Detail publikace

Inovativní zapojení Nóse-Hoover termostatického systému

HRUBOŠ, Z. PETRŽELA, J. GÖTTHANS, T.

Originální název

Novel circuit implementation of the Nóse-Hoover thermostated dynamic system

Český název

Inovativní zapojení Nóse-Hoover termostatického systému

Anglický název

Novel circuit implementation of the Nóse-Hoover thermostated dynamic system

Typ

článek ve sborníku

Jazyk

en

Originální abstrakt

It came as a surprise to most scientists when Lorenz in 1963 discovered chaos in a simple system of three autonomous ordinary differential equations with two quadratic nonlinearities. This paper reviews the numerical analysis, simulation and circuit implementation of conservative chaotic scillator. There is reason to believe that the algebraically simplest examples of chaotic flows with quadratic and piecewise linear nonlinearities have now been identified. A special case of the simple Nose-Hoover system where the chaotic attractor can be observed without the need to se parameters of the system (or all are equal to one) is described.

Český abstrakt

Když v roce 1963 Lorenz objevil chaos u jednoduchého systému tří autonomních diferenciálních rovnic se dvěma kvadratickýma nelinearitama, bylo to překvapením pro mnoho vědců. Tento článek shrnuje numerickou analýzu, simulace a obvodovou realizaci konzervaticního chaotického oscilátoru. Lze jednoduše ověřit, že algebraicky nejjednodušší příklady chaotických toků s kvadratickou a po částech lineární převodní charakteristikou jsou identifikována. Zvláštním případem takového jednoduchého systému je Nóse-Hooverův systém, kde může pozorovat chaotický atraktor, aniž by bylo nutné nastavit parametry systému.

Anglický abstrakt

It came as a surprise to most scientists when Lorenz in 1963 discovered chaos in a simple system of three autonomous ordinary differential equations with two quadratic nonlinearities. This paper reviews the numerical analysis, simulation and circuit implementation of conservative chaotic scillator. There is reason to believe that the algebraically simplest examples of chaotic flows with quadratic and piecewise linear nonlinearities have now been identified. A special case of the simple Nose-Hoover system where the chaotic attractor can be observed without the need to se parameters of the system (or all are equal to one) is described.

Klíčová slova

Chaos, podivný atraktor, diferenciální rovnice, bifurkace, autonomní oscilátor, integrátorová syntéza

Rok RIV

2011

Vydáno

18.08.2011

ISBN

978-1-4577-1409-2

Kniha

Proceedings of the 34th International Conference on Telecommunications and Signal Processing TSP 2011, 18-20.8.2011, Budapest, Hungary

Strany od

307

Strany do

311

Strany počet

5

BibTex


@inproceedings{BUT73260,
  author="Zdeněk {Hruboš} and Jiří {Petržela} and Tomáš {Götthans}",
  title="Novel circuit implementation of the Nóse-Hoover thermostated dynamic system",
  annote="It came as a surprise to most scientists when Lorenz in 1963 discovered chaos in a simple system of three autonomous ordinary differential equations with two quadratic nonlinearities. This paper reviews the numerical analysis, simulation and circuit implementation of conservative chaotic scillator. There is reason to believe that the algebraically simplest examples of chaotic flows with quadratic and piecewise linear nonlinearities have now been identified. A special case of the simple Nose-Hoover system where the chaotic attractor can be observed without the need to se 
parameters of the system (or all are equal to one) is described.",
  booktitle="Proceedings of the 34th International Conference on Telecommunications and Signal Processing TSP 2011, 18-20.8.2011, Budapest, Hungary",
  chapter="73260",
  howpublished="electronic, physical medium",
  year="2011",
  month="august",
  pages="307--311",
  type="conference paper"
}