Detail publikace

Tribological performance of Ti−Si based in situ composites

Originální název

Tribological performance of Ti−Si based in situ composites

Anglický název

Tribological performance of Ti−Si based in situ composites

Jazyk

en

Originální abstrakt

In this study, a series of Ti−Si based in situ composites was manufactured by means of a common argon arc melting technique and tribologically evaluated using a sliding ball-on-disc tester under simulated body fluid lubrication. The composite microstructure, mechanical properties and surface roughness were characterized using light and scanning electron microscopy (SEM), vertical scanning interferometry (VSI), X-ray diffraction analysis (XRD), and hardness measurements. The evolution of coefficients of friction (CsOF) and the appearance of contacting surfaces showed that two principal wear mechanisms were the mixed elastohydrodynamic lubrication (EHL), typically followed by abrasive wear. The mixed EHL was due to the combined effect of serum solution lubrication and surface irregularities, which were produced during the routine surface preparation of samples. The mixed EHL provided the absence of wear and low and stable coefficients of friction, which did not depended on phase composition, microstructure or hardness of Ti−Si based alloys. However, in most cases the change of contact geometry led to the transition from the mixed EHL to the conventional boundary lubrication, accompanied by increased and unstable friction, adhesive material transfer of metal to the ceramic counterbodies and abrasive wear. In this respect, the low wear resistance and high adhesion affinity of the titanium matrix of Ti−Si based alloys should be improved.

Anglický abstrakt

In this study, a series of Ti−Si based in situ composites was manufactured by means of a common argon arc melting technique and tribologically evaluated using a sliding ball-on-disc tester under simulated body fluid lubrication. The composite microstructure, mechanical properties and surface roughness were characterized using light and scanning electron microscopy (SEM), vertical scanning interferometry (VSI), X-ray diffraction analysis (XRD), and hardness measurements. The evolution of coefficients of friction (CsOF) and the appearance of contacting surfaces showed that two principal wear mechanisms were the mixed elastohydrodynamic lubrication (EHL), typically followed by abrasive wear. The mixed EHL was due to the combined effect of serum solution lubrication and surface irregularities, which were produced during the routine surface preparation of samples. The mixed EHL provided the absence of wear and low and stable coefficients of friction, which did not depended on phase composition, microstructure or hardness of Ti−Si based alloys. However, in most cases the change of contact geometry led to the transition from the mixed EHL to the conventional boundary lubrication, accompanied by increased and unstable friction, adhesive material transfer of metal to the ceramic counterbodies and abrasive wear. In this respect, the low wear resistance and high adhesion affinity of the titanium matrix of Ti−Si based alloys should be improved.

BibTex


@article{BUT115676,
  author="Serhii {Tkachenko} and David {Nečas} and Jan {Čupera} and Zdeněk {Spotz} and Martin {Vrbka} and Rudolf {Foret}",
  title="Tribological performance of Ti−Si based in situ composites",
  annote="In this study, a series of Ti−Si based in situ composites was manufactured by means of a common argon arc melting technique and tribologically evaluated using a sliding ball-on-disc tester under simulated body fluid lubrication. The composite microstructure, mechanical properties and surface roughness were characterized using light and scanning electron microscopy (SEM), vertical scanning interferometry (VSI), X-ray diffraction analysis (XRD), and hardness measurements. The evolution of coefficients of friction (CsOF) and the appearance of contacting surfaces showed that two principal wear mechanisms were the mixed elastohydrodynamic lubrication (EHL), typically followed by abrasive wear. The mixed EHL was due to the combined effect of serum solution lubrication and surface irregularities, which were produced during the routine surface preparation of samples. The mixed EHL provided the absence of wear and low and stable coefficients of friction, which did not depended on phase composition, microstructure or hardness of Ti−Si based alloys. However, in most cases the change of contact geometry led to the transition from the mixed EHL to the conventional boundary lubrication, accompanied by increased and unstable friction, adhesive material transfer of metal to the ceramic counterbodies and abrasive wear. In this respect, the low wear resistance and high adhesion affinity of the titanium matrix of Ti−Si based alloys should be improved.",
  address="Taylor & Francis",
  chapter="115676",
  doi="10.1080/10402004.2015.1079347",
  howpublished="print",
  institution="Taylor & Francis",
  number="2",
  volume="59",
  year="2016",
  month="april",
  pages="340--351",
  publisher="Taylor & Francis",
  type="journal article"
}