensively tested using numerous examples. It was
observed that the method in most cases could not capture the global minimum.
It failed in a local minimum and there was no chance to escape from it, as only
the improvement of the norm resulted in acceptance of “offspring”. More efficient
technique had to be applied. The step “Selection” can be improved by Simulated
Annealing approach, a technique which is very robust concerning the starting point
(initial arrangement of random permutations table). The Simulated Annealing is op-
timization algorithm based on randomization techniques and incorporates aspectsof
iterative improvement algorithms. The difference compared to simple approach de-
scribed above is that there is a chance to accept offspring leading to a worsenorm
and such chance is based on the Boltzmann probability distribution using the dif-
ference between the normsE before and after random change (parent and offspring
norm). There are two possible branches to proceed in the step 2 (selection):

1. New arrangement (offspring) results in decrease of the normE. Naturally “off-
spring” is accepted for the new generation.

2. New arrangement does not decrease the normE. Such “offspring” is accepted
with the probability given above (which changes as the temperatureT changes).
As a result there is much higher probability that the global minimum is found
in comparison with deterministic methods and simple evolution strategies.

Constantkb relatesE andT ; however, it can be considered to be equal to one in
our case because both quantities share the same units of correlation measure. Fortu-
nately, our problem is constrained in the sense that all possible elements of correla-
tion matrix are always within the interval〈−1; 1〉. Based on this fact the maximum
of the normE can be estimated using prescribed and hypothetically “most remote”
matricesK from S, so the initial setting of parameters can be performed without
the guess of the user and the “trial and error” procedure.

The initial temperature has to be decreased step by step, e.g. using reduction
factor after constant number of iterations (e.g. thousands) applied at current tem-
peratureTi+1 = Ti ·0.95. Note that more sophisticated cooling schedules are known
in Simulated Annealing theory [24, 25]. As the number of simulations increases, the
estimated correlation matrix is closer to the target one. Figure 8 showsthe decrease
of norm during SA-process. Such figure is typical and should be monitored.
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4 SIMULATION OF RANDOM FIELDS

4.1 Introduction

Stochastic finite element method (SFEM) had facilitated the use of random fields
in computational mechanics. Many material and other parameters are uncertain
in nature and/or exhibit random spatial variability. Efficient simulation of random
fields for problems of stochastic continuum mechanics is in the focus of both re-
searchers and engineers. Achievements in stochastic finite element approaches
increased the need for accurate representation and simulation of random fieldsto
model spatially distributed uncertain parameters.

The spatial variability of mechanical and geometrical properties of a systemand
intensity of load can be conveniently represented by means of random fields. Be-
cause of the discrete nature of the finite element formulation, the random field must
also be discretized into random variables. This process is commonly known as
random field discretization. Various methods have been developed for the repre-
sentation and simulation of random fields utilized within the framework of SFEM
[26, 27]. In following we will deal with random fields simulation based onor-
thogonal transformation of covariance matrixin connection with different types of
Monte Carlo simulation. These methods produce stationary and ergodic Gaussian
processes. We will focus on error assessment of simulated fields and utilization of
LHS methodology thoroughly discussed in the preceding chapter.

Since the computational effort in reliability problem is proportional to the num-
ber of random variables it is desirable to use small number of random variables to
represent a random field. Simulation of the random field by a few random variables
is especially suitable for problems where theoretical failure probability should be
calculated. To achieve this goal, the transformation of the original random variables
into a set of uncorrelated random variables can be performed through an eigenvalue
orthogonalization procedure [27]. It is demonstrated that a few of these uncorre-
lated variables with largest eigenvalues are sufficient for the accurate representation
of the random field. The error induced by such truncation will be an object of study
in this chapter as well.

4.2 Orthogonal transformation of covariance matrix

Suppose that a spatial variability of random parameter is described by the Gaus-
sian random fielda(x), x = (x, y, z) is the vector coordinate which determines the
position on the structure. A continuous fielda(x) is described by discrete values
a(xi) = a(xi, yi, zi), wherei = 1, . . . , N denotes the discretization point.

As the randomness of the spatial variability in 3-dimensional nature is gener-
ally not isotropic, the autocorrelation function of the spatial homogeneous random
field is supposed to be a function of the distances between two points|∆x|, |∆y|

12



and |∆z|. The following commonly used exponential form of an autocorrelation
function is considered:

Raa(∆x, ∆y, ∆z) = exp

[

−
(|∆x|

dx

)pow

−
( |∆y|

dy

)pow

−
( |∆z|

dz

)pow ]

(5)

in which dx, dy and dz are positive parameters calledcorrelation lengths. With
increasingd a stronger statistical correlation of a parameter in space is imposed and
opposite.

The random variables needed for discrete representation of random field in dis-
cretization points can be transformed to the uncorrelated normal form by solution of
an eigenvalue problem [27]. In order to reduce the computational effort, an eigen-
value orthogonalization procedure can be employed:CXX = ΦΛΦ

T , whereCXX

is the covariance matrix. The matrixΦ represents the orthogonal transformation
matrix (eigenvectors). The covariance matrix in the uncorrelated space Y is the
diagonal matrixΛ = CYY, where the elements of diagonal are the eigenvalues
(λ1, λ2, . . . , λN) of covariance matrixCXX.

Usually, not all eigenvalues have to be calculated and considered for next step
(simulation) as the fluctuations can be described almost completely by a few ran-
dom variables. This can be done by arranging the eigenvalues in descending order,
calculating the sum of the eigenvalues up to thei-th eigenvalue and dividing it by
trace ofΛ. The reduction of number of random variables in fact depends on rela-
tionships between total dimensions and discretization of the structure (model) and
given correlation lengths.

Let the chosen number of important dominating random variables by eigenvalue
analysis beNV . Now, the eigenvector matrixΦ denotes the reduced eigenvector ma-
trix containing only the respective eigenvectors to theNV most important eigenval-
ues. Then the vector of uncorrelated Gaussian random variablesY

T = [Y1, Y2, . . .,
YNV

] can be simulated by a traditional way (Monte Carlo simulation). The random
variables of vectorY have mean zero and standard deviation

√
λ1,

√
λ2, . . . ,

√

λNV
.

The transformation back into correlated space yields the random vectorX (random
field) by the relation:

X = ΦY (6)

Latin Hypercube Sampling utilization
An increased efficiency of the approach using reduced set of dominant variables

can be gained by usage of variance-reduction techniques (such as LHS) for simu-
lation of uncorrelated random variables [28]. We will show some further improve-
ments and detailed error assessment of such combined approach. A comparison
with classical Monte Carlo simulation (MCS) reveals the superior efficiency and
accuracy of the method. The key point is that matrixY of random variables from
the uncorrelated space is assembled with utilization of stratified sampling LHS. It is
expected that the superiority of this stratified technique comparing MCS will con-
tinue also for accurate representation of random field, thus leading to a decrease
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of number of simulations needed. This should be proved at least numerically. The
methodology for an assessment of error of simulations is described in the next sec-
tion.

4.3 Error assessment of random field simulation

When any method for random field simulation is used it is required that the sta-
tistical characteristics of the field generated be as close as possible to the target
parameters. Generally, the mean values, variances, correlation andspectral charac-
teristics (statistics) cannot be generated with absolute accuracy. Basic information
about random field is captured by its second moment characteristics, i.e. the mean
function and the covariance function. Some samples of random fields for a parame-
ter are simulated from the population parameters. A certain statisticof the particular
simulation may be very close to or quite far away from the value of corresponding
target parameter. When the seed of the pseudo-random number generator is changed
other random fields are generated and other values of all sample statistics are nat-
urally obtained. Therefore, each of these statistics can be considered as arandom
variablewith some mean value and variance. The simulation technique is consid-
ered as best one which gives an estimated mean value of the statistics very close
to the target mean value and also closest to zero variance of the statistics. In our
case of zero mean value and unit variance of random field (basic target statistical
parameters) we expect to get estimated mean around zero and variance around one.

Reduction of spurious correlation
What are the consequences of spurious correlation to autocorrelation function

variability of simulated random fields? The study has been done for correlation
length 1 m and for two numbers of simulations - an error assessment based on sam-
ples simulations from population is described later. The results are shown in Fig. 3,
mean values and the scatterband represented by mean± standard deviation of au-
tocorrelation function is plotted. Figure 3a) shows the result for 32 simulations,
spurious correlation is not diminished (LHS-mean-SC). It is obvious that capturing
of target autocorrelation function is weak and the scatterband is large. The ex-
planation is clear, using only 32 simulations leads to large both normsEmax and
Eoverall. WhenNSim increases to 64, capturing of autocorrelation function is better,
Fig. 3c), d). Note that now the alternative with diminished spurious correlation by
SA resulted in excellent function capturing with very small variability, see figure
3d). This fact corresponds with both norms which are in case d) very small. It can
be seen that the spurious correlation at the level of simulation of independent ran-
dom variables influences negatively the autocorrelation function. These illustrative
indicate that norms used as objective functions in Simulated Annealing algorithm
can be interpreted as a qualitative prediction of resulting quality of autocorrelation
structure.
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Obr. 3: Scatterband of autocorrelation functionCaa(ξ) for NSim = 32: a) LHS-mean-SC; b) LHS-
mean-SCD; andNSim = 64: c) LHS-mean-SC; d) LHS-mean-SCD

Classification of sampling schemes
When any method for random field simulation is used, it is required that the sta-

tistical characteristics of the field generated should be as close as possible to the
target statistical parameters. Generally, the mean values, standard deviations, corre-
lation and spectral characteristics (we will use the common term “statistics”) cannot
be generated with absolute accuracy. All possibilities of sampling method can be
summarized as follows: (i) crude Monte Carlo simulation (MCS); (ii) Latin hyper-
cube sampling under original scheme, [19] , (LHS-median); (iii) Latin hypercube
sampling under improved scheme, [23] (LHS-mean). These schemes can be ap-
plied in two alternatives: (1) No attention is paid to spurious correlation (SC); (2)
Spurious correlation diminished (SCD) There are 6 combinations, cases with SC
and SCD, which are sampled by MC, LHS-half and LHS-mean. What is the best
alternative? Naturally, the quality of sampling schemes can be intuitively predicted
even without numerical experiment, e.g. combination (MCS) and (SC) should def-
initely belong to worst case and combination of (LHS-mean) and (SCD) should be
the most efficient.

The assessment can be done by performing more runs of the same simulation
process with a different random setting of the seed of pseudo random number gen-
erator. Thus samples are artificially generated from the population in this way. Let
us consider 1D structure of length 10 m (e.g. beam), the structure is divided into
128 discretization points associated with finite elements (N = 128). The region of
small number of simulations (NSim = 8, 16, 32, 64, 128, 256, 512) has been selected
in parametric study - implicitly it was supposed that the superiority of LHS should
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appear for small number simulations (tens, hundreds). Number of runsNrun = 30
was selected for estimation of statistics. So the random fields had to be simulated
Nrun×NSim times for a statistics of interest. The results are plotted in Fig. 4.Mean
value: An ability to simulatemean valueof random field is excellent in all alter-
natives of LHS (figures a) and b)), even for very low number of simulations. This
ability is rather poor in case of MCS, mean value ofmeanfluctuates and standard
deviation ofmeanis high in comparison to LHS.Standard deviation: The ability
to simulatestandard deviationof random field is documented in figures c) and d).
Again, capturing of this statistics is “random” in case of MCS, standard deviation
of standard deviationis high in comparison to LHS. LHS-half underestimates mean
value ofstandard deviation(figure c)) for low number of simulations. The capa-
bility of improved sampling scheme LHS-mean is much better and convergenceto
target statistic (unit standard deviation) is faster. This is a general feature of LHS
tested at the level of random variables. An important fact is documented: dimin-
ishing spurious correlation has small influence on these basic statistics of random
field. Note, that if we construct statistics presented in Fig. 4 for different correlation
length of the field, similar trends will be obtained.
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5 SIZE EFFECT OF MULTI-FILAMENT YARNS
The tensile failure of fiber-reinforced composites is generally dominated by fail-

ure of the fiber bundle. The matrix material, whether polymer, ceramic or metal,
serves mainly to transfer the load among the fibers through the elasticity, oryield-
ing, debonding with sliding friction between the fiber and matrix. The matrix can
carry some load in a metal or polymer matrix composite but, after matrix cracking,
carries almost zero load in ceramic matrix composites. The two factors controlling
fiber failure are (i) the statistical fiber strength and (ii) the stressdistribution along
the fiber direction. The stress along a fiber depends on the applied stress, but also
on precisely how stress is transferred from a broken fiber to the surrounding intact
fibers and matrix environment. This stress transfer is governed by the elastic prop-
erties of the constituents and by the fiber/matrix interface, and is difficultto obtain
in the presence of more than one broken fiber. There are two load sharing rules. One
is “global load sharing”, i.e. loads dropped due to fiber break(s) are shared equally
among intact fibers. The other is “local load sharing”, i.e. dropped loads are carried
preferably by filaments surrounding the broken filaments.

The presented work is focused particularly on fiber bundles under global (equal)
load sharing. In particular we are focusing on size (length) effect of multi-filament
yarn under tensile strength test. The available statistical models of strength of bun-
dles are reviewed. Deterministic micromechanical computational model capable of
tracing the whole load-deflection curve has been developed and used for identifi-
cation and study of sources of randomness affecting the evolution of the stiffness
during the loading of yarns in tension. It has been shown that also the stiffness
evolution in the early stages of loading influences the maximum tensile force in the
bundle. The model serves as a basis for a complex stochastic analysis of the com-
plex size effects including all mentioned effects employing the random field simu-
lation technique. Such stochastic modeling framework has been used for derivation
of new size effect laws for each of the considered sources of randomness separately.

In order to introduce the statistical length scale in the Weibull power lawfor the
mean size effect, we modify the classical law by introducing the length-dependent
functionf(l) with the filament lengthl in the following form

σ (l) = s0 [− ln (1 − Pf)]
1/m f(l) (7)

wherem is the Weibull modulus (shape parameter of Weibull strength distribution
of fiber strength),s0 is the scale parameter of strength distribution andPf is the
failure probability. We suggest to approximate the numerically obtained size effect
on fibers with local tensile strengthf t described by random field by Eq. (7) with
f(l) expressed by one of the following formulas:

f (l) =

(

l

lρ
+

lρ
lρ + l

)−1/m

or f (l) =

(

lρ
lρ + l

)1/m

(8)
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This introduces the statistical length scale into (local) Weibull law in form of auto-
correlation lengthlρ of random strength field.

Since the description of strength by random field still does not suffice to capture
the size effects measured by real experiments, we have also studied and developed
algorithm for back identification ofdelayed activationε0 of fibers. Shortly, if fibers
between clamps do not have equal length, the longer ones activate in later stages of
the test. If we identify also parameters of stiffness random field (Young’s modulus
of elasticity of elastic-brittle fibersE) we are able to simulate all essential features
of real tensile test, see Fig. 5.
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Obr. 5: Comparison of numerical simulations (gray) with experiments (black). Left: Simulations
without delayed activation, randomized stiffness and strength. Diagram computed with DA plotted
with dashed line. Right: Simulations with included delayed activation, randomized stiffness and
strength. Diagrams computed with mean values plotted with dashed line.

The resulting size effect curve (double plot of length against strength of yarn) is
plotted in Fig. 6.

In addition to the size effect curves obtained from the random process simulations
Fig. 6 also shows the size effect obtained with the Daniels’s [29] and Smith’s [30]
models calculated withnf = 1600. Assuming that the filaments follow the Weibull
scaling we may construct the bundle power law as a product of Daniels’s prediction
of the mean total strength [29] with the Weibull scalingf(l) = (l0/l)

1/m

µ⋆ (l) = µ⋆f(l) = µ⋆

(

l0
l

)1/m

= s0 · m−1/m · e−1/m

(

l0
l

)1/m

. (9)

Based on the lessons learned from the numerical analysis we have suggested ap-
proximation formulas describing the size effect laws due to the random strength or
stiffness along the bundle. The obtained results have been verified with the helpof
the available analytical and numerical fiber bundle models by Smith and Daniels.
However, the available fiber bundle models could not be used for modeling the re-
sponse measured in the yarn tensile test, because they impose practically unachie-
veable assumptions of regular force transmission in the clamping and do not capture
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Obr. 6: Size effect curves obtained numerically for the randomizedf t, ε0, ft together withE and all
three parameters simultaneously.

the disorder in the structure of filaments in the bundle.

6 ENERGETIC-STATISTICAL SIZE EFFECT

6.1 Introduction and development of the new law

The size effect on nominal strengthσN of concrete structures has basically two
explanations, deterministic (energetic) and statistical (probabilistic). The former is
caused by the stress redistribution on the fracture process zone, which is fordifferent
structure sizes about the same. The latter is explained by higher probability of low
local strength for large structures.

Practical and simple approach to incorporate the statistical size effect into the de-
sign or the assessment of very large unreinforced concrete structures (such as arch
dams, foundations and earth retaining structures, where the statistical size effect
plays a significant role) is important. Failure load prediction can be done without
simulation of Monte Carlo type utilizing the energetic-statistical sizeeffect formula
in mean sense together with deterministic results of FEM nonlinear fractureme-
chanics codes.

We propose a new improved law with two scaling lengths (deterministic and sta-
tistical) for combined energetic-probabilistic size effect on the nominal strength for
structures failing by crack initiation from smooth surface. The role of thesetwo
lengths in the transition from energetic to statistical size effect of Weibull type is
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clarified. Relations to the recently developed deterministic-energeticand energetic-
statistical formulas are presented. We also clarify the role and interplay of two
material lengths: deterministic and statistical.

The deterministic energetic size effect formula for crack initiation from smooth
surface reads [31, 2, 32]:

σN (D) = f∞
r

[

1 +
rDb

D + lp

]1/r

(10)

whereσN is the nominal strength depending on the structural sizeD. Parameters
fr, Db andr are positive constants representing the unknown empirical parameters
to be determined. Parameterfr represents solution of the elastic-brittle strength
which is reached as a nominal strength for very large structural sizes. The exponent
r (a constant) controls the curvature and the slope of the law. The exponent offers a
degree of freedom while having no effect on the expansion in derivation of the law
[31, 2]. ParameterDb has the meaning of the thickness of cracked layer. Variation of
the parameter Db moves the whole curve left or right; it represents the deterministic
scaling parameter and is in principle related to grain size and drives the transition
from elastic brittle (Db = 0) to quasibrittle (Db > 0) behavior.

By considering the fact that extremely small structures (smaller thanDb) must
exhibit the plastic limit, a parameterlp is introduced to control this convergence.
The formula (1) represents the full size range transition from perfectly plastic be-
havior (whenD → 0; D ≪ lp) to elastic brittle behavior(D → ∞; D ≫ Db)
through quasibrittle behavior. Parameter lp governs the transition to plasticity for
small sizesD (crack band models or averaging in nonlocal models leads to horizon-
tal asymptote). The case oflp 6= 0 shows the plastic limit for vanishing size D and
the cohesive crack and perfectly plastic material in the crack both predicts equiva-
lent plastic behavior. For large sizes the influence oflp decays fast and therefore the
cases oflp 6= 0 are asymptotically equivalent to case oflp = 0 for largeD.

The large-size asymptote of the deterministic energetic size effect formula (10) is
horizontal:σN(D)/fr = 1, see Fig. 7a). But this is not in agreement with the results
of nonlocal Weibull theory as applied to modulus of rupture [12], in which the large-
size asymptote in the logarithmic plot has the slope−n/m corresponding to the
power law of the classical Weibull statistical theory [1]. In view of this theoretical
evidence, there is a need to superimpose the energetic and statistical theories. Such
superimposition is important, for example, for analyzing the size effect in vertical
bending fracture of arch dams, foundation plinths or retaining walls.

The statistical part of size effect and the existence of statistical length scale have
been investigated in detail by the previous chapter for the particular case ofglass
fibers. By incorporating the result into the formula (10) we get a final law:

σN = f∞
r

[

(

L0

L0 + D

)r n/m

+
rDb

lp + D

]1/r

(11)
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This formula exhibits the following features:

• Small size left asymptote is correct (deterministic), parameter lpdrives to fully
plastic transition for small sizes.

• Large size asymptote is the Weibull power law (statistical size effect, a straight
line with the slope -n/m in the double-logarithmic plot of size versus nominal
strength)

• The formula introduces two scaling lengths: deterministic (Db) and statisti-
cal (L0). The mean size effect is partitioned into deterministic and statistical
parts. Each have its own length scale, the interplay of both embodies behavior
expected and justified by previous research. ParameterDb drives the transi-
tion from elastic-brittle to quasibrittle andL0 drives the transitional zone from
constant property to local Weibull via strength random field. Note that the au-
tocorrelation lengthlρ has direct connection to our statistical lengthL0. This
correspondence is explained in papers in the author’s dissertation [18].

Having the summation in the denominators limit both the statistical and deter-
ministic parts from growing to infinity for smallD. So it remedies the problem that
the previous energetic-statistical formulas [12] intersect the deterministic law at the
sizeD = Db and therefore gives higher mean nominal strength prediction for small
structures compared to the deterministic case. Note that form → ∞ it degener-
ates to deterministic formula (10). The same applies ifL0 → ∞. The interplay
of two scaling lengths using the ratioL0/Db is demonstrated in [18]. The question
arises what is in reality the ratioL0/Db? Since both scaling lengths are in concrete
probably driven mainly by grain sizes, we expectL0 ≈ Db, so the simpler law with
L0 = Db should be an excellent performer for practical cases.

6.2 Superimposition of deterministic and statistical size effects

As was already mentioned deterministic modeling with NLFEM can capture only
deterministic size effect. A procedure of superimposition with statistical part should
be established. Such procedure of the improvement of the failure load (nominal
stress at failure, deterministic size effect prediction) obtained by a nonlinear fracture
mechanics computer code can be as follows:

1. Suppose that the modeled structure has characteristic dimensionDt. The nat-
ural first step is to create FEM computational model for this real size. At this
level the computational model should be tuned and calibrated as much as pos-
sible (meshing, boundary conditions, material etc.). Note that we obtain a pre-
diction of nominal strength of the structure (using failure load corresponding
to the peak load of load-deflection diagram) for sizeDt, but it reflects only
deterministic-energetic features of fracture. Simply, the strength isusually
overestimated at this (first) step, the overestimation is more significant as real
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structure is larger. Result of this step is a point in the size effect plot presented
by a filled circle in Fig. 7 a).

2. Scale down and up geometry of our com-
putational model in order to obtain the
set of similar structures with character-
istic sizesDi, i = 1, . . . , N . Based on
numerical experience a reasonable num-
ber is around 10 sizes and depends how
the sizes cover transition phases. There-
fore, sizesDi should span over large re-
gion from very small to very large sizes.
Then calculate nominal strength for each
sizeσN,i, i = 1, . . . , N . Note that for two
very large sizes nominal strengths should
be almost identical as this calculation fol-
lows energetic size effect with horizontal
asymptote. If not, failure mechanism is
not just only crack initiation, other phe-
nomena (stress redistribution) plays more
significant role and the procedure sug-
gested here cannot be applied. The com-
putational model has to be mesh-objective
in order to obtain objective results (eg.
crack band model, nonlocal damage con-
tinuum) for all sizes.
In order to ensure that phenomenon of
stress redistribution (causing the size ef-
fect for the range of sizes) is correctly
captured, well tested models are recom-
mended for strength prediction. A special
attention should be paid to the selection
of constitutive law and localization lim-
iter. The result of this step is a set of point
(circles) in the size effect plot as shown in
Fig. 7 a).
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Obr. 7: Illustration of superimposition steps. a) Steps 1-4;
b) Step 5 - determinationL0; c) Final formula

3. The next step is to obtain the optimum fit of the deterministic-energetic formula
(10) using the set ofN pairs ({Di, σN,i} : i = 1, . . . , t, . . . , N). Since the
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deterministic formula is generally nonlinear in fitted parameters (ifr 6= 1 or
lp 6= 0) the algorithm for nonlinear regression fit is needed.

The parameterlp can be excluded from the fit based on the plastic analysis
[18]. Fit of the parameterfr can also be avoided because this limit can be esti-
mated from nonlinear FEM analysis as the value to which the nominal strength
converges with increasing size. So we can be prescribe (for very large sizes),
σN/fr = 1 as asymptotic limit. The result of this step is illustrated by a fitted
curve to the set of points in figure 7a).

4. There are three remaining parameters which should be substituted into sta-
tistical-energetic formula (11):n, m andL0: Parametern is the number of
spatial dimensions (n = 1, 2 or 3). Parameterm represents the Weibull mod-
ulus of FPZ with Weibull distribution of random strength. Recent study [32]
reveals that, for concrete and mortar, the asymptotic value of Weibull modulus
m ≈ 24 rather than12, the value widely accepted so far. Ration/m there-
fore represents the slope of MSEC in size effect plot forD → ∞. This means
that for extreme sizes the nominal strength decreases, for two-dimensional (2D)
similarity (n = 2), as the−1/12 power of the structure size. Note, that for dif-
ferent material the asymptotic value of Weibull modulus is different, eg. for
laminates much higher than24. Result of these 4 steps are shown for illus-
tration in Fig. 7a). ParameterL0 is now only remaining parameter to be de-
termined. As it represents statistical length scale it seems to be that we will
need to utilize a statistical software incorporated into your NLFEM code. But
there is much simpler alternative based on simple calculation of local Weibull
integral. Once the mean strength of a large structure is known (a square in the
size effect plot, one can pass a straight line of slope−n/m through the point
(Weibull asymptote). Graphically, the intersection of the statisticalasymptote
with deterministic strength for infinite structure size (horizontal asymptote) fr

gives the statistical scaling length onD-axisL0, see figure 1b), see [18].

5. As all parameters of statistical-energetic formula are determined,nominal stre-
ngth can be calculated for any size. Using real size of the structureDt the
prediction of corresponding nominal strengthσN,t can be done using (11). This
prediction will be generally different (lower) from initial deterministic predic-
tion, Fig. 7c). The larger structure the larger difference is. The formula will
provide us the strength prediction for the mean strength. Additionally, a scatter
of strength can be determined just using the fundamental assumption of Weibull
distribution. For the distribution we know two parameters, shape parameterm
is prescribed initially, and scale parameterss can be calculated easily from pre-
dicted mean and Weibull modulus.
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7 FREET SOFTWARE
A multi-purpose probabilistic software for statistical, sensitivity and reliability

analyzes of engineering problems has been developed [33]. The software is based
on efficient reliability techniques described above and the computational core is im-
plemented by the author in C++ programming language. The GUI (graphical user
interface) is being implemented by Dr. Rusina in C++. The software is designed in
the form suitable for relatively easy assessment of any user-defined computational
problem written in C++, FORTRAN or any other programming languages. The ap-
proach is general and can be applied for basic statistical analysis of computationally
intensive problems. The basic aim of statistical analysis is to obtain the estimation
of the structural response statistics (failure load, deflections, cracks, stresses, etc.).
The FREET software integrated with the ATENA software were used to capture
both the statistical and deterministic size effect obtained from experiments. Prob-
abilistic treatment of nonlinear fracture mechanics in the sense of extremevalue
statistics has been recently applied for crack initiation problems whichexhibits
Weibull-type the statistical size effect [18].

Obr. 8: Imposing of statistical correlation

8 CONCLUSIONS
Simulation of random variables

In chapter 3 the new achievement is mainly the new efficient technique of im-
posing the statistical correlation based on Simulated Annealing. The technique is
robust, efficient and very fast and has many advantages in comparison with former
techniques. The increased efficiency of small-sample simulation technique LHS
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can also be achieved by the proper selection of samples representing the layered
probability content of random variables. The methods are implemented by author
and constitutes the computation core of the multipurpose software package FREET
for statistical, sensitivity and reliability analysis of computational problems. A fu-
ture work is recommended in: (i) Implementation of advanced method for proba-
bilistic analysis, in particular response surface, FORM and Importance Sampling;
(ii) Further research in simulation of random vectors with prescribed simultaneous
probability density function or just marginals and covariances.

Simulation of random fields
Chapter 4 confirms the superior efficiency of LHS and correlation control in the

context of sample simulation of random fields. An attempt has been done to show
better the role of correlation control - diminishing spurious correlation in random
field simulation and importance of sampling schemes for simulation of uncorre-
lated random variables. It has been shown that a spurious correlation influences
significantly the scatter of estimated autocorrelation function of simulated random
fields. A clear indication of this scatter is the fulfillment of norms used as objective
functions in Simulated Annealing algorithm to diminish spurious correlation at the
level of underlying random variables. The quality of simulated samples of random
fields should be assessed. An error assessment procedure has been proposed and
performed for six alternatives of sampling schemes. Diminishing spurious corre-
lation does not influence the capturing of these statistics but does influence signif-
icantly a realization of autocorrelation function of a random field. A future work
is recommended in: (i) Study, development and implementation of simulation of
non-Gaussian stochastic fields; (ii) The newly developed tools of stochastic compu-
tational mechanics in the form of stochastic finite element method (SFEM) will now
enable complex numerical investigations. We expect both (i) verification ofnewly
achieved theoretical results (e.g. in the form of the proposed size effect law for qua-
sibrittle failure at crack initiation) and (ii) numerical computations of real examples
focused on the influence of nonlinearities on failure probability estimations.

Size effect of multi-filament yarns
The performed stochastic simulations with the available experimental data re-

vealed the existence of statistical length scale that could be captured by introducing
an autocorrelation of random material properties. This represents the departure
from the classical Weibull-based models that are lacking any kind of length-scale.
The introduced model delivers a quasi-ductile response of the bundle from the en-
semble of interacting linear-elastic brittle components with irregular properties. In
this respect the present approach falls into the category of lattice models used to
model quasi-brittle behavior of concrete. It should be noted, that due to the pos-
sibility to trace the failure process in a detailed way both in the experiment and in
the simulation, the modeling of multi-filament yarns provides a unique opportunity
to study the local effects in quasi-brittle materials. The possibility togeneralize
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the results for other quasi-brittle materials is worth further intensive studies; The
obtained statistical material characteristics turned out to be of crucial importance
for robust modeling of crack bridges occurring in the cementitious textile compos-
ites. The ”well designed” microstructure of the yarn and of the bond layer in the
crack bridge may significantly increase the overall deformation capacity(ductility)
of structural elements. The lessons learned from the present study will be applied
in a more targeted development of new yarn and textile structures with an improved
performance of crack bridges. Development of micromechanical model of bond
behavior and its coupling with the developed models will be pursued next.

Energetic-statistical size effect
We have presented a broader theoretical treatment of connections between fiber

bundle models and size effect of concrete structures. It has been shown how the sta-
tistical size effect at fracture initiation can be captured by a stochastic finite element
code based on extreme value statistics, simulation of the random field of material
properties and chain of bundles transition. The computer simulations of the sta-
tistical size effect in 1D based on stability postulate of extreme valuedistributions
match the test data. However, in some cases the correct behavior cannot be achieved
for other tests using a 1D treatment. A proper way of treating the stress redistribu-
tion is by the proposed macro-elements in 2D (or 3D), the scaling of which is based
on the fiber bundle model capturing partial load-sharing and ductility in the finite
element system. A simple and effective strategy for capturing the statistical size
effect using stochastic finite element methods is developed which overcomesthe
problematic feature of stochastic finite element method: How to capture the statisti-
cal size effect for structures of very large sizes. The idea is to emulate the recursive
stability property from which the Weibull extreme value distribution is derived. Us-
age of combination of a feasible type of Monte Carlo simulation and computational
modeling of nonlinear fracture mechanics renders a probabilistic treatment of com-
plex fracture mechanics problems possible. The approach may be understood as
a computational trick based on extreme value theory similar to its counterpart in
deterministic nonlinear analysis of fracture - crack band model. The interplay of
deterministic and statistical lengths of quasibrittle structures has beenclarified and
the analytical formula for the nominal mean strength prediction of crack initiation
problems has been derived and proposed. The law features two separate scaling
lengths of structures governing two different sources of size effect: deterministic
and statistical. The role of these two lengths in the transition from energetic to
statistical size effect of Weibull type is explained. A practical procedure of super-
imposition of the deterministic and statistical size effects at crack initiation has been
suggested. It requires only a few NLFEM analysis using scaled sizes so the neces-
sity of time consuming statistical simulation is avoided. The prediction canbe done
without any special Monte Carlo simulation, which is usually used to deal with the
influence of uncertainties on structural strength.
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Summary in Czech

P̌redlǒzeńa pŕace shrnuje v́ysledky dosǎzeńe autorem b̌ehem doktorsḱeho stu-
dia a kteŕe jsou podrobňe rozvedeny v disertačńı práci autora. Nov́e p̌rı́nosy lze
spaťrovat ve čtyřech oblastech: (1) simulace náhodńych velǐcin a vektor̊u typu
Monte Carlo se zam̌ěreńım na statistickou korelaci mezi veličinami; (2) simulace
náhodńych poĺı v kontextu stochasticḱe metody koněcných prvk̊u a zam̌ěreńı na
posouzeńı přesnosti simulovańych vzork̊u s ohledem na růzńe metody poǔzité p̌ri
simulaci; (3) v́yvoj mikromechanicḱeho modelu zatěžováńı svazku vĺaken poǔzité-
ho jako v́yztuž do textilem vyztǔzeńeho betonu; zde se autor zamě̌ril na vliv délky
svazku na pevnost ovlivněnou r̊uzńymi zdroji náhodnosti a prostorové prom̌enlivosti
materíalových parametr̊u, byly navřzeny procedury a vztahy pro podchycenı́ těchto
vliv ů a (4) vlivem velikosti betonov́ych konstrukćı na jejichúnosnost; zde je před-
stavena nov́a metoda pro podchycenı́ statisticḱe slǒzky vlivu velikosti podlǒzeńa
teoríı extŕemńıch hodnot a d́ale je sledov́an komplexńı vliv velikosti (statisticḱa i
deterministicḱa slǒzka a jejich interakce). V poslednı́, čtvrté oblasti pŕace vedla
k navřzeńı a ov̌ěreńı nového vztahu pro komplexnı́ vliv velikosti.
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