Detail publikace

Effect of Ultrasonication Dispersion Technique on Sintering Properties of CNT Reinforced Al-Zn-Mg-Cu Powder

Originální název

Effect of Ultrasonication Dispersion Technique on Sintering Properties of CNT Reinforced Al-Zn-Mg-Cu Powder

Anglický název

Effect of Ultrasonication Dispersion Technique on Sintering Properties of CNT Reinforced Al-Zn-Mg-Cu Powder

Jazyk

en

Originální abstrakt

CNT has been researched significantly due to its properties especially mechanical and conductivity properties. Due to strong affinity between particles, dispersion has been remained a problem for its applications. Ultrasonication technique was used to disperse CNT on aluminum powder. Ultrasonication has successfully dispersed CNT on aluminum powder in ethanol. Low energy ball milling for 1h under argon gas with 5: 1 ball to powder ratio was used to optimize dispersion of CNT on aluminum. CNT concentration in this research is ranged from 0.1 up to 3wt%. Premix Al-5.5Zn-2.5Mg-0.5Cu powder was used as matrix for this research. Sintering at 580 degrees C for 1h under argon gas was carried to produce high density materials. Pores are still remained on material and it is possibility that pores were caused by agglomeration of CNT. Dispersion high content of CNT is still remained obstacle on this research. Aluminum carbide, Al4C3 is recognized as a ` bridge between aluminum and CNT for stress transfer was investigated in this research. Raman Spectroscopy, XRD and SEM-EDS were carried out to characterize materials.

Anglický abstrakt

CNT has been researched significantly due to its properties especially mechanical and conductivity properties. Due to strong affinity between particles, dispersion has been remained a problem for its applications. Ultrasonication technique was used to disperse CNT on aluminum powder. Ultrasonication has successfully dispersed CNT on aluminum powder in ethanol. Low energy ball milling for 1h under argon gas with 5: 1 ball to powder ratio was used to optimize dispersion of CNT on aluminum. CNT concentration in this research is ranged from 0.1 up to 3wt%. Premix Al-5.5Zn-2.5Mg-0.5Cu powder was used as matrix for this research. Sintering at 580 degrees C for 1h under argon gas was carried to produce high density materials. Pores are still remained on material and it is possibility that pores were caused by agglomeration of CNT. Dispersion high content of CNT is still remained obstacle on this research. Aluminum carbide, Al4C3 is recognized as a ` bridge between aluminum and CNT for stress transfer was investigated in this research. Raman Spectroscopy, XRD and SEM-EDS were carried out to characterize materials.

Plný text v Digitální knihovně

BibTex


@article{BUT145588,
  author="Haris {Rudianto} and Ivo {Dlouhý} and František {Šoukal}",
  title="Effect of Ultrasonication Dispersion Technique on Sintering Properties of CNT Reinforced Al-Zn-Mg-Cu Powder",
  annote="CNT has been researched significantly due to its properties especially mechanical and conductivity properties. Due to strong affinity between particles, dispersion has been remained a problem for its applications. Ultrasonication technique was used to disperse CNT on aluminum powder. Ultrasonication has successfully dispersed CNT on aluminum powder in ethanol. Low energy ball milling for 1h under argon gas with 5: 1 ball to powder ratio was used to optimize dispersion of CNT on aluminum. CNT concentration in this research is ranged from 0.1 up to 3wt%. Premix Al-5.5Zn-2.5Mg-0.5Cu powder was used as matrix for this research. Sintering at 580 degrees C for 1h under argon gas was carried to produce high density materials. Pores are still remained on material and it is possibility that pores were caused by agglomeration of CNT. Dispersion high content of CNT is still remained obstacle on this research. Aluminum carbide, Al4C3 is recognized as a ` bridge between aluminum and CNT for stress transfer was investigated in this research. Raman Spectroscopy, XRD and SEM-EDS were carried out to characterize materials.",
  address="Polish Academy of Sciences",
  chapter="145588",
  doi="10.1515/amm-2017-0165",
  howpublished="print",
  institution="Polish Academy of Sciences",
  number="2",
  volume="62",
  year="2017",
  month="january",
  pages="1131--1135",
  publisher="Polish Academy of Sciences",
  type="journal article in Web of Science"
}