Detail publikace

Universal Pseudo-Differential Filter Using DDCC and DVCCs

Originální název

Universal Pseudo-Differential Filter Using DDCC and DVCCs

Anglický název

Universal Pseudo-Differential Filter Using DDCC and DVCCs

Jazyk

en

Originální abstrakt

In the paper, a universal preudo-differential second-order filter operating in voltage mode, where both input and output are differential, is presented. The circuit is formed by one differential difference current conveyor (DDCC), two differential voltage current conveyors (DVCCs), and five passive elements. The filter is characterized by high input impedance, minimum number of passive elements that are all grounded, and high common-mode rejection ratio (CMRR). The proposed filter structure is able to realize all five standard frequency filter responses. Non-ideal analysis has been performed by considering the real parasitic parameters of the active elements. The optimization of passive element values has been done in terms of minimal shift of the pole-frequency and to obtain the maximum stop-band attenuation of the high-pass filter response. Functionality is verified by simulations and experimental measurements using readily available integrated circuit UCC-N1B 0520.

Anglický abstrakt

In the paper, a universal preudo-differential second-order filter operating in voltage mode, where both input and output are differential, is presented. The circuit is formed by one differential difference current conveyor (DDCC), two differential voltage current conveyors (DVCCs), and five passive elements. The filter is characterized by high input impedance, minimum number of passive elements that are all grounded, and high common-mode rejection ratio (CMRR). The proposed filter structure is able to realize all five standard frequency filter responses. Non-ideal analysis has been performed by considering the real parasitic parameters of the active elements. The optimization of passive element values has been done in terms of minimal shift of the pole-frequency and to obtain the maximum stop-band attenuation of the high-pass filter response. Functionality is verified by simulations and experimental measurements using readily available integrated circuit UCC-N1B 0520.

BibTex


@article{BUT141335,
  author="Ondřej {Sládok} and Jaroslav {Koton} and Norbert {Herencsár}",
  title="Universal Pseudo-Differential Filter Using DDCC and DVCCs",
  annote="In the paper, a universal preudo-differential second-order filter operating in voltage mode, where both input and output are differential, is presented. The circuit is formed by one differential difference current conveyor (DDCC), two differential voltage current conveyors (DVCCs), and five passive elements. The filter is characterized by high input impedance, minimum number of passive elements that are all grounded, and high common-mode rejection ratio (CMRR). The proposed filter structure is able to realize all five standard frequency filter responses. Non-ideal analysis has been performed by considering the real parasitic parameters of the active elements. The optimization of passive element values has been done in terms of minimal shift of the pole-frequency and to obtain the maximum stop-band attenuation of the high-pass filter response. Functionality is verified by simulations and experimental measurements using readily available integrated circuit UCC-N1B 0520.",
  chapter="141335",
  doi="10.5755/j01.eie.23.6.19694",
  howpublished="print",
  number="6",
  volume="23",
  year="2017",
  month="december",
  pages="46--52",
  type="journal article"
}