Detail publikace

Solution of a Weakly Delayed Difference System

Originální název

Solution of a Weakly Delayed Difference System

Anglický název

Solution of a Weakly Delayed Difference System

Jazyk

en

Originální abstrakt

The paper solves a weakly delayed difference system \$x(k+1) = Ax(k) + Bx(k-1)\$ where \$k = 0, 1, \dots\$, \$A = (a_{ij})_{i,j=1}^{3}\$, \$B = (b_{ij})_{i,j=1}^{3}\$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.

Anglický abstrakt

The paper solves a weakly delayed difference system \$x(k+1) = Ax(k) + Bx(k-1)\$ where \$k = 0, 1, \dots\$, \$A = (a_{ij})_{i,j=1}^{3}\$, \$B = (b_{ij})_{i,j=1}^{3}\$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.

Dokumenty

BibTex

``````
@inproceedings{BUT124532,
author="Jan {Šafařík}",
title="Solution of a Weakly Delayed Difference System",
annote="The paper solves a weakly delayed difference system \$x(k+1) = Ax(k) + Bx(k-1)\$ where \$k = 0, 1, \dots\$, \$A = (a_{ij})_{i,j=1}^{3}\$, \$B = (b_{ij})_{i,j=1}^{3}\$ are constant matrices. An explicit solution is given with a discussion on the number of independent initial data.",
address="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
booktitle="Proceedings of the 22nd Conference STUDENT EEICT 2016",
chapter="124532",
howpublished="online",
institution="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
year="2016",
month="april",
pages="763--767",
publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních",
type="conference paper"
}``````