Detail publikace

Parkinson’s disease glottal flow characterization: Phonation features vs amplitude distributions

Originální název

Parkinson’s disease glottal flow characterization: Phonation features vs amplitude distributions

Anglický název

Parkinson’s disease glottal flow characterization: Phonation features vs amplitude distributions

Jazyk

en

Originální abstrakt

The study of speech and voice in people diagnosed with a neurodegenerative disorder for the purposes of detection and monitoring has known a very relevant push forward in these last years, but it is far from being completed. One of the main concerns nowadays is that once the deterioration of speech and phonation quality has been informed by machine learning relying upon clinical expertise, there is insufficient evidence to resolve if quality deterioration may come from organic causes, neuromotor degeneration or simply from aging. The present work is part of a more ambitious plan to shed light on this problem by resorting to a theoretical modelling of glottal signals under the main known causes affecting phonation quality, which are closure deficits during the phonation cycle. These deficits may be due to anatomical, organic pathologic or neuromotor reasons. Simulation examples explaining them in the glottal excitation signals are given and contrasted with real examples. Finally, relevant scores from an experimental separation of Parkinson Disease phonation samples from 24 male and 24 female subjects against aging 24 male and 24 female controls on the same age taken from a male-female balanced dataset confronted to a normative subset of 24 male and 24 female speakers are presented to exemplify an analysis study deepening into this problem. Although classification accuracy scores as high as 99.69 and 99.59 were attained in 10-fold cross-validation using an SVM classifier, there is still the impression that co-morbidity and aging effects are not well taken into account, requiring a further semantic study on the features behind the discrimination scores obtained.

Anglický abstrakt

The study of speech and voice in people diagnosed with a neurodegenerative disorder for the purposes of detection and monitoring has known a very relevant push forward in these last years, but it is far from being completed. One of the main concerns nowadays is that once the deterioration of speech and phonation quality has been informed by machine learning relying upon clinical expertise, there is insufficient evidence to resolve if quality deterioration may come from organic causes, neuromotor degeneration or simply from aging. The present work is part of a more ambitious plan to shed light on this problem by resorting to a theoretical modelling of glottal signals under the main known causes affecting phonation quality, which are closure deficits during the phonation cycle. These deficits may be due to anatomical, organic pathologic or neuromotor reasons. Simulation examples explaining them in the glottal excitation signals are given and contrasted with real examples. Finally, relevant scores from an experimental separation of Parkinson Disease phonation samples from 24 male and 24 female subjects against aging 24 male and 24 female controls on the same age taken from a male-female balanced dataset confronted to a normative subset of 24 male and 24 female speakers are presented to exemplify an analysis study deepening into this problem. Although classification accuracy scores as high as 99.69 and 99.59 were attained in 10-fold cross-validation using an SVM classifier, there is still the impression that co-morbidity and aging effects are not well taken into account, requiring a further semantic study on the features behind the discrimination scores obtained.

Dokumenty

BibTex


@inproceedings{BUT164358,
  author="Jiří {Mekyska}",
  title="Parkinson’s disease glottal flow characterization: Phonation features vs amplitude distributions",
  annote="The study of speech and voice in people diagnosed with a neurodegenerative disorder for the purposes of detection and monitoring has known a very relevant push forward in these last years, but it is far from being completed. One of the main concerns nowadays is that once the deterioration of speech and phonation quality has been informed by machine learning relying upon clinical expertise, there is insufficient evidence to resolve if quality deterioration may come from organic causes, neuromotor degeneration or simply from aging. The present work is part of a more ambitious plan to shed light on this problem by resorting to a theoretical modelling of glottal signals under the main known causes affecting phonation quality, which are closure deficits during the phonation cycle. These deficits may be due to anatomical, organic pathologic or neuromotor reasons. Simulation examples explaining them in the glottal excitation signals are given and contrasted with real examples. Finally, relevant scores from an experimental separation of Parkinson Disease phonation samples from 24 male and 24 female subjects against aging 24 male and 24 female controls on the same age taken from a male-female balanced dataset confronted to a normative subset of 24 male and 24 female speakers are presented to exemplify an analysis study deepening into this problem. Although classification accuracy scores as high as 99.69 and 99.59 were attained in 10-fold cross-validation using an SVM classifier, there is still the impression that co-morbidity and aging effects are not well taken into account, requiring a further semantic study on the features behind the discrimination scores obtained.",
  booktitle="Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and Technologies - Volume 4: SERPICO",
  chapter="164358",
  doi="10.5220/0009189403590368",
  howpublished="online",
  year="2020",
  month="february",
  pages="359--368",
  type="conference paper"
}