Detail publikace

Fractography of AlCoCrFeNiTi0.5 powder multi-principal-element alloy

Originální název

Fractography of AlCoCrFeNiTi0.5 powder multi-principal-element alloy

Anglický název

Fractography of AlCoCrFeNiTi0.5 powder multi-principal-element alloy

Jazyk

en

Originální abstrakt

Multi-principal element alloys are new class of materials forming single major multi element solid solutions phases. AlCoCrFeNiTi0.5 bulk alloy has been obtained by a combination of high-energy milling and spark plasma sintering. Three point bending test, Vickers microhardness test, X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods were utilized to observe mechano-chemical reactions during milling, sintered bul alloy behavior and microstructures before and after annealing and mechanical performance. Bulk alloy consists of combination of four phases, namely major FCC and ordered B2 phase and minor σ and carbide phase with ultra-fine grains. Highest bending strength obtained was 1275 MPa with 97.52 GPa elastic modulus. Structure has been revealed to be somewhat brittle with low-energy brittle fracture with no apparent plastic deformation in fracture surfaces. This can be the result of synergic effect of extreme grain refinement and brittle ordered phases presence

Anglický abstrakt

Multi-principal element alloys are new class of materials forming single major multi element solid solutions phases. AlCoCrFeNiTi0.5 bulk alloy has been obtained by a combination of high-energy milling and spark plasma sintering. Three point bending test, Vickers microhardness test, X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods were utilized to observe mechano-chemical reactions during milling, sintered bul alloy behavior and microstructures before and after annealing and mechanical performance. Bulk alloy consists of combination of four phases, namely major FCC and ordered B2 phase and minor σ and carbide phase with ultra-fine grains. Highest bending strength obtained was 1275 MPa with 97.52 GPa elastic modulus. Structure has been revealed to be somewhat brittle with low-energy brittle fracture with no apparent plastic deformation in fracture surfaces. This can be the result of synergic effect of extreme grain refinement and brittle ordered phases presence

BibTex


@inproceedings{BUT130750,
  author="Igor {Moravčík} and Petra {Hanusová} and Jan {Čupera} and Josef {Zapletal} and Jan {Čížek} and Ivo {Dlouhý}",
  title="Fractography of AlCoCrFeNiTi0.5 powder
multi-principal-element alloy",
  annote="Multi-principal element alloys are new class of materials forming single major multi element solid solutions phases. AlCoCrFeNiTi0.5 bulk alloy has been obtained by a combination of high-energy milling and spark plasma sintering. Three point bending test, Vickers microhardness test, X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods were utilized to observe mechano-chemical reactions during milling, sintered bul alloy behavior and microstructures before and after annealing and mechanical performance. Bulk alloy consists of combination of four phases, namely major FCC and ordered B2 phase and minor σ and carbide phase with ultra-fine grains. Highest bending strength obtained was 1275 MPa with 97.52 GPa elastic modulus. Structure has been revealed to be somewhat brittle with low-energy brittle fracture with no apparent plastic deformation in fracture surfaces. This can be the result of synergic effect of extreme grain refinement and brittle ordered phases presence",
  booktitle="MULTI- SCALE DESIGN OF ADVANCED MATERIALS. 2016",
  chapter="130750",
  howpublished="online",
  year="2016",
  month="june",
  pages="25--29",
  type="conference paper"
}