Detail publikace

Weakly Delayed Difference Systems in $R^3$

Originální název

Weakly Delayed Difference Systems in $R^3$

Anglický název

Weakly Delayed Difference Systems in $R^3$

Jazyk

en

Originální abstrakt

The paper is concerned with weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where k = 0, 1, ... and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. We solve this system utilizing a Putzer algorithm.

Anglický abstrakt

The paper is concerned with weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where k = 0, 1, ... and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. We solve this system utilizing a Putzer algorithm.

Dokumenty

BibTex


@inproceedings{BUT129829,
  author="Jan {Šafařík} and Josef {Diblík} and Kristýna {Mencáková}",
  title="Weakly Delayed Difference Systems in $R^3$",
  annote="The paper is concerned with weakly delayed difference system
$x(k+1) = Ax(k) + Bx(k-1)$
where k = 0, 1, ... and $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices.
We solve this system utilizing a Putzer algorithm.",
  address="Univerzita obrany v Brně",
  booktitle="MITAV 2016 (Matematika, informační technologie a aplikované vědy)",
  chapter="129829",
  howpublished="online",
  institution="Univerzita obrany v Brně",
  year="2016",
  month="june",
  pages="1--8",
  publisher="Univerzita obrany v Brně",
  type="conference paper"
}