Detail publikace

Structural and Magnetic Properties of CoFe2-xGdxO4 (x = 0.0-0.1) Spinel Ferrite Nanoparticles synthesized by Starch-Assisted Sol-Gel Auto-combustion Method

Originální název

Structural and Magnetic Properties of CoFe2-xGdxO4 (x = 0.0-0.1) Spinel Ferrite Nanoparticles synthesized by Starch-Assisted Sol-Gel Auto-combustion Method

Anglický název

Structural and Magnetic Properties of CoFe2-xGdxO4 (x = 0.0-0.1) Spinel Ferrite Nanoparticles synthesized by Starch-Assisted Sol-Gel Auto-combustion Method

Jazyk

en

Originální abstrakt

In this present article, CoFe2-xGdxO4 (x = 0.0-0.1) nanoparticles were synthesized by starch-assisted sol–gel auto-combustion method. Powder X-ray diffraction patterns revealed the formation of cubic spinel ferrite with the signature of GdFeO3 phase at higher Gd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range 4–10 nm. Raman and Fourier transform infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at the octahedral site as well as the tetrahedral site in CoFe2-xGdxO4 (x = 0.05) nanoparticles. The distribution of Fe3+ ions was obtained to be about 73 % in the octahedral sites and about 27 % in the tetrahedral sites. The distribution of Co2+ ions at the octahedral and tetrahedral sites were 78 and 22 %, respectively. The increase in saturation magnetization and coercivity from 14.59 emu/g (x = 0.00) to 16.11 emu/g (x = 0.025) and 51.75 Oe (x = 0.00) to 92.86 Oe (x = 0.050), respectively, in CoFe2-xGdxO4 nanoparticles were observed.

Anglický abstrakt

In this present article, CoFe2-xGdxO4 (x = 0.0-0.1) nanoparticles were synthesized by starch-assisted sol–gel auto-combustion method. Powder X-ray diffraction patterns revealed the formation of cubic spinel ferrite with the signature of GdFeO3 phase at higher Gd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range 4–10 nm. Raman and Fourier transform infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at the octahedral site as well as the tetrahedral site in CoFe2-xGdxO4 (x = 0.05) nanoparticles. The distribution of Fe3+ ions was obtained to be about 73 % in the octahedral sites and about 27 % in the tetrahedral sites. The distribution of Co2+ ions at the octahedral and tetrahedral sites were 78 and 22 %, respectively. The increase in saturation magnetization and coercivity from 14.59 emu/g (x = 0.00) to 16.11 emu/g (x = 0.025) and 51.75 Oe (x = 0.00) to 92.86 Oe (x = 0.050), respectively, in CoFe2-xGdxO4 nanoparticles were observed.

BibTex


@article{BUT113708,
  author="Raghvendra Singh {Yadav} and Jaromír {Havlica} and Ivo {Kuřitka} and Zuzana {Kožáková} and Eva {Bartoníčková} and Jiří {Másilko} and Lukáš {Kalina} and Jaromír {Wasserbauer} and Miroslava {Mončeková} and Vojtěch {Enev}",
  title="Structural and Magnetic Properties of CoFe2-xGdxO4 (x = 0.0-0.1) Spinel Ferrite Nanoparticles synthesized by Starch-Assisted Sol-Gel Auto-combustion Method",
  annote="In this present article, CoFe2-xGdxO4 (x = 0.0-0.1) nanoparticles were synthesized by starch-assisted
sol–gel auto-combustion method. Powder X-ray diffraction patterns revealed the formation of cubic spinel ferrite with the signature of GdFeO3 phase at higher Gd3+ concentration. The field emission scanning electron microscopy study demonstrated the spherical nanoparticle in the size range 4–10 nm. Raman and Fourier transform infrared spectra supported the formation of the spinel ferrite structure in the nanocrystalline form. The X-ray photoelectron spectroscopy (XPS) analysis confirmed the presence of Co2+ and Fe3+ at the octahedral site as well as the tetrahedral site in CoFe2-xGdxO4 (x = 0.05) nanoparticles. The distribution
of Fe3+ ions was obtained to be about 73 % in the octahedral sites and about 27 % in the tetrahedral sites. The
distribution of Co2+ ions at the octahedral and tetrahedral sites were 78 and 22 %, respectively. The increase in saturation magnetization and coercivity from 14.59 emu/g (x = 0.00) to 16.11 emu/g (x = 0.025) and 51.75 Oe (x = 0.00) to 92.86 Oe (x = 0.050), respectively, in CoFe2-xGdxO4 nanoparticles were observed.",
  address="Springer",
  chapter="113708",
  doi="10.1007/s10948-015-2951-7",
  institution="Springer",
  number="28",
  volume="2015",
  year="2015",
  month="january",
  pages="1797--1806",
  publisher="Springer",
  type="journal article in Web of Science"
}