Detail publikace

COMPARISON OF THE MITTAG-LEFFLER FUNCTIONS AND LAGUERRE FUNCTIONS FOR EVALUATING THE INVERSE LAPLACE TRANSFORM

KÁRSKÝ, V.

Originální název

COMPARISON OF THE MITTAG-LEFFLER FUNCTIONS AND LAGUERRE FUNCTIONS FOR EVALUATING THE INVERSE LAPLACE TRANSFORM

Anglický název

COMPARISON OF THE MITTAG-LEFFLER FUNCTIONS AND LAGUERRE FUNCTIONS FOR EVALUATING THE INVERSE LAPLACE TRANSFORM

Jazyk

en

Originální abstrakt

This paper focuses on the evaluation inverse Laplace transform of the fractional order transfer functions. There are showen two methods how to compute inverse Laplace transform. First method uses Mittag-Leffler functions and the second method employs generalized Laguerre functions. These methods will be also comapred.

Anglický abstrakt

This paper focuses on the evaluation inverse Laplace transform of the fractional order transfer functions. There are showen two methods how to compute inverse Laplace transform. First method uses Mittag-Leffler functions and the second method employs generalized Laguerre functions. These methods will be also comapred.

Dokumenty

BibTex


@inproceedings{BUT156614,
  author="Vilém {Kárský}",
  title="COMPARISON OF THE MITTAG-LEFFLER FUNCTIONS AND LAGUERRE FUNCTIONS FOR EVALUATING THE INVERSE LAPLACE TRANSFORM",
  annote="This paper focuses on the evaluation inverse Laplace transform of the fractional order transfer functions. There are showen two methods how to compute inverse Laplace transform. First method uses Mittag-Leffler functions and the second method employs generalized Laguerre functions. These methods will be also comapred.",
  booktitle="Proceedings of the 25th Conference STUDENT EEICT 2019",
  chapter="156614",
  howpublished="online",
  year="2019",
  month="april",
  pages="541--545",
  type="conference paper"
}