Detail publikace

# Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Originální název

Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Anglický název

Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Jazyk

en

Originální abstrakt

Two-dimensional linear discrete systems $$x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0$$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0 Anglický abstrakt Two-dimensional linear discrete systems $$x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0$$are analyzed, where$m_{1}, m_{2},\dots, m_{n}$are constant integer delays,$0

Plný text v Digitální knihovně

Dokumenty

BibTex


@article{BUT137194,
author="Josef {Diblík} and Hana {Halfarová} and Jan {Šafařík}",
title="Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2",
annote="Two-dimensional linear discrete systems
$$x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0$$are analyzed,
where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, \$0