Detail publikace

Solution of a Weakly Delayed Difference System

Originální název

Solution of a Weakly Delayed Difference System

Anglický název

Solution of a Weakly Delayed Difference System

Jazyk

en

Originální abstrakt

The paper solves a weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where $k = 0, 1, \dots$, $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.

Anglický abstrakt

The paper solves a weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where $k = 0, 1, \dots$, $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.

Dokumenty

BibTex


@inproceedings{BUT124532,
  author="Jan {Šafařík}",
  title="Solution of a Weakly Delayed Difference System",
  annote="The paper solves a weakly delayed difference system $x(k+1) = Ax(k) + Bx(k-1)$ where $k = 0, 1, \dots$, $A = (a_{ij})_{i,j=1}^{3}$, $B = (b_{ij})_{i,j=1}^{3}$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.",
  address="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
  booktitle="Proceedings of the 22nd Conference STUDENT EEICT 2016",
  chapter="124532",
  howpublished="online",
  institution="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
  year="2016",
  month="april",
  pages="763--767",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
  type="conference paper"
}