Detail publikace

Bioinformatická studie genetické variability isoforem superoxid dismutázy

ŠKUTKOVÁ, H. BABULA, P. PROVAZNÍK, I.

Originální název

Bioinformatic study of genetic variability of superoxide dismutase isoforms

Český název

Bioinformatická studie genetické variability isoforem superoxid dismutázy

Anglický název

Bioinformatic study of genetic variability of superoxide dismutase isoforms

Typ

článek ve sborníku

Jazyk

en

Originální abstrakt

Superoxide dismutases (SODs) represent ubiquitous enzymes that catalytically convert superoxide anion radical, which is created in many biological processes, to oxygen (O2) and hydrogen peroxide (H2O2)1. Many targets of superoxide anion radical have been identified; it is relatively unreactive with some amino acids excepting sulfur-containing amino acids, but it is strongly reactive with some transition metals and complexes, especially copper, iron, and manganese2. Several forms of superoxide dismutase have been described. Classification of SODs according to presence of cofactors - metal ions – is generally accepted: Cu/ZnSODs (in humans referred as SOD1 and SOD3; they bind copper and zinc ions), Fe and Mn types (Mn/FeSODs, in humans referred as SOD2; they bind either iron or manganese), and Ni (NiSODs; they bind nickel). Whereas Cu/Zn SODs are commonly present in cytosol of eukaryotic cells, Fe and Mn SODs are in some protists, relatively primitive eukaryotic cells, and prokaryotes; mitochondrial and plastid SODs are usually Mn and Fe forms, respectively. NiSODs that were originally identified in Streptomyces are typically prokaryotic3, 4. Despite the significant differences between structures of individual SODs, all crucially provide electrostatic guidance for the superoxide substrate and alter the metal ion redox potential to a range suitable for superoxide disproportionation5. In our work, we compare sequences of vertebrate SODs to identify similarities and phylogenetic relationships.

Český abstrakt

Superoxid dismutases (SODs) představují všudypřítomné enzymy, které přeměňují katalyticky superoxidu anion radikál, který je vytvořen v mnoha biologických procesech, na kyslík (O2) a peroxid vodíku (H2O2) 1. Mnoho cíle superoxid aniontu radikální byly identifikovány; je relativně nereaktivní s některými aminokyselinami kromě síru obsahujících aminokyselin, ale je silně reaktivní s některými přechodných kovů a komplexů, zejména měď, železo, a manganese2. Bylo popsáno několik forem superoxiddismutázy. Klasifikace SODs podle přítomnosti kofaktorů - kovové ionty - je všeobecně přijímané: Cu / ZnSODs (u lidí označován jako SOD1 a SOD3, vážou měď a zinkové ionty), Fe a Mn typy (Mn / FeSODs, u lidí označován jako SOD2 , vážou buď železo nebo mangan), a Ni (NiSODs, které vážou nikl). Vzhledem k tomu, Cu / Zn SODs jsou běžně přítomny v cytosolu eukaryotických buněk, Fe a Mn SODs jsou v některých prvoků, poměrně primitivní eukaryotických buněk, a prokaryotes; mitochondriální a plastid SODs jsou obvykle Mn a Fe formy, resp. NiSODs, které byly původně identifikovány v Streptomyces jsou typicky prokaryotic3, 4.  I přes značné rozdíly mezi konstrukcí jednotlivých SODs, všechny rozhodující poskytnout vodítko pro elektrostatické superoxid substrátu a měnit kovový ion redox potenciál k řadě vhodné pro superoxidu disproportionation5. V naší práci jsme se porovnat sekvence obratlovců SODs identifikovat podobnosti a fylogenetické vztahy.

Anglický abstrakt

Superoxide dismutases (SODs) represent ubiquitous enzymes that catalytically convert superoxide anion radical, which is created in many biological processes, to oxygen (O2) and hydrogen peroxide (H2O2)1. Many targets of superoxide anion radical have been identified; it is relatively unreactive with some amino acids excepting sulfur-containing amino acids, but it is strongly reactive with some transition metals and complexes, especially copper, iron, and manganese2. Several forms of superoxide dismutase have been described. Classification of SODs according to presence of cofactors - metal ions – is generally accepted: Cu/ZnSODs (in humans referred as SOD1 and SOD3; they bind copper and zinc ions), Fe and Mn types (Mn/FeSODs, in humans referred as SOD2; they bind either iron or manganese), and Ni (NiSODs; they bind nickel). Whereas Cu/Zn SODs are commonly present in cytosol of eukaryotic cells, Fe and Mn SODs are in some protists, relatively primitive eukaryotic cells, and prokaryotes; mitochondrial and plastid SODs are usually Mn and Fe forms, respectively. NiSODs that were originally identified in Streptomyces are typically prokaryotic3, 4. Despite the significant differences between structures of individual SODs, all crucially provide electrostatic guidance for the superoxide substrate and alter the metal ion redox potential to a range suitable for superoxide disproportionation5. In our work, we compare sequences of vertebrate SODs to identify similarities and phylogenetic relationships.

Klíčová slova

superoxiddismutáza, isoformy, vícenásobné zarovnání sekvence, sekvenční logo

Rok RIV

2014

Vydáno

07.04.2014

Místo

Mikulov

ISBN

978-80-86238-61-6

Kniha

2. mezinárodní chemicko-technologická konference, SBORNÍK ABSTRAKT A PLNÝCH TEXTŮ

Strany od

1

Strany do

6

Strany počet

6

BibTex


@inproceedings{BUT110238,
  author="Helena {Škutková} and Petr {Babula} and Ivo {Provazník}",
  title="Bioinformatic study of genetic variability of superoxide dismutase isoforms",
  annote="Superoxide dismutases (SODs) represent ubiquitous enzymes that catalytically convert superoxide anion radical, which is created in many biological processes, to oxygen (O2) and hydrogen peroxide (H2O2)1. Many targets of superoxide anion radical have been identified; it is relatively unreactive with some amino acids excepting sulfur-containing amino acids, but it is strongly reactive with some transition metals and complexes, especially copper, iron, and manganese2. 
Several forms of superoxide dismutase have been described. Classification of SODs according to presence of cofactors - metal ions – is generally accepted: Cu/ZnSODs (in humans referred as SOD1 and SOD3; they bind copper and zinc ions), Fe and Mn types (Mn/FeSODs, in humans referred as SOD2; they bind either iron or manganese), and Ni (NiSODs; they bind nickel). Whereas Cu/Zn SODs are commonly present in cytosol of eukaryotic cells, Fe and Mn SODs are in some protists, relatively primitive eukaryotic cells, and prokaryotes; mitochondrial and plastid SODs are usually Mn and Fe forms, respectively. NiSODs that were originally identified in Streptomyces are typically prokaryotic3, 4.
 Despite the significant differences between structures of individual SODs, all crucially provide electrostatic guidance for the superoxide substrate and alter the metal ion redox potential to a range suitable for superoxide disproportionation5. In our work, we compare sequences of vertebrate SODs to identify similarities and phylogenetic relationships.",
  booktitle="2. mezinárodní chemicko-technologická konference, SBORNÍK ABSTRAKT A PLNÝCH TEXTŮ",
  chapter="110238",
  howpublished="electronic, physical medium",
  year="2014",
  month="april",
  pages="1--6",
  type="conference paper"
}