Detail publikace
NUMERICAL ESTIMATION OF MICRO-CRACK PATHS IN POLYMER PARTICULATE COMPOSITE
MAJER, Z. NÁHLÍK, L.
Originální název
NUMERICAL ESTIMATION OF MICRO-CRACK PATHS IN POLYMER PARTICULATE COMPOSITE
Anglický název
NUMERICAL ESTIMATION OF MICRO-CRACK PATHS IN POLYMER PARTICULATE COMPOSITE
Jazyk
en
Originální abstrakt
Determination of composite mechanical behavior is one of important part during the composite tailoring. The aim of the present work was to estimate a micro-crack behavior in a polymer particulate composite. The composite was investigated by means of the finite element method -using ANSYS software. A two-dimensional three-phase finite element model was developed to analyze the crack growth behavior. The assumptions of the linear elastic fracture mechanics were considered and the Maximum Tangential Stress (MTS) criterion was used to predict the direction of the crack propagation. The effect of the elastic modulus of the interphase on the micro-crack propagation was investigated. The properties of matrix and particles were taken from experiment. It was shown that the interphase properties influence the stress intensity factor KI as well as the micro-crack paths. The results of this paper can contribute to a better understanding of the micro-crack propagation in particulate composites with respect to the interphase.
Anglický abstrakt
Determination of composite mechanical behavior is one of important part during the composite tailoring. The aim of the present work was to estimate a micro-crack behavior in a polymer particulate composite. The composite was investigated by means of the finite element method -using ANSYS software. A two-dimensional three-phase finite element model was developed to analyze the crack growth behavior. The assumptions of the linear elastic fracture mechanics were considered and the Maximum Tangential Stress (MTS) criterion was used to predict the direction of the crack propagation. The effect of the elastic modulus of the interphase on the micro-crack propagation was investigated. The properties of matrix and particles were taken from experiment. It was shown that the interphase properties influence the stress intensity factor KI as well as the micro-crack paths. The results of this paper can contribute to a better understanding of the micro-crack propagation in particulate composites with respect to the interphase.
Dokumenty
BibTex
@inproceedings{BUT119302,
author="Zdeněk {Majer} and Luboš {Náhlík}",
title="NUMERICAL ESTIMATION OF MICRO-CRACK PATHS IN POLYMER PARTICULATE COMPOSITE",
annote="Determination of composite mechanical behavior is one of important part during the composite tailoring. The aim of the present work was to estimate a micro-crack behavior in a polymer particulate composite. The composite was investigated by means of the finite element method -using ANSYS software. A two-dimensional three-phase finite element model was developed to analyze the crack growth behavior. The assumptions of the linear elastic fracture mechanics were considered and the Maximum Tangential Stress (MTS) criterion was used to predict the direction of the crack propagation. The effect of the elastic modulus of the interphase on the micro-crack propagation was investigated. The properties of matrix and particles were taken from experiment. It was shown that the interphase properties influence the stress intensity factor KI as well as the micro-crack paths. The results of this paper can contribute to a better understanding of the micro-crack propagation in particulate composites with respect to the interphase.",
booktitle="Engineering Mechanics 2014",
chapter="119302",
edition="1",
howpublished="print",
year="2014",
month="may",
pages="376--379",
type="conference paper"
}