Detail publikace

An application of a diffeomorphism theorem to Volterra integral operator

Originální název

An application of a diffeomorphism theorem to Volterra integral operator

Anglický název

An application of a diffeomorphism theorem to Volterra integral operator

Jazyk

en

Originální abstrakt

Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.

Anglický abstrakt

Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.

Dokumenty

BibTex


@article{BUT150427,
  author="Josef {Diblík} and Marek {Galewski} and Marcin {Koniorczyk} and Ewa {Schmeidel}",
  title="An application of a diffeomorphism theorem to Volterra integral operator",
  annote="Using global diffeomorphism theorem based on duality mapping and mountain geometry, we investigate the properties of the Volterra operator given pointwise for t is an element of [0,1] by

V(x) (t) = x(t) + integral(t)(0) v(t, tau, x(tau))d tau, x(0) = 0.",
  address="Khayyam Publishing, Inc.",
  chapter="150427",
  howpublished="print",
  institution="Khayyam Publishing, Inc.",
  number="7-8",
  volume="31",
  year="2018",
  month="september",
  pages="621--642",
  publisher="Khayyam Publishing, Inc.",
  type="journal article in Web of Science"
}