Detail publikace

Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Originální název

Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Anglický název

Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2

Jazyk

en

Originální abstrakt

Two-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0

Anglický abstrakt

Two-dimensional linear discrete systems $$ x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0 $$are analyzed, where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0

Plný text v Digitální knihovně

Dokumenty

BibTex


@article{BUT137194,
  author="Josef {Diblík} and Hana {Halfarová} and Jan {Šafařík}",
  title="Conditional Stability and Asymptotic Behavior of Solutions of Weakly Delayed Linear Discrete Systems in R^2",
  annote="Two-dimensional linear discrete systems
$$
x(k+1)=Ax(k)+\sum\limits_{l=1}^{n}B_{l}x_{l}(k-m_{l}),\,\,\,k\ge 0
$$are analyzed,
where $m_{1}, m_{2},\dots, m_{n}$ are constant integer delays, $0