Detail publikace

Depth Map Improvement by Combining Passive and Active Scanning Methods

Originální název

Depth Map Improvement by Combining Passive and Active Scanning Methods

Anglický název

Depth Map Improvement by Combining Passive and Active Scanning Methods

Jazyk

en

Originální abstrakt

The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent pro- filometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT. The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results.

Anglický abstrakt

The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent pro- filometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT. The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results.

BibTex


@article{BUT127692,
  author="Ondřej {Kaller} and Libor {Boleček} and Ladislav {Polák} and Tomáš {Kratochvíl}",
  title="Depth Map Improvement by Combining Passive and Active Scanning Methods",
  annote="The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent pro- filometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT.

The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results.",
  chapter="127692",
  doi="10.13164/re.2016.0536",
  howpublished="print",
  number="3",
  volume="25",
  year="2016",
  month="september",
  pages="536--547",
  type="journal article"
}