Detail publikace

Parylene Micropillars Coated with Thermally Grown SiO2

LIU, X. FECKO, P. FOHLEROVÁ, Z. PEKÁREK, J. KARÁSEK, T. NEUŽIL, P.

Originální název

Parylene Micropillars Coated with Thermally Grown SiO2

Anglický název

Parylene Micropillars Coated with Thermally Grown SiO2

Jazyk

en

Originální abstrakt

The modification of surface properties frequently requires the binding of suitable compounds to the original surface. Silanes or thiols can be directly covalently bonded to either Si-based materials or Au, thus ruling out polymers. Here, we show the utilization of a layer of SiO2 with a thickness of a few nanometers that serves as a cross-linker between polymers and silanes providing covalent bonding to the surface. We deposited a polymer onto a thermally oxidized microstructured Si surface followed by subsequent Si removal. We demonstrated a Si-based nanotechnology fabrication method that can be generally used to modify the surface properties of practically any polymer via SiO2 cross-linking. This can produce any topology, including microstructures, nanostructures, or composite microstructure/nanostructures terminating in different shapes, since all the steps involving polymer deposition are conducted at room temperature after the Si surface has been thermally oxidized. This technique opens a broad field of new applications for polymers in microstructures and nanostructures that have stable water surface contact angle values with the contact angle set by demand for gecko-mimicking structures or lotus leaf inspired surfaces.

Anglický abstrakt

The modification of surface properties frequently requires the binding of suitable compounds to the original surface. Silanes or thiols can be directly covalently bonded to either Si-based materials or Au, thus ruling out polymers. Here, we show the utilization of a layer of SiO2 with a thickness of a few nanometers that serves as a cross-linker between polymers and silanes providing covalent bonding to the surface. We deposited a polymer onto a thermally oxidized microstructured Si surface followed by subsequent Si removal. We demonstrated a Si-based nanotechnology fabrication method that can be generally used to modify the surface properties of practically any polymer via SiO2 cross-linking. This can produce any topology, including microstructures, nanostructures, or composite microstructure/nanostructures terminating in different shapes, since all the steps involving polymer deposition are conducted at room temperature after the Si surface has been thermally oxidized. This technique opens a broad field of new applications for polymers in microstructures and nanostructures that have stable water surface contact angle values with the contact angle set by demand for gecko-mimicking structures or lotus leaf inspired surfaces.

Dokumenty

BibTex


@article{BUT165596,
  author="Peter {Fecko} and Zdenka {Fohlerová} and Jan {Pekárek} and Pavel {Neužil}",
  title="Parylene Micropillars Coated with Thermally Grown SiO2",
  annote="The modification of surface properties frequently requires the binding of suitable compounds to the original surface. Silanes or thiols can be directly covalently bonded to either Si-based materials or Au, thus ruling out polymers. Here, we show the utilization of a layer of SiO2 with a thickness of a few nanometers that serves as a cross-linker between polymers and silanes providing covalent bonding to the surface. We deposited a polymer onto a thermally oxidized microstructured Si surface followed by subsequent Si removal. We demonstrated a Si-based nanotechnology fabrication method that can be generally used to modify the surface properties of practically any polymer via SiO2 cross-linking. This can produce any topology, including microstructures, nanostructures, or composite microstructure/nanostructures terminating in different shapes, since all the steps involving polymer deposition are conducted at room temperature after the Si surface has been thermally oxidized. This technique opens a broad field of new applications for polymers in microstructures and nanostructures that have stable water surface contact angle values with the contact angle set by demand for gecko-mimicking structures or lotus leaf inspired surfaces.",
  chapter="165596",
  doi="10.1116/6.0000558",
  howpublished="online",
  number="1",
  volume="38",
  year="2020",
  month="november",
  pages="38--43",
  type="journal article in Web of Science"
}