Detail publikace

PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS

KÁRSKÝ, V.

Originální název

PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS

Anglický název

PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS

Jazyk

en

Originální abstrakt

This article concentrates on using generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. A novel method for selecting the timescale parameter of generalized Laguerre functions in the operator space is introduced and demonstrated on two systems with fractional order transfer functions.

Anglický abstrakt

This article concentrates on using generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. A novel method for selecting the timescale parameter of generalized Laguerre functions in the operator space is introduced and demonstrated on two systems with fractional order transfer functions.

Dokumenty

BibTex


@article{BUT148514,
  author="Vilém {Kárský}",
  title="PARAMETERIZING GENERALIZED LAGUERRE FUNCTIONS TO COMPUTE THE INVERSE LAPLACE TRANSFORM OF FRACTIONAL ORDER TRANSFER FUNCTIONS",
  annote="This article concentrates on using generalized Laguerre functions to compute the inverse Laplace transform of fractional order transfer functions. A novel method for selecting the timescale parameter of generalized Laguerre functions in the operator space is introduced and demonstrated on two systems with fractional order transfer functions.",
  address="VUT Brno",
  chapter="148514",
  doi="10.13164/mendel.2018.1.079",
  howpublished="online",
  institution="VUT Brno",
  number="24",
  volume="2018",
  year="2018",
  month="june",
  pages="79--84",
  publisher="VUT Brno",
  type="journal article in Scopus"
}