Detail publikace

# On the Difference Equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$

Originální název

On the Difference Equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$

Anglický název

On the Difference Equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$

Jazyk

en

Originální abstrakt

The behavior of well-defined solutions of the difference equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$, where, $n\in N_0$, $k\in N$ is fixed, the sequences $a_n$, $b_n$ and $c_n$ are real, $(b_n, c_n)\not =(0, 0)$, and the initial values are real numbers, is described.

Anglický abstrakt

The behavior of well-defined solutions of the difference equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$, where, $n\in N_0$, $k\in N$ is fixed, the sequences $a_n$, $b_n$ and $c_n$ are real, $(b_n, c_n)\not =(0, 0)$, and the initial values are real numbers, is described.

BibTex


@article{BUT93283,
author="Stevo {Stevič} and Josef {Diblík} and Bratislav {Iričanin} and Zdeněk {Šmarda}",
title="On the Difference Equation $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$",
annote="The behavior of well-defined solutions of the difference equation   $x_n = a _nx_{n-k}/(b_nc_n x_{n-1} ... x_{n-k})$,
where, $n\in N_0$, $k\in N$ is fixed, the sequences $a_n$, $b_n$ and $c_n$ are real, $(b_n, c_n)\not =(0, 0)$,
and the initial values are real numbers, is described.",
chapter="93283",
number="ID 409237",
volume="2012",
year="2012",
month="august",
pages="1--20",
type="journal article - other"
}