Detail publikace

Weakly Delayed systems in $R^3$

Originální název

Weakly Delayed systems in $R^3$

Anglický název

Weakly Delayed systems in $R^3$

Jazyk

en

Originální abstrakt

The paper is concerned with a linear discrete system with delay $$x(k+1) = Ax(k) + Bx(k-m),\ k = 0, 1, \dots,$$ in $\mathbb{R}^3$. It is assumed that the system is weakly delayed. For one of the possible Jordan forms solution of an arbitrary initial problem is given.

Anglický abstrakt

The paper is concerned with a linear discrete system with delay $$x(k+1) = Ax(k) + Bx(k-m),\ k = 0, 1, \dots,$$ in $\mathbb{R}^3$. It is assumed that the system is weakly delayed. For one of the possible Jordan forms solution of an arbitrary initial problem is given.

Dokumenty

BibTex


@inproceedings{BUT135101,
  author="Jan {Šafařík}",
  title="Weakly Delayed systems in $R^3$",
  annote="The paper is concerned with a linear discrete system with delay
$$x(k+1) = Ax(k) + Bx(k-m),\ k = 0, 1, \dots,$$
in $\mathbb{R}^3$. It is assumed that the system is weakly delayed. For one of the possible Jordan forms solution of an arbitrary initial problem is given.",
  address="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  booktitle="Proceedings of the 23nd Conference STUDENT EEICT 2017",
  chapter="135101",
  howpublished="electronic, physical medium",
  institution="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  year="2017",
  month="april",
  pages="604--608",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  type="conference paper"
}