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ABSTRACT
Optimization, seen as a process of perpetual improvement, is firmly rooted in the
fabric of human society. From engineering design to the decisions on financial mar-
kets, from our daily activity planning to organizing our next vacation, and from
computer science to industrial applications, optimization techniques, models, and
algorithms have an extremely broad appeal.

This habilitation thesis summarizes the contributions of the author to optimiza-
tion related fields through a detailed discussion of fourteen papers (co-authored by
the author of the thesis). In particular, in relation to optimization algorithms we
present eleven papers that cover heuristic algorithms (mainly for the field of evo-
lutionary computation), surrogate-assisted techniques, mathematical programming
algorithms, and methods used for benchmarking and comparison of various opti-
mization algorithms. On the modelling and application side of optimization, we
present three papers from diverse technically oriented disciplines (waste manage-
ment, structural design, and social distancing). Each of these either propose new
models for the problem at hand, or they include algorithmic techniques that take
advantage of the problem-specific structure. Reprints of the papers are enclosed in
appendix.
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CHAPTER 1
Optimization in Technical Sciences

1.1 | Introduction
Optimization is a process that is intrinsic to all living beings. Human societies are
in a never ending cycle of seeking to improve their capabilities, while individuals
aim to improve their lives [105]. In the animal kingdom, optimization can be found
as one of the guiding principles in the evolution of species - the fitter organisms
are more likely to survive. Optimization principles are also a fundamental part of
physics, as systems are driven to their lowest energy state subject to physical laws.
To quote Leonhard Euler, “For since the fabric of the universe is most perfect and
the work of a most wise Creator, nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

Optimization has a broad appeal as it is utilized in various domains and because
it aids the human desire to make things better [105] - from engineering design to
financial markets, from our daily activity to planning our holidays, and computer
sciences to industrial applications. Any problem where a decision needs to be made
can be cast as an optimization problem. We always intend to maximize or minimize
something. Although the term “optimization” is frequently used to mean “improve-
ment”, we will use a more precise definition: finding the best possible (i.e., optimal)
solution by changing variables that can be controlled, subject to given constraints.

We can write a general optimization problem as:

minimize (or maximize) 𝑓(𝑥)
subject to 𝑥 ∈ 𝒳 ,

(1.1.1)

where 𝑥 is an 𝑛-dimensional optimization variable (or vector, or “design point”),
which can be written as 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇 (i.e., a column vector). The elements
in this vector can be adjusted to minimize the objective function 𝑓 (sometimes
also called optimization criterion or goal function). Any value of 𝑥 from among
all points in the feasible set 𝒳 that minimizes the objective function is called an
optimal solution or minimizer, such solution is denoted as 𝑥*.
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Although there are some simple optimization problems that can be reasoned
about and solved analytically, the majority of practical problems of interest is too
complex to be approached in this way. Fortunately, the advances of numerical
computing, together with the development of specialized optimization algorithms,
gave us the ability to deal with problems of increasing complexity [105].

The constraints of the optimization problem (1.1.1) are not typically specified
directly through a known feasible set 𝒳 . Instead, the feasible set is typically formed
from two types of constraints:

• equality constraints, ℎ(𝑥) = 0
• inequality constraints, 𝑔(𝑥) ≤ 0

Any optimization problem can be rewritten using these constraints:

minimize 𝑓(𝑥)
subject to ℎ𝑖(𝑥) = 0, for all 𝑖 ∈ {1, . . . , 𝑙},

𝑔𝑗(𝑥) ≤ 0, for all 𝑗 ∈ {1, . . . ,𝑚},
(1.1.2)

where 𝑙 and 𝑚 are the number of equality and inequality constraints that describe
the feasible set, respectively. Constraints can also be constructed from a feasible set
𝒳 as

ℎ(𝑥) = (𝑥 /∈ 𝒳 ),

where Boolean expressions evaluate to 0 or 1.

1.2 | Design Optimization Process
In this text, we will mainly focus on the process of optimization in technical sciences
and engineering. The engineering design can be seen as an iterative process that
engineers follow to develop a product that achieves a given goal. This design process
can be divided into the sequence of phases which are (in a simplified form) shown
in Figure 1.1 (top). The role of the designer is to delimit the specifications of the
problem that give a detailed account of its parameters, constants, objectives, and
constraints. They are also responsible for crafting the problem and quantifying the
merits of potential designs [85].

In order to accelerate the design cycle (or fined better designs), the iterative
design process can be replaced (or enhanced) by design optimization. The design
optimization process, shown (in a simplified form) in Figure 1.1 (bottom), shares
several steps with the conventional design process. However, to perform design opti-
mization one needs a formal formulation of the optimization problem that describes
the variables that can be modified, the objective (or objectives) to be minimized
(or maximized), and the constraints that should be satisfied. The assessment of the
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Fig. 1.1: Conventional (top) versus design optimization process (bottom), adapted from
[105].

resulting design is then strictly based on numerical values of the constraints and the
objective.

Even after the optimization is done, this process is still not finished. The engi-
neers must still assess the resulting design, as it is not very likely that the baseline
formulation yielded valid (or practical) solutions. But, based on this solution, the
engineers might choose to modify the optimization problem (i.e., by expanding the
set of design variables, changing the objective function, adding or removing some
constraints, or increase/decreasing the models’ fidelity).
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1.3 | Optimization Problem Classification
There is an extreme amount of variety of problems that fit into the formulation
(1.1.1). This first important distinction we can make is with respect to the informa-
tion about the objective function 𝑓 and the feasible set 𝒳 that is available. In some
problems, an analytic description of the functions involved might be available. This
information can be utilized to compute values that could be useful for optimization
(such as gradient or Hessian values), or it can help us to reason about interesting
characteristics of the functions (such as linearity, unimodality, convexity, etc.). In
other problems, we might be faced with a simulator (or a “black-box”), that given
inputs (variable values) produces only outputs in the form of the values of the ob-
jective function and feasibility of the design. Such a simulator might not give us
any other information, and running it could take a non-negligible amount of time.

To successfully select the most appropriate optimization algorithm for solving a
given optimization problem, one should correctly classify the optimization problem.
The availability of knowledge and values of the different attributes affect the efficacy
and suitability of different optimization algorithms. This is important because there
is no optimization algorithm that is efficient (or even appropriate) for all types of
problems [8, 52].

We can classify optimization problems based on two features: the problem for-
mulation and the characteristics of the objective and constraint functions [105], as
depicted in Figure 1.2. In the problem formulation, the variables can be either con-
tinuous, discrete, or a mix of the two. The problem may only be concerned with a
single objective function, or it have have multiple ones. There are problems without
any constraints (such as least-square regression), with only box-type constraints on
the variables (i.e., each variable should lie in a given range), or with general-type
constraints that describe the limits on how the variables should be set.

Based on the characteristics of the objective and constraint functions we can
infer how much “exploitable structure” the optimization problem has. Generally
speaking, the more structure we find, the easier the problem is to solve. Or, put
alternatively, we can solve much bigger problems (in terms of number of variables)
that have some “exploitable structure” than those without any. For instance, one of
most “well-structured” problems are the ones where the functions are linear (hence
convex and unimodal) and deterministic. With such structure, even problems with
millions of variables can be solved using modern techniques and hardware. On
the other end of the spectrum, we have problems that are nonlinear, nonconvex,
multimodal, and stochastic. For such problems, even having a dozen of variables
can be enough for the problem to be practically unsolvable in a reasonable amount
of time (in the sense of finding a provably optimal global solution).
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Fig. 1.2: Classification of optimization problems by attributes associated with the differ-
ent aspects of the problem, adapted from [105].

1.4 | Optimization Algorithms
There is not a single optimization algorithm that can be effective (and even suitable)
for all optimization problems. Good understanding of the (“exploitable”) structure
of the problem is always pivotal in choosing which optimization algorithm to use.
Figure 1.3 shows the basic classification of optimization algorithms based on certain
attributes. Most optimization algorithms have several of these attributes, but they
are independent, and any combination is possible. However, this classification still
does not cover the whole variety of specialized methods designed to solve specific
problems where a particular structure can be exploited (such as separability, sparsity,
etc.).

The minimum amount of information an optimization algorithm can require are
the values of the objective and constraint functions at queried points. The methods
that use the function value information are generally known as derivative-free (or
gradient-free, or zeroth-order) algorithms. If the information about the derivative
of the functions (called first-order information) is available (or computable in a
reasonable amount of time), one might use some of the gradient-based methods.
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Fig. 1.3: Classification of optimization algorithms by different attributes (rightmost col-
umn), adapted from [105].

The gradient information can also be used in deciding if a given design can be (at
least locally) optimal. In some problems (most notably convex ones with lost of
“exploitable” structure), second-order information (i.e., Hessian values) are utilized
by second-order (Newton-type) methods.

There are various techniques that are used for searching the design space, with
the most basic classification being into the local and global methods. In local meth-
ods, the search typically converges towards a local minimum. Global search tech-
niques try to span (or sometimes decompose) the whole design space in the hope
of finding the global minimum. The choice of the local or global-type method is
closely linked to the modality of the design space [105]. In unimodal spaces, local
searches are sufficient as they will converge to the global minimum. In multimodal
spaces, global search methods increase the likelihood of finding the global minimum
(although finding one ca be rarely guaranteed).

Most algorithms can be divided by the mechanisms and concepts they are struc-
tured upon. Mathematical optimization algorithms are described by an iterative
process, that determines the sequence of evaluated points when searching for an op-
timum. These algorithms also use optimality criteria, that determine whether this
iterative process should end. On the other hand, heuristics are generally described
as commonsense arguments, or rules of thumb. They do not have to be based on a
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strict mathematical rationale, but can come from experience with the given prob-
lem, or take inspiration in naturally-occurring phenomena. Many algorithms work
by combining mathematical arguments and heuristics. Mathematical algorithms
also often include hyperparameters whose values are generally tuned based on expe-
rience. For instance, one of the state-of-the-art solvers for mixed-integer problems,
GUROBI [61], makes use of various heuristics1.

The above described setup of the optimization problem assumes that the function
evaluations are acquired by solving numerical models of the system (so-called direct
function evaluations). However, these evaluations might entail time-consuming nu-
merical simulations or running costly experiments. In such situations it is often
possible to construct surrogate models (also called metamodels) of these expensive
functions and use them in the optimization process instead.

The static time dependence means that the problem was formulated as a sin-
gle optimization and the complete numerical model is solved at each optimization
iteration. On the other hand, in dynamic optimization problems (also known as dy-
namic programming) we need to solve a sequence of optimization problems to make
decisions at different time stages. These decisions should be based on information
that becomes accessible as time progresses. The decision at a certain time stage is
also influenced by the decisions and system states from previous stages (and may
also depend on a prediction of the states a few steps into the future) [16].

The stochasticity attribute is independent of the stochasticity of the model that
was discussed above, and describes whether the optimization algorithm itself uses
steps that are determined at random or not. In a deterministic method, the same
points are evaluated and the method converges to the same result (given identical
initial conditions). In contrast, stochastic methods evaluate a different points if run
multiple times from identical initial conditions, even if the objective and constraints
functions are deterministic.

In some problems, the dynamic nature of the decision-making process is best cap-
tured in the use of models with several decision stages [91]. Whereas single-stage
models are generally well-suited for situations, in which the corresponding model
data are static (do not change over time), multi-stage models are more appropriate
for environments that change dynamically. The difficulty with using the multi-stage
approaches is that they lead to an increase in modelling complexity and needed
computational resources. An intermediate step between the single- and multi-stage
approaches is the two-stage model. In this setting, typically the “important deci-
sions” (such as facility locations in network design), are made in the first stage of
the model. The second stage is then used to assess the impact that the “important

1https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
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decisions” will have in time.
A very similar dichotomy, as the one between the single- and multistage models,

can be found in the approaches to the considered data of the model. Modelling a
static situation with very little data variation usually means that the deterministic
approaches are the most sensible ones. However, when the system that should be
managed is dynamically changing and there are multiple possible paths of develop-
ment, uncertain models are the most reasonable choice [91].

1.5 | Aim of the Thesis
The aim of the thesis is to provide an insight into some of the techniques that are
used in modelling and solving optimization problems in technical sciences. The se-
lection of the topics is based on the work experience of the author, and the topics are
split into five main sections. The first section is focused on heuristic algorithms. The
second section deals with surrogate-assisted methods. The third section discusses
some mathematical programming (more concretely, stochastic programming) meth-
ods. The fourth section focuses on practices in benchmarking optimization methods.
Finally, in the last section are described several applications of optimization models.
Each of these sections first gives a brief overview of the current development in the
field, which is followed by subsections that provide a commentary to and a show
the most important excerpts from the journal papers co-authored (with significant
contribution) by the author of the thesis, demonstrating his contribution to the field.

Overall, the thesis contains fourteen peer-reviewed papers co-authored by the
author of the thesis. Figures 1.2 and 1.3 show how each of the papers fits within the
categorization of the optimization problem being solved, and optimization algorithm
being used. The only exception is the review paper [A7] that is not shown in the
Figures, as it would fit most of the categories. Each presented paper has been either
published in a peer-review journal with an impact factor (IF) according to Web of
Science (ten papers), or it has been presented at a CORE-ranked2 conference (four
papers). The papers themselves can be found in the Appendix.

Among the included ten journal papers, three papers are contained in the first
decile (i.e., in the top 10% journals in a given category) of mostly engineering or
computer science-related areas according to the Journal Citation Reports (JCR).
The highest impact factor of the included papers is 25.898, the best CORE-ranked
conference was A.

2https://www.core.edu.au/



CHAPTER 2
Algorithms and Applications

2.1 | Heuristics Methods
Heuristics are general algorithmic techniques that are designed to solve complex
optimization problems. They aim at finding a “sufficiently good” solution to an op-
timization problem, and are especially well-suited for problems with limited amount
of information and structure, or in settings with a limited computational capacity
[17]. Most of these methods belong to the category of derivative free (or zeroth-
order) algorithms.

Heuristic methods can be very roughly divided into two classes. In the first
are the deterministic methods that often use general geometric patterns in their
search [85]. Most of the methods in this class are older (but still used) techniques.
The canonical examples include the Powell’s method [128], which is based on line
searches in dynamically updating directions. The Hooke-Jeeves method [70], in
which the search is based on evaluations at small steps in the coordinate directions.
A generalization of the Hooke-Jeeves method called the Generalized Pattern Search
[49] can search in arbitrary directions (provided that they form a positive spanning
set). The Nelder-Mead Simplex Method [98] uses a pattern called the simplex (a
generalization of a tetrahedron to 𝑛-dimensional space) to traverse the design space.

There is one category of the derivative-free methods are the techniques based on
the concept of Lipschitz continuity and design space decomposition. Such methods
are not really heuristics, as can be shown to converge to the global optimum (when
the Lipschitz continuity assumptions are satisfied). However, they are generally
only viable in finding globally optimal points in lower dimensions, as the space-
partitioning suffers from the curse of dimensionality. When the objective function
evaluations are limited, the best-found solutions from these methods can be seen
as a “heuristic” one, with the added bonus of also providing valid lower bounds on
the global optimal function value. The first such method was called the Shubert-
Piyavskii approach [127, 150]. The more recent variants of this approach are based
on the divided rectangles (or DIRECT) algorithm [74].
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Metaheuristics are stochastic methods which use randomness to explore the de-
sign space, and make relatively few assumptions about the optimization problem
being solved [19]. The two most notable areas where metaheuristics found extensive
use are combinatorial and black-box optimization problems.

There is a wide variety of metaheuristic methods. The most basic distinction
can be made into three classes. The first class are the single-solution methods which
work by modifying and improving a single candidate solution. In this category, we
can find methods such as Mesh Adaptive Direct Search [6], which is similar to the
generalized pattern search method but uses randomly generated positive spanning
set. The popular Simulated Annealing [82] method took the inspiration for the
design space search from metallurgical processes. Another widely-used methods are
Iterated Local Search, Tabu Search, or Variable Neighborhood Search [159].

The second class are the methods that maintain and modify an explicit proba-
bility distribution (often called the proposal distribution) over the design space. At
each iteration, the proposal distribution is used to generate samples and the update
the proposal distribution is based on the best-found samples (in terms of the objec-
tive function value). The hope is for the proposal distribution to converge towards
the global optimum. Among these methods are the Cross-entropy method [137], or
Natural Evolution Strategies [139], The perhaps most popular method in this class
is the covariance matrix adaptation evolutionary strategy (CMAES) [65], which is a
robust and sample-efficient method that maintains a multivariate Gaussian proposal
distribution with a full covariance matrix [85].

The third class are the Evolutionary computation (EC) or population-based ap-
proaches, which find inspiration in naturally occurring processes. These methods
maintain multiple candidate solutions (called a population), which are evolved to-
gether. These metaheuristics include genetic algorithms [69], differential evolution
(DE) [44], or particle swarm optimization (SPO) [21, 79]. A closely related category
of metaheuristics are swarm-intelligence methods, which mimic a collective behavior
of decentralized, self-organized agents. Examples of such techniques are ant colony
optimization [50], artificial bee colony optimization [76], or the previously mentioned
PSO. We will describe both DE and PSO in a little more detail, as they were used
in the papers (co-written by the author of this thesis) [A8, A2, A6, A3, A5] that
will be discussed in detail in further sections.

The DE method is very popular optimization framework, because of its straight-
forward structure and its global optimization capabilities. Several variants of DE
have been developed to improve its performance [44]. The computation of DE can
be divided into four stages: initialization, mutation, crossover, and selection. We
assume we have a population at the current generation, 𝑥 = [𝑥1, . . . , 𝑥𝑡], where each
individual has dimension 𝐷, 𝑥𝑖 = (𝑥1

𝑖 , . . . , 𝑥
𝐷
𝑖 ). There are several variants of DE. In
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this text, we show the DE/best/1 strategy for the mutation process of DE which,
can be expressed as

𝑣𝑖 = 𝑥𝑏 + 𝐹 · (𝑥𝑖1 − 𝑥𝑖2), (2.1.1)

where 𝑥𝑏 is the current best solution, 𝑥𝑖1 and 𝑥𝑖2 are different randomly selected
individuals from the population, and 𝐹 is a scalar number typically within the
interval [0.4, 1] [44]. After mutation, the crossover stage is conducted which has the
following form:

𝑢𝑗
𝑖 =

⎧
⎪⎨
⎪⎩
𝑣𝑗

𝑖 , if (𝑈𝑗(0, 1) ≤ 𝐶𝑟 | 𝑗 = 𝑗𝑟𝑎𝑛𝑑),
𝑥𝑗

𝑖 , otherwise,
(2.1.2)

where 𝑢𝑗
𝑖 the 𝑗th component of 𝑖th offspring, 𝑥𝑖

𝑗 and 𝑣𝑖
𝑗 are the 𝑗th component of 𝑖th

parent individual and the mutated individual, respectively. The crossover constant
𝐶𝑟 is between 0 and 1, 𝑈𝑗(0, 1) indicates a uniformly distributed random number,
and 𝑗𝑟𝑎𝑛𝑑 ∈ [1, . . . , 𝐷] is a randomly chosen index that ensures 𝑢𝑖 has at least one
component of 𝑣𝑖.

The PSO method introduced momentum to accelerate convergence toward min-
ima. Each individual 𝑖 (or in this case a particle), in the population has a memory
of its current position 𝑥𝑖, velocity 𝑣𝑖, and the best position (in terms of the objec-
tive function value) that it has seen thus far 𝑥𝑖,best. Momentum allows a particle
to accumulate speed in a hopefully favorable direction, which could be independent
from local perturbations [85]. At each iteration, the individuals are accelerated in
the direction of both the their individual best positions and also in the direction of
best position found thus far by the whole population 𝑥best. These two accelerations
are weighted by separately generated random terms. The equations describing PSO
are

𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖

𝑣𝑖 = 𝑤𝑣𝑖 + 𝑐1𝑟1(𝑥𝑖,best − 𝑥𝑖) + 𝑐2𝑟2(𝑥best − 𝑥𝑖)

where 𝑤, 𝑐1, and 𝑐2 are parameters, and 𝑟1 and 𝑟2 are random numbers drawn from
𝑈(0, 1).

There are some optimization problems in which the number of variables is un-
known, such as in the optimization of computer programs or graphical structures
[85]. The designs in such contexts can be represented by expressions that belong
to certain grammar. The two most well-known EC techniques for such problems
are Genetic programming [87], which represents individuals using tree structures,
and Grammatical evolution [138] that operates on an integer array instead of a tree.
Some of our work constituted using genetic programming for symbolic regression
[107].
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Over the past few years, the field of EC have witnessed an explosion of “novel”
methods that are based on natural/evolutionary principles. The bestiary of EC1,
which tries to catalog of a portion of these nature-based methods, now contains
over 250 methods that claim their inspiration in natural processes. It has also
become clear that there was more creativity being spent at naming some of these
“novel” methods, than in making sure they contain anything new computation-
wise [5]. Many of these methods were found to be just a “rebranding” of older
techniques [172, 30, 31, 165, 29], and most of them are of questionable quality
[113, 47, 26, 32, 94].

The state-of-the art EC methods for box-constrained numerical optimization
can generally be found at the Congress on Evolutionary Computation (CEC) com-
petitions which started in 2005 and continue to this day [99, 47, 26]. Many of
these methods are modern adaptations of the standard techniques, such as DE or
CMAES. The five methods from these CEC competitions that were utilized in some
of the papers included in this thesis are the following. Adaptive Gaining-Sharing
Knowledge (AGSK) [112] – the runner-up of the CEC 20 competition. The algo-
rithm improves and extends upon original GSK [111] algorithm by adding adaptive
settings to two main control parameters: the knowledge factor and the knowledge
ratio, that control junior and senior gaining and sharing phases among the solutions
during the optimization process. Hybrid Sampling Evolution Strategy (HSES) [180]
– winner of the CEC 18 competition. HSES is an evolution strategy optimization
algorithm which combined CMAES and the univariate sampling method. Improved
Multi-operator Differential Evolution (IMODE) [140] – winner of the CEC 20 com-
petition. This algorithm employs multiple differential evolution operators and a
sequential quadratic programming local search technique for accelerating its con-
vergence. Linear Population Size Reduction SHADE (LSHADE) [160] – one of the
most popular variants of adaptive DE, that was used as a basis for many of the
best performing algorithms in the CEC competitions in past few years. Multiple
Adaptation DE Strategy (MadDE) [18] – one of the best performing algorithms in
the CEC 21 competition. This is another modification of the DE algorithm that
uses a multiple adaptation strategy for its search mechanisms and for adapting its
control parameters at the same time.

Many EC methods perform relatively well in global search, using their explo-
ration abilities to avoid local minima and to find the best regions of the design
space [85]. On the other hand, such methods often do not perform as well in local
searches (at least in comparison to descent methods). Several hybrid methods (also
known as memetic algorithms) have been proposed to extend population methods

1Campelo, F., Aranha, C. Evolutionary computation bestiary.
https://github.com/fcampelo/EC-Bestiary
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with descent-based features to improve their exploitation performance. The IMODE
method mentioned above is one example of such an approach. Our work in [A8]
can also fit into this category. Another hybridization approach are the compos-
ite schemes in [62] and in our work [97] that combine several methods at different
stages of the search for the purpose of getting the respective benefits of the different
methods.

Another algorithm that was utilized in the papers included in this thesis was
the binary HC12 algorithm, which is a metaheuristic searching algorithm that was
developed in [109]. The basic step of the algorithm is a generation of a neighbor-
hood of the current solution, which serves as a base for the construction of a new
(improved) population. The method of generating the neighborhood is the pivotal
characteristic of HC12. The paradigm of the algorithm is the search of the optimal
solution in the binary (Hamming) space, that encodes the solution. In this context,
it is a parallel approach to genetic algorithms, where the solution is encoded as a
binary vector.

The author’s contribution to this field was mainly in the areas of surrogate
assisted methods [A7, A8] and in benchmarking EC methods [A2, A6, A3, A5],
both of which are covered in further sections. In this section, one CORE-ranked
conference paper and one IF journal paper that have a common theme are discussed
in detail:

[A13] R Matoušek, L Dobrovský, J Kůdela. The quadratic
assignment problem: metaheuristic optimization using HC12
algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 153–154, 2019.

Author’s contribution: 33%.

Ranking (Core 2019): A - information and computing sci-
ences.

¨

[A14] R Matoušek, L Dobrovský, J Kůdela. How to start a
heuristic? utilizing lower bounds for solving the quadratic
assignment problem. International Journal of Industrial En-
gineering Computations, 13(2):151–164, 2022.

Author’s contribution: 33%.

Metrics: IF2021 = 3.271.

Ranking (JCR 2021 WoS): Q2 - operations research & man-
agement science; Q3 - engineering, industrial.
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2.1.1 | The Quadratic Assignment Problem: Metaheuristic
Optimization Using HC12 Algorithm

The paper [A13] focuses on the Quadratic Assignment Problem (QAP), which is
one of the classical NP-hard combinatorial optimization problems [37]. The QAP,
in its Koopmans and Beckmann form [86], can be described in the following way:
The problem is structured on a complete directed graph with 𝑛 nodes and 𝑛2 arcs.
There is also a set of 𝑛 facilities, that one needs to assign to the nodes. The
indices 𝑖, 𝑗 correspond to the nodes, while the indices 𝑓, 𝑔 correspond to the facilities.
Problem data encompass encompass a given (directed) distance from node 𝑖 to node
𝑗 (𝑏𝑖,𝑗 ≥ 0), a flow from facility 𝑓 to facility 𝑔 (𝑎𝑓,𝑔 ≥ 0), and a cost of assigning
facility 𝑓 to node 𝑖 (𝑐𝑖,𝑓 ). By using binary variables 𝑥𝑖,𝑓 = 1 if facility 𝑓 is assigned to
node 𝑖, and 0 otherwise, the QAP can be stated as the following binary optimization
problem:

minimize
∑︁

𝑖

∑︁

𝑓

∑︁

𝑗

∑︁

𝑔

𝑎𝑓,𝑔𝑏𝑖,𝑗𝑥𝑖,𝑓𝑥𝑗,𝑔 +
∑︁

𝑖

∑︁

𝑓

𝑐𝑖,𝑓𝑥𝑖,𝑓

subject to
∑︁

𝑖

𝑥𝑖,𝑓 = 1,
∑︁

𝑓

𝑥𝑖,𝑓 = 1, ∀𝑓, ∀𝑖

𝑥𝑖,𝑓 ∈ {0, 1}, ∀𝑓, ∀𝑖

(2.1.3)

In many approaches, the facility-assignment costs are neglected (i.e., 𝑐𝑖,𝑓 = 0).
There have been several extensions of the QAP formulation have proposed over the
years – among the most notable of these are the multiobjective [141] and stochastic
formulations [108]. The QAP can also be equivalently formulated (neglecting 𝑐𝑖,𝑓 )
as a problem on permutation matrices:

minimize tr(𝐴𝑋𝐵𝑋𝑇 )
subject to 𝑋 ∈ Π𝑛

(2.1.4)

where tr(·) is the trace of a matrix, 𝐴 and 𝐵 are matrices of the data (𝑎𝑓,𝑔 and 𝑏𝑖,𝑗),
and Π𝑛 is the space of permutation matrices with 𝑛 rows/columns.

The paper presents the metaheuristic algorithm HC12, developed in [109], and
its utilization in solving some QAP instances from the standard QAPLIB library
[28]. In QAPLIB, most problems are in a range from 𝑛 = 10 to 𝑛 = 256. The
smallest instance for which the optimal solution was still not confirmed (and not
for a lack of trying) is tai25a (with 𝑛 = 25). This illustrates how difficult of a
combinatorial problem the QAP is. The implementation of HC12 searched for the
best solution in multiple runs (restarts of the algorithm). Although the running
times of the HC12 algorithm were extremely fast (compared to the other heuristics
discussed in the paper), the robustness of the resulting solutions was still rather low
and required additional research and tuning.
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2.1.2 | How to Start a Heuristic? Utilizing Lower Bounds for
Solving the Quadratic Assignment Problem

The core focus of the paper [A14] was also in the QAP. It showed the possible
utilization of lower-bounding techniques in constructing starting points for the HC12
metaheuristic. Exact solution (derived from mathematical programming techniques)
of a QAP typically requires the use of a branch-and-bound framework [3]. The key
factor in the difficulty of the problem is the lack of efficiently computable and tight
lower bounds. Generally, the tighter the bound is, the more difficult it is to compute.

There were various approaches proposed for computing valid lower bounds. One
of the oldest methods, known as the Gilmore-Lawler bound (GLB) [60, 100], is
widely used to this day. A computational comparison of the older bounds, which
were based on linearization of the QAP, can be found in [78]. Another type of
bounds are the so-called eigenvalue bounds that utilize the QAP formulation (2.1.4)
and use the fact that the set of permutation matrices Π𝑛 can be characterized as:

Π𝑛 = 𝒬𝑛 ∩ ℰ𝑛 ∩ 𝒩𝑛

where 𝒬𝑛 is the set of orthogonal matrices, ℰ𝑛 is the set of doubly stochastic matrices,
and 𝒩𝑛 is the set of matrices with positive elements of size 𝑛×𝑛. The most notable
bound based on this decomposition is the so-called Hadley-Rendl-Wolkowitz (HRW)
bound [63]. The first significant breakthrough in the computation of lower bounds
for the QAP was the development of the convex quadratic programming bound
introduced in [4], which led to great success in solving previously unsolved QAP
instances.

One of the latest seminal breaking points in combinatorial optimization was the
emergence of semidefinite programming (SDP) techniques [24]. For the QAP, the
SDP bounds were first studied in [181]. The problem with this relaxation was that
it involved a matrix variable of order 𝑛2 and could only be efficiently solved by
interior point methods for, roughly, 𝑛 ≤ 20. This limitation of the SDP bounding
technique has encouraged research into exploring group symmetries of the QAP
data matrices to construct smaller and more tractable SDP problems [45]. Another
research direction was in the SDP relaxations of QAP where the matrix variables
based on matrix-splitting, which were of order 𝑛 [124]. In both these lines of research
the new techniques led to finding the best-known lower bounds for some QAPLIB
instances.

In the paper [A14], the construction of the different lower bounding techniques
(GLB, HRW, convex quadratic-based bound, and one semidefinite-based bound) is
presented in detail. These bounds are then used to construct a starting point (or
in the case of the QAP, a starting permutation) for the HC12 metaheuristic. We
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use a projection of the matrix obtained from the lower bounding schemes to the
space of permutation matrices. Let �̂� be a matrix obtained from the computation
of the lower bounds. The “closest” permutation matrix 𝑋 to �̂� can be computed
by solving the following problem:

minimize
∑︁

𝑖

∑︁

𝑗

(𝑋𝑖,𝑗 − �̂�𝑖,𝑗)2

subject to
∑︁

𝑖

𝑋𝑖,𝑗 = 1, ∀𝑗
∑︁

𝑗

𝑋𝑖,𝑗 = 1, ∀𝑖

𝑋𝑖,𝑗 ∈ {0, 1}, ∀𝑖, ∀𝑗.

(2.1.5)

The problem above can be reformulated into an equivalent problem using the fact
that 𝑋𝑖,𝑗 binary:

minimize
∑︁

𝑖

∑︁

𝑗

(1 − 2�̂�𝑖,𝑗)𝑋𝑖,𝑗

subject to
∑︁

𝑖

𝑋𝑖,𝑗 = 1, ∀𝑗
∑︁

𝑗

𝑋𝑖,𝑗 = 1, ∀𝑖

𝑋𝑖,𝑗 ∈ {0, 1}, ∀𝑖, ∀𝑗,

(2.1.6)

which is a simple Linear Assignment problem, that can be solved in polynomial time
[27].

The computational experiments were carried out on 53 symmetrical QAP in-
stances from the QAPLIB. The results showed that, at least in general, the more
complicated formulations (convex quadratic and semidefinite) produce better (higher)
lower bounds, but not necessarily better (lower) starting point values, when judged
solely on the resulting projection. The trade-off was that these more complicated
formulations needed significantly more computational resources (judged by the com-
putational time) and were only feasible for instances up to 𝑛 = 100. Also, every
considered lower-bounding method produced the best lower bound and best pro-
jected value for at least one problem instance. It is important to note that the lower
bounds were not only useful for the construction of possible starting solutions for
the HC12 metaheuristics, but can also help to judge the closeness of the obtained
solution to the true optimum.

Next, we used the projected values from the lower bounding techniques as the
starting points for the HC12 metaheuristic and run it 1,000 times for each problem
instance and are compared to simulations that used random permutations as the
starting point (the results are reported in various Tables in the paper). The main
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takeaway from the results is that even the “worst” performing lower bounding tech-
nique (HWB) was significantly better that random start, beating it in 30 of the 53
instances. The “best” performing lower bounding technique was the most compli-
cated semidefinite formulation, which was better than random start in 41 of the 52
instances.

From the results, it was apparent that starting a heuristic from a carefully chosen
points can lead to an increase in quality of the resulting solutions and in a more
robust convergence. The choice of the technique for constructing the starting points
depended primarily on the computational resources at ones disposal. While for
the QAP the SDP-based formulation produced the best starting points, it was also
the most computationally demanding method, requiring the utilization of advanced
convex optimization algorithms or the use of one of the most powerful available
solvers. In contrast, the GLB bound produced starting points that were almost as
good as the SDP-based ones, but the computational requirements for GLB were
negligible.
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2.2 | Surrogate-assisted Methods
The analysis of complex systems, where obtaining an analytical solution may be
either difficult or impossible, one often resorts to methods of numerical analysis
such as the finite-element method (FEM), computational fluid dynamics (CFD),
or structural finite-element analysis (FEA). Such analyses are becoming broadly
utilized in evaluating and optimizing design, reliability, and maintenance of complex
systems and structures in a vast range of industrial applications such as aerospace
[176], automotive [15], sustainable architecture [171], and many others.

The problem with such computer simulations is that they tend to be very com-
putationally demanding, because of their intrinsically detailed description of the
studied systems. The problems based on FEM or CFD models also require the com-
putation of thousands of simulations in order to construct a suitable solution, which
requires a large computational budget [2].

The main purpose of using surrogate models (also called metamodels) is to ap-
proximately emulate the expensive-to evaluate high-fidelity models, employing com-
putationally less costly statistical models. The surrogate models are build based on
a relatively low number of simulations based on input and output data, that are
computed by using the high-fidelity expensive computations. After the surrogate
model is validated and achieves a satisfactory level of approximation of the high-
fidelity model, its utilization in predicting the outputs of this high-fidelity model
can be done at a fraction of the computational cost.

To mitigate the computational costs, surrogate models have been widely used
in combination with evolutionary algorithms (EAs), which are known as surrogate-
assisted EAs (SAEAs) [73]. SAEAs only execute a limited number of real objective
function (or constraint) evaluations and use them to train the chosen surrogate
models. Based on the current surrogate model, the SAEAs typically choose between
two types of solutions for the real function evaluations: either promising samples
which are around the current optimum of the surrogate model, or uncertain samples
with a large expected approximation error. Surrogate models can guide the search of
EAs to promising directions by using optima of these models, as was demonstrated
[132]. Also, it has been found that evaluating the uncertain samples can strengthen
the exploration capabilities of SAEAs and effectively improve the approximation
accuracy of the surrogate [72], and over the years various approaches for estimating
the degree of uncertainty in the function predictions have been proposed [169].

In recent years, a multitude of SAEAs has been proposed in the literature. Usu-
ally, such algorithms employ a metaheuristic method to be the primary search strat-
egy and employ the surrogate models as additional tools in order to accelerate the
convergence of the underlying metaheuristic algorithm. Because of the curse of
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dimensionality, it is generally difficult for EAs to search for global optima in high-
dimensional spaces. And SAEAs encounter this challenge as well when the dimension
of a problem is high. Although current SAEAs can handle high-dimensional expen-
sive problems relatively well, most of these algorithms still need many (usually more
than several thousands) function evaluations to obtain “good” optimization results.
The use of multiple surrogates have been shown to perform better than single ones in
assisting EAs. Generally, this approach works by utilizing a global surrogate model
to smooth out the local optima, and local surrogate models to capture the local
details of the fitness function around the neighborhood of the best-found solutions.

Two IF journal papers are included in the thesis in order to demonstrate the
author’s contribution to the field:

[A7] J Kůdela, R Matoušek. Recent advances and applica-
tions of surrogate models for finite element method computa-
tions: a review. Soft Computing, 26(24):13709–13733, 2022.

Author’s contribution: 80%.

Metrics: IF2021 = 3.732.

Ranking (JCR 2021 WoS): Q2 - computer science, artificial
intelligence; Q2 - computer science, interdisciplinary appli-
cations.

[A8] J Kůdela, R Matoušek. Combining lipschitz and rbf
surrogate models for high-dimensional computationally ex-
pensive problems. Information Sciences, 619:457–477, 2023.

Author’s contribution: 90%.

Metrics: IF2021 = 8.233.

Ranking (JCR 2021 WoS): D1 - computer science, informa-
tion systems.
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2.2.1 | Recent Advances and Applications of Surrogate Mod-
els for Finite Element Method Computations: A Re-
view

The primary motivation of the paper [A7] lied in investigating recent advances and
applications of surrogate models for FEM-based computations. Although the uti-
lization of surrogate models is growing in popularity, a comprehensive text sum-
marizing the state-of-the-art and recent developments (especially for FEM-based
computations) was missing. The novelty of the paper was in encapsulating the
state-of-the-art in surrogate modelling for FEM-based computations from both the
theoretical and application perspectives. It is also expected that this work will func-
tion as a guide in the selection of the suitable approximation models for applications
of computationally expensive high-fidelity FEM-based problems.

The review paper [A7] emphasized the differences between employing surrogates
for the three problem classes. The first class encompasses the most fundamental use
of surrogates—building and validation techniques for surrogate models, and their
use for prediction. The second class of problems focuses on sensitivity analysis of
the resulting models and the various ways one can quantify the impact of uncertain
parameters, which could influence the behaviour of the modelled systems. Lastly,
the third class is commonly referred to as surrogate-assisted optimization, where the
objective function or constraints used for optimization are prohibitively expensive to
compute and the information about the corresponding derivatives is not available.

The paper [A7] gives a detailed account of the state-of-the-art in surrogate mod-
elling techniques. First, different sampling strategies are presented. Both station-
ary sampling methods (that are based upon geometry or patterns, such as Latin
Hypercube Sampling) and adaptive sampling methods (which are popular in the
surrogate-assisted optimization) are discussed. Afterwards, we focused on model
validation methods, which encompass resampling techniques such as bootstrapping
or cross-validation [66]. Next, we describe the various model choices for surrogates
and the underlying mathematical formulas: Response surfaces and linear regression
[23], Kriging (which is sometimes called Gaussian process regression) [173], Radial
basis functions (RBF) [25], Support vector regression [163], Artificial neural net-
works [157], Polynomial chaos expansion [174], Boosted trees and random forests
[55], and other less-used techniques. We also discuss the use of ensembles of surro-
gates, that can be used to mitigate the drawbacks of using a single surrogate model,
and multifidelity models, which are constructed by a combination of different fidelity
models that depend on the specifics of a given problem, with the goal of reducing
the high computing cost while giving accurate solutions.
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Another section of the paper [A7] is devoted to Sensitivity analysis, which is
a techniques that is frequently employed to determine the effect of the input pa-
rameters on a given outcome variable [177]. It is also often used in a preliminary
step before an early design, analysis of uncertainty, or optimization in an effort to
reduce the complexity of the studied problem. Different values of the model parame-
ters, along with the initial (input) values of variables, are often subjected to different
sources of uncertainty. A solid comprehension of the sensitivity of the outputs of the
model to uncertainty in the values of the parameters and input variables is important
for strengthening the confidence in the model and in the resulting predictions [2].
The paper discusses the state-of-the-art advances in two complementary approaches
for Sensitivity analysis: the local and global methods. The local methods perturb
the inputs of one chosen design in order to approximate its partial derivatives, which
give an insight into the sensitivities of inputs around the chosen design. On the other
hand, the global methods aim to determine the effect of the parameters over the
entire design space. Apart from the methods for fast parameter prescreening, the
global methods are generally computationally more demanding than the local ones.
As both local and global methods are based on simulations, faster evaluations of
surrogates can be utilized to speed up the process of sample generation, which is
especially useful for variance-based techniques that require numerous samples.

The state-of-the-art in optimization of complex and costly problems that ap-
pear in real-world applications involves utilizing surrogate models during optimiza-
tion [155]. The problems based on FEM simulations belong to a category of the
black-box problems, in which the available problem information (i.e., mathemat-
ical equations and/or other exploitable knowledge) is very limited, and the only
way of extracting any information is the costly evaluation of the candidate designs.
The main purpose of surrogate-assisted optimization (SAO) is in the reduction of
the computational time, resources, and the related costs by utilizing all available
information efficiently in order to lower the number of needed objective function
evaluations. A frequently used approached is based on performing only a few of the
expensive true function evaluations for a construction of a “rough” surrogate model
and running an optimization algorithm on such surrogate model. The optimal so-
lution resulting from this computation is subsequently used as the next point for
another (expensive) true function evaluation and for the refinement of the chosen
surrogate model. Such process is generally repeated until some stopping criterion
(such as finding a “good enough solution”, long computational time, large number
of iteration, achieved precision of the surrogate, etc.) is met.

Most of the algorithms used in SAO come from the class of derivative-free meth-
ods [134]. These algorithms can be further categorized into global and local search
methods. Local search algorithms work by refining a given solution or to reach
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a local optimum. On the other hand, global search methods utilize a mechanism
that (hopefully) lets them to escape from local minima. Among the local search
methods are the algorithms which sequentially evaluate candidate points that are
generated based on a particular strategy (often utilizing geometric patterns), such
as the Hooke and Jeeve’s algorithm and the Nelder-Mead simplex method. The
trust-region methods are also in this category. They use a surrogate model in a close
neighbourhood of a given location. Another extensively utilized local search method
is sequential quadratic programming, that constructs a quadratic approximation of
the problem at each iteration and finds the corresponding solution [117]. Among
the global search methods, we can find the design space-partitioning methods such
as the DIRECT algorithm [74] and stochastic algorithms. In recent years, especially
the stochastic algorithms have become popular for SAO [73], with methods such as
evolutionary algorithms, simulated annealing, particle swarm optimization, genetic
algorithms, differential evolution, and many others.

In many cases, the optimization of highly challenging problems needs to con-
sider more than a single objective function. These multiple objectives are often
aggregated into a single objective by using a weighted sum (or similar aggregation
procedure) that makes the problem approachable with ordinary (single objective)
optimization methods. The converse approach is to consider all objectives in par-
allel, which becomes especially important in situations where these objectives are
conflicting, such as quality and price in production or lift and drag in airfoil design
[155]. Although there have been developed several algorithms for multi-objective
SAO, the field still lacks a common repository in which the different methods could
be collected and compared. This is because the development of such methods is
generally application-oriented and such methods have often been used to solve a
particular real-word or industrial optimization problem. Some of the algorithm that
are most widely used are the multiobjective genetic algorithm NSGA-II [46], the
RASM method [102], and the ParEGO algorithm [83].

Another problem characteristic that plays a significant role in optimal design
is uncertainty. Incorporating various ways of dealing with uncertainty into the
optimization process is very often a crucial step can guarantee that the resulting
design is able to handle variations in the input parameters. One of the possibilities
is to apply sensitivity analysis to the result of the optimization process, and (if
found inadequate) modify the objective function and/or the constraints. Another
possibility lies in utilizing the robust optimization approach, which is mathematical
framework for optimization that is designed to minimize the propagation of the
input uncertainties to the output responses [39]. The paper [A7] gives a detailed
account of the most-used surrogate model types in SAO, the optimization models
and algorithms, and the various application areas.
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The next section of the paper [A7] deals with the available software tools for
surrogate modelling, sensitivity analysis, uncertainty quantification, and surrogate-
assisted optimization. As the employment and utilization of surrogate models for
analyzing and optimizing computationally expensive problems have become more
prevalent, we have seen a significant increase in the availability of new software
tools which provide an easy access to the needed technologies. Among these tools
are ALAMO [42], ARGONAUT [22], Agros Suite and Artap [77], Eureqa [143],
FReET [118], RBFOpt [41], and many other tools, mainly developed in MATLAB
and Python.

The last section of the review paper [A7] presents the current trends, research
gaps, and practical recommendations in the utilization surrogate models for the
different tasks. What is anticipated is that future research in surrogate models for
FEM-based computations will focus more on the development of automated tools
for the selection and construction of surrogate models, as well as on the efficient
use of the ensambles of surrogates and multi-fidelity models, based on where in
the three discussed classes the particular application is located. Another expected
trend is that future analyses will concentrate further on decreasing computational
cost related to deriving surrogate models and on improving their interpretability.
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2.2.2 | Combining Lipschitz and RBF surrogate models for
high-dimensional computationally expensive problems

In the paper [A8], we proposed a surrogate model based on a Lipschitz underes-
timation and use it to develop a differential evolution-based algorithm. The algo-
rithm, called Lipschitz Surrogate-assisted Differential Evolution (LSADE), utilizes
the Lipschitz-based surrogate model, along with a standard radial basis function
surrogate model and a local search procedure.

In the paper [A8], we used a combination of two surrogate models. The first
one was built by the radial basis function (RBF) methodology. RBFs compute
a weighted sum of prespecified simple functions to approximate complex design
landscape. Given 𝑡 different sample points 𝑋1, . . . , 𝑋𝑡, the RBF surrogates are
written as

𝑓RBF(𝑥) =
𝑡∑︁

𝑖=1
𝑤𝑖𝜓(||𝑥−𝑋𝑖||2),

where 𝑤𝑖 denotes the weight which is computed using the method of least squares,
and 𝜓 is the chosen basis function. There are several (symmetric) radial functions
that can serve as a basis function, such as Gaussian function, thin-plate splines,
linear splines, cubic splines, and multiquadrics splines.

The second surrogate model was based on the concept of Lipschitz continuity.
The use of a the Lipschitz continuity concept in optimization was first proposed in
the Shubert-Piyavskii method (or Sawtooth method) [127, 150] and initiated a line of
research within global optimization that is active to this day [103]. We assume that
the unknown (and expensive to compute) objective function 𝑓 has a finite Lipschitz
constant 𝑘, i.e.

∃𝑘 ≥ 0 s.t. |𝑓(𝑥) − 𝑓(𝑥′)| ≤ 𝑘||𝑥− 𝑥′||2 ∀(𝑥, 𝑥′) ∈ 𝒳 2,

which is one of the weakest regularity assumptions one can ask for. Based on a sam-
ple of 𝑡 evaluations of the function 𝑓 at points 𝑋1, . . . , 𝑋𝑡, a global underestimator
𝑓𝐿 of 𝑓 can be constructed by using the following expression [103]

𝑓𝐿(𝑥) = max
𝑖=1,...,𝑡

𝑓(𝑋𝑖) − 𝑘||𝑥−𝑋𝑖||2. (2.2.1)

The visual representation of the Lipschitz-based surrogate function in 1D is de-
picted in Figure 2.1. In the figure, each already evaluated point has two lines (one
to the left and the other to the right) emanating from it under an angle that de-
pends on the Lipschitz constant 𝑘. The surrogate is constructed as the pointwise
maximum of these individual lines. A 2D visualization is shown in Figure 2.2. The
Lipschitz-based surrogate has two important properties. Firstly, it assigns low val-
ues to points that are far from previously evaluated points. It also combines it with
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Fig. 2.1: Visual representation of the Lipschitz-based surrogate in 1D [A8].

Fig. 2.2: Visual representation of the Lipschitz-based surrogate on the Rosenbrock func-
tion in 2D. Sampled points are highlighted in red and the Lipschitz-based sur-
rogate in light blue [A8].

the information (objective value and “global” Lipschitz constant) from the closest
evaluated point. This means that it can serve as a good “uncertainty measure” of
prospective points for evaluation, as points with low values of 𝑓𝐿 are either far from
any other evaluated solution, or relatively close to a good one.

The proposed LSADE method consists of four distinct parts: 1) the DE-based
generation of prospective points, 2) the global RBF evaluation of the prospective
points, 3) the Lipschitz surrogate evaluation of the prospective points, and 4) the
local optimization within a close range of the best solution found so far. The execu-
tion of parts 2) – 4) of the algorithm is controlled based on chosen conditions, i.e.,
one may sometimes skip RBF surrogate evaluation, Lipschitz surrogate evaluation,
or local optimization, if either of them deemed to be advantageous for the search.

First, Latin hypercube sampling is employed to generate the initial population
of 𝑡 individuals, whose objective function is then evaluated. The best individual is
found, a parent population of size 𝑝 is randomly selected from the evaluated points
and a new population is constructed based on the DE rules. If the RBF evaluation
condition is true, the new population is evaluated based on the RBF surrogate
model. Then the best individual based on the RBF model has its objective function
evaluated and is added to the whole population. This step constitutes the global
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Algorithm 1 Pseudocode of the LSADE [A8].
1: Generate an initial population of 𝑡 points 𝑋1, . . . , 𝑋𝑡 and evaluate their objective

function values. Denode the best solution as 𝑋𝑏.
2: Set 𝑖𝑡𝑒𝑟 = 0 (iteration counter), 𝑁𝐹𝐸 = 𝑡 (number of function evaluations).
3: Use the evaluated points so far to estimate 𝑘 and to construct the RBF surrogate.
4: Sample 𝑝 points from the population as parents for DE.
5: Based on the DE rules, generate children.
6: Increase 𝑖𝑡𝑒𝑟 by 1.
7: if RBF condition then
8: Evaluate the children on the RBF surrogate.
9: Find the child with the minimum RFB surrogate value, and add it to the

population and evaluate its objective function value. Increase 𝑁𝐹𝐸 by 1.
10: if Lipschitz condition then
11: Evaluate the children on the Lipschitz surrogate.
12: Find the child with the minimum Lipschitz surrogate value, and add it to

the population and evaluate its objective function value. Increase 𝑁𝐹𝐸 by 1.
13: if Local Optimization condition then
14: Construct a RBF local surrogate model using the best 𝑐 solutions found so

far.
15: Find the bounds in each dimension for the local optimization.
16: Minimize the local RBF surrogate model within the bounds. Denote the min-

imum as �̂�𝑚 and, if it is not already in the population, add it to the population
and evaluate its objective function value. Increase 𝑁𝐹𝐸 by 1.

17: Find the best solution so far and denote it as 𝑋𝑏.
18: if 𝑁𝐹𝐸 < 𝑁𝐹𝐸𝑚𝑎𝑥 then
19: goto 3.
20: else
21: terminate.

search strategy.
If the Lipschitz evaluation condition is true, the Lipschitz constant 𝑘 is estimated

and the new population is evaluated on the Lipschitz surrogate model. The best in-
dividual based on the Lipschitz surrogate model has its objective function evaluated
and is added to the whole population.

If the Local optimization condition is true, a local RBF surrogate model is con-
structed using the best 𝑐 solutions found so far, which we denote by �̂�1, . . . , �̂�𝑐.
Additionally, we find the bounds for the local optimization procedure within those
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𝑐 points:

𝑙𝑏(𝑖) = min
𝑗=1,...,𝑐

�̂�𝑗(𝑖), 𝑖 = 1, . . . , 𝐷,

𝑢𝑏(𝑖) = max
𝑗=1,...,𝑐

�̂�𝑗(𝑖), 𝑖 = 1, . . . , 𝐷,

and perform a local optimization of the local RBF model within the bounds [𝑙𝑏, 𝑢𝑏].
For local optimization we adapt a sequential quadratic programming strategy, which
was also used by the winner of the 2020 CEC Single Objective Bound Constrained
Competition [140]. We find the local optimum and check, if it is not already in the
population, before evaluating it and adding it to the population.

The evaluation of points based on the Lipschitz-based surrogate model can be
thought of as an exploration step of the method (and is expected to increase our
ability to find the regions where “good” solutions might be found). On the other
hand, the evaluation of points based on the local optimization procedure can be
thought of as an exploitation step of the algorithm (and is expected to give us the
means to improve the best solutions we have found so far).

The cycle of generating new population, evaluating it on the RBF and Lipschitz
surrogate models and conducting the local optimization is carried out until a maxi-
mum number of objective function evaluations is reached. The pseudocode1 for the
LSADE method is described in Algorithm 1.

In the experimental evaluation of the proposed method, LSADE was compared
with six other state-of-the-art algorithms on a testbed of standard benchmark func-
tions in dimensions 𝐷 = [30, 50, 100, 200]. We also investigated the advantages of
the individual components of the method, the choice of the conditions for using these
components, the choice of basis functions for the RBF surrogates, and the computa-
tional complexity of the individual parts of the method. The computational results
showed its effectiveness and competitiveness with other state-of-the-art algorithms,
especially for complicated and high-dimensional problems. The LSADE method was
also investigated on the benchmark set of the ICSI’2022 competition [95].
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2.3 | Mathematical Programming Methods
Mathematical programming methods are specialized techniques that are extremely
effective for problems with a known (exploitable) structure. They are designed to
utilize function attributes such as convexity, linearity, or unimodality. Knowing that
such a structure is present in a given problem opens the door for an extremely use-
ful analysis. Theorems about the model structure, including properties pertaining
to feasibility, or redundancy and theorems about the form of a solution (including
whether one exists) can be proved. Convergence of algorithms can be analyzed. Var-
ious approximation arising from imperfections of model forms, levels of aggregation,
computational error, and other deviations can be meaningfully investigated. With
such structure, even extremely large problems (having billions of variables [179])
then can be successfully tackled.

The field of mathematical programming methods is incredibly rich - every bit of
an exploitable structure has a corresponding method that tries to take advantage
of it. An extremely comprehensive source of the most used methods is the book
[117] - it covers large-scale mathematical programming techniques (such as interior-
point or limited-memory methods), and the role of partially separable functions and
automatic differentiation. It also includes a thorough discussion of topics such as
Newton (and quasi-Newton) methods, constrained optimization theory, nonlinear
least squares and nonlinear equations, penalty and barrier methods for nonlinear
programming, the simplex method, trust-region methods, and sequential quadratic
programming.

The author’s area of research (in the mathematical programming methods) was in
algorithms for the so-called stochastic programming problems [149], in which one has
to deal with uncertain parameters in the problem data. We can model the decision
making as specifying an objective function 𝐹 (𝑥, 𝜉), that depends on a decision vector
𝑥 ∈ ℛ𝑛𝑥 and vector 𝜉 ∈ ℛ𝑛𝜉 of uncertain parameters, and minimizing 𝐹 (𝑥, 𝜉) over 𝑥,
which is restricted to the feasible set 𝑥 ⊆ ℛ𝑛𝑥 . However, this optimization problem is
not well defined because our objective depends on an unknown and uncertain value
of 𝜉. One possibility is to optimize the expected value of the objective function
value. We assume that 𝜉 is a random vector, with known probability distribution 𝒫
with a support Ξ ⊆ ℛ𝑛𝜉 and formulate the following optimization problem:

minimize 𝑓(𝑥) = 𝐸𝒫 [𝐹 (𝑥, 𝜉)]
subject to 𝑥 ∈ 𝒳 ,

(2.3.1)

where it is assumed that the considered expectations are well defined [93]. Another
optimize a weighted sum of the expected value and a term representing variability
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of the second-stage objective function. For example, one can instead minimize

𝑓(𝑥) = 𝐸[𝐹 (𝑥, 𝜉)] + 𝑐Var[𝐹 (𝑥, 𝜉)],

where 𝑐 ≥ 0 is a chosen constant, which was used in the Markowitz portfolio selection
[136]. The additional (variance) term in the expression above can be viewed as a
risk measure of the second-stage (optimal) outcome - adding the variance term may
destroy convexity of the function 𝑓 even if 𝐹 (𝑥, 𝜉) is convex for all realizations of 𝜉
[158].

The formulation (2.3.1) can be applied to the so-called two-stage stochastic pro-
gramming problem with recourse [11], where this optimization problem is divided
into two decision stages - the first stage (also called the planning stage) where a deci-
sion has to be made on the basis of some available information, and the second stage
(also called the operational stage) in which the particular realization of the uncer-
tain data becomes known. This stochastic programming problem can be written in
the form (2.3.1) where the optimal value of the second-stage problem is included in
𝐹 (𝑥, 𝜉). These two-stage (or even multi-stage) can be approached by approximating
the distribution of 𝜉 and reformulating them into “standard” optimization prob-
lems. The caveat is that the problem size (measured in the number of variables and
constraints) increases (sometimes quite dramatically) as the approximation of the
distribution becomes more refined. The currently most-used approaches for such
problems use variants of Bender’s decomposition [182], progressive hedging [135],
and stochastic dual dynamic programming [148].

One think to emphasize is that in the formulation (2.3.1) the uncertainty is con-
centrated in the objective function while the feasible set Ξ is assumed deterministic.
However, in problems the feasible set itself can be delimited by constraints which
depend on uncertain data. One approach is to formulate such problems in the form
(2.3.1) by introducing penalty for any possible infeasibility. Another approach is to
enforce satisfying constraints for all values of the unknown parameters in a chosen
(uncertain) region. This approach is known as robust optimization [13]. This field
experienced a significant increase in interest, building upon the advances in convex,
conic, and semidefinite programming [14].

Requiring the satisfaction of the constraints for all possible values of the uncer-
tain parameter can result in a solution that is too conservative. An alternative is try
to satisfy the constraints with a high probability instead. This leads to the chance,
or probabilistic, constraints approaches [38]. The currently most-used approaches
for chance constrained problems utilize convex reformulations (also called the Bern-
stein approximation) [115], mixed-integer reformulations [1, 121], and the theory of
probabilistic robust design [34, 35].
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Stochastic programming is now a mature field with vast array of applications
[168] spanning energy [167], transportation/logistics [129], nurse scheduling [9], port-
folio selection [106], or disaster management [119]. The author of this thesis also has
substantial experience of applying the stochastic programming framework to real-
world problems, mainly in the area of network design and strategic decision-making
for waste management problems [71, 154, 91]. Two of these applications [A10] and
[A12] will be discussed in detail in the last section of the thesis.

In this section, two IF journal papers which are concerned with the algorithms
for certain stochastic programming problems are included in the thesis in order to
demonstrate the author’s contribution to the field:

[A9] J Kůdela, P Popela. Warm-start cuts for general-
ized benders decomposition. Kybernetika, 53(6):1012–1025,
2017.

Author’s contribution: 70%.

Metrics: IF2017 = 0.632.

Ranking (JCR 2017 WoS): Q4 - computer science, cybernet-
ics.

[A11] J Kůdela. Pool & discard algorithm for chance
constrained optimization problems. IEEE Access,
8:79397–79407, 2020.

Author’s contribution: 100%.

Metrics: IF2020 = 3.367.

Ranking (JCR 2020 WoS): Q2 - computer science, informa-
tion systems; Q2 - engineering, electrical & electronic; Q2 -
telecommunications.
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2.3.1 | Warm-start Cuts for Generalized Benders Decomposi-
tion

The paper [A9] focuses on a variation of the Benders decomposition [20] that was
originally developed for solving mixed-variables programming problems. Into was
further generalized for nonlinear convex problems and named the Generalized Ben-
ders Decomposition (GBD) [58]. The GBD method found its main use as a solution
technique for mixed-integer nonlinear problems. In stochastic programming linear
separability of the objective function and constraints is a common property - the
two-stage problems can be often separated into the functions concerning only the
first- and the second-stage variables. In the paper [A9], we assumed that in the
problem under consideration the uncertainty was in the form of 𝑆 scenarios 𝜉𝑘 ∈ Ξ
with probabilities 𝒫{𝜉 = 𝜉𝑘} = 𝑝(𝜉𝑘) > 0, and that the problem had the following
form:

minimize 𝑓1(𝑥) +
𝑆∑︁

𝑘=1
𝑝(𝜉𝑘)𝑓2(𝑦𝑘, 𝜉

𝑘)

subject to 𝑔1𝑖(𝑥) ≤ 0, 𝑖 = 1, . . . ,𝑚1

𝑎𝑗(𝜉𝑘)𝑇𝑥+ 𝑔2𝑗(𝑦𝑘, 𝜉
𝑘) ≤ 0, 𝜉𝑘 ∈ Ξ, 𝑗 = 1, . . . ,𝑚2,

(2.3.2)

where 𝑓1 : ℛ𝑛𝑥 → ℛ is a convex function, all 𝑚1 constraint functions 𝑔1𝑖 : ℛ𝑛𝑥 → ℛ
are convex, and for all 𝜉𝑘 ∈ Ξ (with |Ξ| = 𝑆), all 𝑚1 constraint functions 𝑔2𝑗(·, 𝜉𝑘) :
ℛ𝑛𝑦 → ℛ are convex, 𝑎𝑗(𝜉𝑘) is a vector for 𝑗 = 1, . . . ,𝑚2, and the function 𝑓2(·, 𝜉𝑘) :
ℛ𝑛𝑦 → ℛ is convex. For this problem, we derived the corresponding master problem
and subproblems (from the GBD framework).

We introduced a reformulation of the master problem that included bounds ob-
tained from two different problems - the wait-and-see solution (where all scenarios
are treated and optimized separately), and the expected value solution (where all
random variables are replaced by their expected values). The idea was to include
such a valid lower bound to the algorithmic procedure to “jumpstart” it and by
doing so save on iterations (and the overall computational effort and time).

Another extensions in the form of bunching and multicut strategies were also
investigated. Bunching is a technique in which we use “bunches” of scenarios and
decompose the original problem alongside these bunches. The multicut formulation
develops one cut for every second-stage problem (i.e., for every scenario) instead of
the aggregated cut that the original method uses. The usefulness of the developed
theoretical concepts (and the different extensions and variations) was numerically
tested on a pair of two convex two-stage problems. The results showed that proposed
warm-start formulation for GBD perform well for solving medium-sized convex two-
stage stochastic problems and that especially the bunching ideas and modifications
produce fruitful results.
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2.3.2 | Pool & Discard Algorithm for Chance Constrained Op-
timization Problems

The article [A11] described a new method for handling chance constrained opti-
mization problems [130]. The problem structure was the following. Let 𝒳 ⊆ ℛ𝑛𝑥

be a convex and closed domain of optimization and consider a family of constraints
𝑥 ∈ 𝒳𝜉 parameterized in 𝜉 ∈ Ξ. The uncertain parameter 𝜉 again describes different
instances of an uncertain optimization scenario. We also have a probability measure
𝒫 that describes the probability with which the uncertain parameter 𝜉 takes value
in Ξ. Then, a chance constrained optimization program can be written as:

minimize 𝑐𝑇𝑥

subject to 𝒫{𝜉 : 𝑥 ∈ 𝒳𝜉} ≥ 1 − 𝜀,

𝑥 ∈ 𝒳 ,
(2.3.3)

where the linearity of the objective function can be assumed without loss of gen-
erality. The prototype optimization problem consists in minimizing a linear ob-
jective 𝑐𝑇𝑥, subject to that 𝑥 satisfies the constraints 𝑔(𝑥, 𝜉) ≤ 0,∀𝜉 ∈ Ξ, where
𝑔(𝑥, 𝜉) : 𝒳 × Ξ → [−∞,∞] is a scalar-valued function that specifies the constraints.
Considering only scalar-valued constraint functions can be assumed without loss of
generality, as multiple constraints 𝑔1(𝑥, 𝜉) ≤ 0, . . . , 𝑔𝑚(𝑥, 𝜉) ≤ 0 can be expressed
by a single scalar-valued constraint by aggregation 𝑔(𝑥, 𝜉) = max𝑖=1,...,𝑚 𝑔𝑖(𝑥, 𝜉). Al-
though convexity is preserved by this operation, other valuable properties (such as
linearity or differentiability) can be lost. In most situations, Ξ has infinite cardinal-
ity (i.e., contains an infinite number of possible realization of 𝜉). We assume that
for each 𝜉 ∈ Ξ, the sets 𝒳𝜉 are convex and closed.

In this formulation (2.3.3), constraint violation is tolerated, but the violated
constraint set must be no larger than 𝜀. The parameter 𝜀 gives us the ability to
trade robustness (i.e., the probability of constraint violation) for performance (i.e.,
improved optimal objective function value). The the optimal objective function
value of (2.3.3) is a decreasing function of 𝜀 and provides the quantification of this
trade-off.

In this setting, an important concept is the probability of violation of 𝑥 which is
defined as

𝒱(𝑥) = 𝒫{𝜉 ∈ Ξ : 𝑔(𝑥, 𝜉) > 0}.

A solution 𝑥 with small associated 𝒱(𝑥) is feasible for most of the problem instances.
We also say that a solution 𝑥 is 𝜀-level robustly feasible (or approximately feasible)
if 𝒱(𝑥) ≤ 𝜀. The main goal is to devise an algorithm that returns a 𝜀-level solution
(with any fixed small reliability level 𝜀). The approach that was utilized in the paper
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[A11] was based upon a surrogate model called the “Scenario Design Problem”. In
the “scenario design” one optimizes the objective subject to a finite number of ran-
domly selected scenarios. It is assumed that 𝑆 independent identically distributed
samples 𝜉1, . . . , 𝜉𝑆 are drawn according to probability 𝒫 . A scenario design problem
can then be written as the convex program

minimize 𝑐𝑇𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 = 1, . . . , 𝑆
𝑥 ∈ 𝒳 ,

(2.3.4)

with the assumption that for all possible extractions 𝜉1, . . . , 𝜉𝑆, the optimization
problem (2.3.4) is either infeasible, or, if feasible, it attains a unique optimal solution.
The scenario problem (2.3.4) is a “standard” convex optimization problem with a
finite number of constraints and, hence, its optimal solution should (usually) be
efficiently computable by the means of mathematical programming algorithms [24].

The relationship between the number of sampled scenarios 𝑆 and the probability
of violation of the optimal solution to corresponding Scenario Design Problem was
derived in [33]. It was found that for a chosen 𝜀 we can always find 𝑆 that is large
enough such that the solution to (2.3.4) is 𝜀-level feasible for the original problem
(2.3.3) with arbitrarily high confidence. However, there is no guarantee, that the
resulting optimal objective value of (2.3.4) will be anywhere close to the true optimal
value of (2.3.3).

A pivotal concept in the development of the proposed Pool & Discard (P&D)
algorithm was the so-called “support scenario”. A scenario 𝜉𝑖, 𝑖 ∈ {1, . . . , 𝑆} is a
support scenario for the scenario problem (2.3.4) if its removal changes the optimal
solution of (2.3.4). It was shown in [33] that the number of support scenarios for
(2.3.4) is at most 𝑛𝑥 (i.e., the size of 𝑥), and it does not depend on 𝑆 The first main
contribution of the paper [A11] is an efficient way of solving (2.3.4) using this result.

The main idea behind the Pooling part of the algorithm is the following. If one
were to verbally describe the problem (2.3.4), the word that probably first comes
up is “long”, as there are much more constraints than decision variables. Moreover,
the number of support constraints (or support scenarios), that the optimal solution
of (2.3.4) depends upon is very small, at least when compared to the overall number
of constraints.

The method consists of solving (2.3.4) by the following procedure. First, we start
by completely neglecting the constraints in (2) that correspond to the different sce-
narios and solve this relaxed optimization problem. Then we find the most violated
constraints (by computing the slacks), add them to the relaxed problem and find a
new optimal solution.

The Pooling part can be summarized as follows:
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Step 0. Set ℐ = ∅.
Step 1. Solve the following problem:

minimize
𝑥∈𝒳

𝑐𝑇𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ ℐ,
(2.3.5)

and obtain a solution �̂�.
Step 2. Check feasibility of the solution by computing the slacks 𝑠𝑖:

𝑠𝑖 = 𝑔(�̂�, 𝜉𝑖), 𝑖 ∈ {1, . . . , 𝑆}. (2.3.6)

Step 3. If max
𝑖∈{1,...,𝑆}

𝑠𝑖 > 0, find the associated index of the maximum value �̂� =

argmax
𝑖∈{1,...,𝑆}

𝑠𝑖, add it to the set ℐ and return to Step 1. Otherwise, set 𝑥* =

�̂�, ℐ* = ℐ and terminate.
Once this procedure end, we get the optimal solution of (2.3.4), and also an index
set ℐ that contains the support scenarios. This index set is very significant for the
success of the Discarding part of the P&D algorithm.

However, if we were to enforce all the S constraints we cannot expect to obtain
good approximations of chance constrained solutions. To get a less conservative
solution we utilized the framework introduced in [34], that allowed us to remove 𝑘
constraints out of the 𝑆 scenario constraints. A general removal procedure can be
formalized by the following definition: Let 𝑘 < 𝑆. An algorithm 𝒜 for constraints
removal is any rule by which 𝑘 constraints out of a set of 𝑆 constraints are selected
and removed. The output of 𝒜 is the set 𝒜{𝜉1, . . . , 𝜉𝑆} = {𝑖1, . . . , 𝑖𝑘} of the indexes
of the 𝑘 removed constraints. The sample-based optimization program where 𝑘

constraints are removed as indicated by 𝒜 can be written as

minimize 𝑐𝑇𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ {1, . . . , 𝑆} ∖ 𝒜{𝜉1, . . . , 𝜉𝑆}
𝑥 ∈ 𝒳 ,

(2.3.7)

There is an additional assumption which requires that the algorithm 𝒜 chooses con-
straints whose removal improves the solution by violating the removed constraints,
and it rules out for example algorithms that remove inactive constraints only, or al-
gorithms that remove constraints at random. Such assumption is very natural and
reflects the fact that we want to remove the constraints that improve the optimal
objective value.

The Discarding part of the proposed P&D algorithm consists of utilizing the in-
dex set ℐ, finding the support scenarios among this set and finding the one scenario,
whose removal decreases the optimal objective value the most. This procedure is
repeated 𝑘 times, where 𝑘 is either set a priori, or is terminated once an estimate
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of the probability of violation of obtained solution 𝒱(𝑥) reaches certain threshold.
Although this approach is in principal similar to the one discussed in [122] (called
greedy constraint removal), our algorithm utilizes the Pooling step and uses warm-
starts (primarily utilizing ℐ) throughout the iterations and as such can be rather
effective (which is demonstrated in the numerical/experimental sections of the pa-
per). The P&D algorithm can be summarized as follows:
Step 0. Solve the pooling part described above to obtain ℐ* and 𝑥*. Set 𝛾 > 0, 𝑘 >

0, ℐ𝑝 = ∅.
Repeat 𝑘 times, or terminate once

an estimate of 𝒱(𝑥*) reaches a threshold:
Step 1. Find the set of support scenarios ℐ𝑟 ⊂ ℐ* – either by examining the

slacks (𝑠𝑖 > −𝛾) or the associated dual variables (𝜇𝑖 > 𝛾).
Step 2. For each of the support scenarios 𝑖𝑟 ∈ ℐ𝑟, solve the following problem:

minimize
𝑥∈𝒳

𝑐𝑇𝑥

subject to 𝑔(𝑥, 𝜉𝑖) ≤ 0, 𝑖 ∈ {1, . . . , 𝑆} ∖ {𝑖𝑟 ∪ ℐ𝑝},
(2.3.8)

using the Pooling part, warm-started by using ℐ = ℐ* ∖ {𝑖𝑟} and 𝑥 = 𝑥*.
Denote the solution to (2.3.8) as 𝑥*

𝑖𝑟
, its optimal objective function value 𝑣*

𝑖𝑟

and its final set of scenarios ℐ*
𝑖𝑟

.
Step 3. Find the index with the best optimal objective value: 𝑖* = argmin

𝑖𝑟

𝑣*
𝑖𝑟

.
Set 𝑥* = 𝑥*

𝑖* , ℐ* = ℐ*
𝑖* and add the corresponding scenario to the set of

permanently discarded ones ℐ𝑝.
The parameter 𝛾 can be, in theory, set to 0 – what discourages us from doing so are
the implementation issues of numerical computing that are further discussed in the
paper.

The numerical examinations show that the proposed P&D algorithm provides a
powerful framework for handling certain types of chance constrained optimization
problems. The exploitation of the problem structure and efficient implementation
allows us to considerably speed up the computations, especially for large instances,
when compared with conventional methods. When compared with conventional
approaches [122] on a linear example, it was several hundred times more efficient in
the largest instances. On the nonlinear examples, it was on par with the specialized
state-of-the-art methods [147] and [1]. The pooling techniques developed in [A11]
and the batching techniques used in [A9], were also utilized in another paper of the
author of this thesis [88], that improved the efficiency of the Wolfe-Atwood algorithm
for the minimum-volume covering ellipsoid problem [24].
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2.4 | Benchmarking Optimization Methods
Over the years, the number of different optimization methods (and the various
implementations of these methods) have increased substantially [12]. Comparative
studies of different methods can provide a great value to the practitioners by helping
them to choose the most fitting optimization method for their specific problem. This
comparison is generally called optimization benchmarking. In its general sense,
benchmarking constitutes a comparison of one (or possibly more) products to an
industrial standard product over a collection of performance metrics [12]. In the
context of benchmarking optimization methods, the “products” are the different
implementations of selected methods, and the “performance metrics” are computed
by running these implementations on collections of test problems.

Such a framework can give a bit of clarity into benchmarking optimization meth-
ods, because there is (at least to an extent) an agreement on what it means for one
method to be “better” than another. If one method gives a better final objective
function value, uses less memory, or runs significantly faster, on all considered prob-
lems, then it can be seen as better than the alternative. Naturally, in practice such
a clear conclusion can be found only very rarely [12].

When done properly, benchmarking optimization methods can provide immense
practical value, as it can uncover certain strengths and weaknesses of different meth-
ods. On the other hand, when performed poorly, benchmarking optimization meth-
ods can also lead to misleading conclusions. It can hide various weaknesses (or
strengths) of different methods, report improvements that do not actually exist,
and even suggest objectively incorrect algorithmic choice for certain problems.

A crucial part in benchmarking is the selection of test sets (also called bench-
mark sets, or benchmark suits). A test set is a collection of test problems, which
contain a test (or benchmark) function, possibly with some further criteria such as
the feasible domain, or constraint set. Benchmarking can yield meaningful insights
only when the different methods are evaluated on the same benchmark set with
using same performance measures. There are three main sources for the test prob-
lems: randomly-generated problems, artificially-generated problems, and real-world
problems. The real-world problems are found through instances of specific applica-
tions, while pre-generated problems exist in common test set libraries[12]. A great
representative of a benchmark suite that uses both real-world and pre-generated
problems is the MIPLIB set [84] that is extensively used by the integer program-
ming community. For the QAP mentioned in earlier sections, QAPLIB [28] is also
the standard (and expected) choice for comparing different methods.

Apart from benchmarking, the comparison of mathematical programming meth-
ods can also rely on theoretical techniques such as convergence analysis. However,
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the metaheuristic methods, that are often used for black-box problems without any
exploitable structure, such theoretical performance results are hard (or impossible)
to develop. Especially the evolutionary computation (EC) methods rely heavily
on benchmarking for the development of novel search algorithms as well as in the
assessment and comparison of contemporary algorithmic ideas.

There are two main lines of development in benchmarking for EC methods, the
IEEE Congress on Evolutionary Computation (CEC) competitions and the Genetic
and Evolutionary Computation Conference (GECCO), where the Black-Box Op-
timization Benchmarking (BBOB) workshop is held. The BBOB functions are a
part of the COCO platform for comparing optimization [64]. One advantage of the
COCO platform is that a large number of algorithm results are publicly available
for comparison. Currently, more than 230 distinct (classical, contemporary, math-
ematical programming based, and EC) algorithms have been tested on the COCO
suite. On the other hand, the competitions that are organized every year during
the CEC aim to compare state-of-the-art stochastic search algorithms. The CEC
competitions provide a specific test environment for algorithm assessment and com-
parison. As was shown in [56], the characteristics of the functions used in these two
benchmark suites are very different. Interestingly, the CEC benchmark functions
are mainly composed of similar subfunctions, which possibly gives an advantage to
methods that perform well on these fewer subfunctions. Also, it was found that the
CEC functions share more similarities among themselves than with those found in
the BBOB [56]. An extremely useful feature of both the COCO platform and the
repository of the CEC competitions is the inclusion of methods and corresponding
data. In the repository of the CEC competitions, the best-performing algorithms
are shared along with their results. On the COCO platform, the results of different
methods can be found. However, some authors voiced their critique about the arti-
ficial nature of these benchmark sets [125], as a vast majority of the test problems
included in them are artificially-generated, and advocated for testing EC methods
on real-world problems instead [162].

In the global (deterministic) optimization community, one of the most popular
benchmark sets is the one produced by the GKLS generator [57]. The GKLS gener-
ator constructs classes of test functions (either non-differentiable, differentiable, or
twice-differentiable) for multi-modal, multi-dimensional box-constrained global opti-
mization. The advantage of the GKLS generator is that for each generated problem,
the location and function value of its local and global minima are known. Although
the GKLS generator can be used to create various types of problems (based on input
parameters), there are 8 classes of problems (2 for dimensions 2, 3, 4, and 5) each
containing 100 functions that are generally used [145, 144, 123, 156]. The GKLS
generator was also recently used for the construction of nonlinear model predictive
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control [175] and general-constrained [146] test problems.
In benchmarking EC methods on single-objective optimization problems, the

performance measure is usually the mean error obtained from the different runs
[99]. For multi-objective optimization problems the more adequate measures differ
[67]. Other performance indicators, such as running time or memory footprint, can
also give us some interesting insights on the behavior of the compared methods.
However, these should be carefully considered as such measures have hidden biases
that depend on external factors and can hinder the comparison, such as the chosen
programming language, or a particular implementation.

For a comparison of several algorithms to be fair, they all should conduct a
similar effort in finding the best possible solution [99]. This is usually done by
setting a common stopping criterion, such as the maximum number of objective
function evaluations. The choice and analysis of different stopping criteria is also
an important part of benchmarking, as different algorithms generally have different
convergence rates, and the results of the comparison will often substantially differ
depending on the “checkpoint” at which they were evaluated.

In benchmarking, a principled validation procedure is just as important as the
selection of the benchmark set [99]. Two different tools are widely used for this
purpose: statistical analysis and comparative visual analysis. Once the appropriate
benchmark set has been selected and the algorithms were run, the statistical compar-
ison can be carried out. Usually, the ranking of each algorithm over the benchmark
set is computed, and the significance of the differences in the ranking are tested.
The most used method for this analysis is the Friedman rank-sum test [43], which
is a non-parametric method that does not have many restrictive assumptions (such
as normality).

Visualization techniques are another useful tool for reporting results when com-
paring optimization algorithms. Their main advantage (over reporting raw data in
tables) is in their much easier interpretation and their ability to summarize complex
data and relationships. A typical visual representation is that of the convergence
of an algorithm. In this case, the variable being discussed is the convergence speed
(typically measured in the function value or error found in a given number of function
evaluations) of the compared methods. The previously mentioned COCO platform
has an integrated procedures for generating visualization of the results, such as ex-
pected running time or empirical cumulative distribution of the number of objective
function evaluations for different error targets [64]. Another great profiling tool for
optimization heuristics of the results that we used in several papers is the IOH-
profiler [48], which takes as input the benchmark data and provides very detailed
analysis. Apart from the standard statistical tests and visualizations, IOHprofiler
includes new approaches such as the Deep Statistical Comparison [53], or elo-based
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Glicko-2 rating [164]. IOHprofiler is available as an R package, as well as a free
online service.

In order to quantify the low-level properties of optimization problems, various
features of the landscape can be computed [101]. Such analysis falls under the
field of Exploratory Landscape Analysis (ELA) [110]. The landscape features try
to approximate different aspects of the optimization problem, such as its modality,
separability, or whether or not the problem has plateaus. The most notable uses of
ELA are in the visualization of the problem space of various optimization bench-
mark problem sets [151], and in automated algorithm selection [80]. It was recently
shown that the ELA features are sensitive to sampling strategy [133] and function
transformations [153, 152]. The most used tool for computing the ELA features is
the flacco library in R [81].

Three CORE-ranked conference papers and two IF journal papers are included
in the thesis in order to demonstrate the author’s contribution to the field:

[A2] J Kůdela. Novel zigzag-based benchmark functions for
bound constrained single objective optimization. In 2021
IEEE Congress on Evolutionary Computation (CEC), pages
857–862. IEEE, 2021.

Author’s contribution: 100%.

Ranking (Core 2021): B - Artificial intelligence.

[A6] J Kůdela, R Matoušek. New benchmark functions
for single-objective optimization based on a zigzag pattern.
IEEE Access, 10:8262–8278, 2022.

Author’s contribution: 70%.

Metrics: IF2021 = 3.476.

Ranking (JCR 2021 WoS): Q2 - computer science, informa-
tion systems; Q2 - engineering, electrical & electronic; Q2 -
telecommunications.
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Metrics: IF2021 = 25.898.

Ranking (JCR 2021 WoS): D1 - computer science, artificial
intelligence; D1 - computer science, interdisciplinary appli-
cations.

[A5] J Kůdela, M Juříček, R Parák. A collection of robotics
problems for benchmarking evolutionary computation meth-
ods. In: Correia, J., Smith, S., Qaddoura, R. (eds) Applica-
tions of Evolutionary Computation. EvoApplications 2023.
Lecture Notes in Computer Science, vol 13989. Springer.

Author’s contribution: 75%.

Ranking (Core 2021): B - Artificial intelligence; Machine
learning; Applied computing.

[A4] J Kůdela, M Juříček. Computational and Exploratory
Landscape Analysis of the GKLS Generator. In 2023
GECCO.

Author’s contribution: 90%.

Ranking (Core 2021): A - Artificial intelligence.
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2.4.1 | Novel Zigzag-based Benchmark Functions for Bound
Constrained Single Objective Optimization

In the paper [A2], we proposed novel zigzag-based benchmark functions for bound
constrained single objective optimization, that are non-differentiable and highly mul-
timodal. These new benchmark functions were constructed as follows. First, we
devised a so-called “zigzag” function 𝑧(𝑥). For given parameters 𝑘 > 0,𝑚 > 0 the
zigzag function 𝑧(𝑥) at a point 𝑥 ∈ ℛ is computed as:

𝑧(𝑥) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

𝑚
(︁

1
2 + (−1)⌈𝑘𝑥⌉( ⌈𝑘𝑥⌉+⌊𝑘𝑥⌋

2 − 𝑘𝑥)
)︁
, if (𝑘𝑥) /∈ 𝒵

0, if 𝑘𝑥
2 ∈ 𝒵

𝑚, otherwise,

where 2
𝑘

is the period and 𝑚 is the amplitude of the zigzag function. This function
is depicted in Fig 2.3.

The next step was the construction of a multimodal function 𝑓(𝑥), which was
devised as a sum of an absolute value of a high degree polynomial with one root in
zero and an absolute value function. Finally, the two proposed benchmark functions
𝐹1(𝑥) and 𝐹2(𝑥), for 𝑥 = [𝑥1, . . . , 𝑥𝐷]𝑇 and 𝑥 ∈ [−100, 100]𝐷, were the following:

𝑓1(𝑥) =
𝐷∑︁

𝑖=1
𝑓(𝑥𝑖)

𝐹1(𝑥) = 𝑓1(𝑀1(𝑥− 𝑠1))

𝑓2(𝑥) =
𝐷∑︁

𝑖=1
𝑓(𝑓(𝑥𝑖))

𝐹2(𝑥) = 𝑓2(𝑀2(𝑥− 𝑠2))

where 𝑠1, 𝑠2 ∈ [−100, 100]𝐷 were random shifts of the optimal solution and 𝑀1,𝑀2

were random rotation/scaling matrices, with eigenvalues in the range [0.5, 1]. The
rotation/scaling matrices were constructed in the following way: for a given dimen-
sion 𝐷, a random square matrix 𝐴 was generated, and a matrix 𝐵 = 𝐴′𝐴 was
computed. Then, by using the singular value decomposition of 𝐵, we computed
matrices 𝑃,𝑅,𝑄, i.e. 𝐵 = 𝑃𝑄𝑅′. Lastly, we generated a 𝐷 dimensional vector 𝑣
whose individual components are uniformly distributed random values on the inter-
val [0.5,1], and we construct the matrix 𝑀 as 𝑀 = 𝑃 · diag(𝑣) · 𝑅′, where diag(·)
transformed a vector into a diagonal matrix. This ensured that the eigenvalues of
𝑀 lied on the interval [0.5,1]. The rotation/scaling matrix is an integral part of
the benchmark function [120], as it creates additional difficulty for the optimization
algorithms.
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Fig. 2.3: Zigzag function 𝑧(𝑥) with 𝑘 = 0.1, 𝑚 = 1 [A2].

Next, we showed that different parametrizations of the proposed benchmark
functions can be successfully used in benchmarking. For this purpose, we chose
three algorithms: the canonical particle swarm optimization (PSO) [79], the Im-
proved Multi-operator Differential Evolution (IMODE) algorithm [140] (which was
the winner of the CEC’20 competition), the Adaptive Gaining-Sharing Knowledge
(AGSK) [112] based algorithm (the runner-up of CEC’20). Our benchmark rules
followed the ones from the CEC’20 competition. Overall, the results of the compar-
isons on both of the newly proposed benchmark functions showed that neither of
the two best algorithms from the CEC’20 competition performed significantly better
than a standard PSO.
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2.4.2 | New Benchmark Functions for Single-Objective Opti-
mization Based on a Zigzag Pattern

The paper [A6], we expanded on the work presented in [A2] and introduced four
new benchmark functions for bound-constrained single-objective optimization that
are based on a zigzag pattern, and are non-differentiable and highly multimodal. We
took inspiration from the recently proposed tunable benchmark functions for com-
binatorial problems [170]. The newly proposed functions included three parameters
that could change their behaviour and difficulty. We conducted extensive numerical
experiments to investigate how the different parametrizations work as benchmarks
and showed their successful utilization in algorithmic comparisons.

The proposed functions are constructed in the following way. First, a so-called
“zigzag” 𝑧(𝑥, 𝑘,𝑚, 𝜆) (or triangular wave) function is constructed based on the fol-
lowing formula, where ⌊ · ⌋ is the floor operator:

𝑧(𝑥, 𝑘,𝑚, 𝜆) =

⎧
⎪⎨
⎪⎩

1 −𝑚+ 𝑚
𝜆

(|𝑥|/𝑘 − ⌊|𝑥|/𝑘⌋), if |𝑥|/𝑘 − ⌊|𝑥|/𝑘⌋ ≤ 𝜆,

1 −𝑚+ 𝑚
1−𝜆

(1 − |𝑥|/𝑘 + ⌊|𝑥|/𝑘⌋), otherwise,

This extended zigzag function also contains three parameters: 𝑘 > 0 that controls
its period, 𝑚 ∈ [0, 1] that controls its amplitude, and 𝜆 ∈ (0, 1) that controls the
location of its local minima. The effect of the individual parameters on the shape
of the zigzag function can be seen in Figure 2.4. For 𝑚 = 0 the zigzag function
is identically equal to 1 for any point 𝑥 (regardless of the values of the other two
parameters).

Next, we constructed four basic benchmark functions (F1-F4) that combined the
zigzag function with different multimodal functions. Their construction starts with
four 1-D functions 𝜑1, . . . , 𝜑4, which are formulated in as:

𝜑1(𝑥, 𝑘,𝑚, 𝜆) = 3·10−9|(𝑥− 40)(𝑥− 185)𝑥(𝑥+ 50)(𝑥+ 180)|𝑧(𝑥, 𝑘,𝑚, 𝜆) + 10| sin(0.1𝑥)|
𝜑2(𝑥, 𝑘,𝑚, 𝜆) =𝜑1(𝜑1(𝑥, 𝑘,𝑚, 𝜆), 𝑘,𝑚, 𝜆)

𝜑3(𝑥, 𝑘,𝑚, 𝜆) = 3| ln(1000|𝑥| + 1)|𝑧(𝑥, 𝑘,𝑚, 𝜆) + 30 − 30| cos( 𝑥

10𝜋 )|

𝜑4(𝑥, 𝑘,𝑚, 𝜆) =𝜑3(𝜑3(𝑥, 𝑘,𝑚, 𝜆), 𝑘,𝑚, 𝜆)

The common feature of the functions is that they are bounded on the interval
[-200, 200] by a maximum value of 200. This allows us to compose the functions
with themselves without running to numerical difficulties. There is also a single
global minimum located at 0, with function value 0. Although the optimization
will take place only on the interval [-100, 100] we will use a shift vector to change
the placement of the optimal point (hence, the need for the functions to be “well-
behaved” on [-200, 200]).
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Fig. 2.4: Zigzag function for different values of the parameters [A6].

To obtain the benchmark functions for a dimension 𝐷, we used a simple sum of
the functions 𝜑 for the individual components, but modified the inputs by a shift
vector 𝑠 ∈ [−100, 100]𝐷 and a rotation/scaling matrix 𝑀 , which was constructed in
the exact same manner as in [A2]:

𝑓𝑗(𝑥, 𝑘,𝑚, 𝜆) =
𝐷∑︁

𝑖=1
𝜑𝑗(𝑥𝑖, 𝑘,𝑚, 𝜆) 𝑗 = 1, . . . , 4

F𝑗(𝑥, 𝑘,𝑚, 𝜆) = 𝑓𝑗(𝑀𝑗(𝑥− 𝑠𝑗), 𝑘,𝑚, 𝜆) 𝑗 = 1, . . . , 4

The shapes of the functions F1-F4 in one dimension for selected values of the param-
eters can be seen in Figure 2.5. The individual parameters of the zigzag function
also serve secondary roles. The parameter 𝑘 can be though of as a “ruggedness”
parameter, that makes the zigzag more frequent. The parameter 𝜆 can be seen as a
“deception” parameter, as low values of 𝜆 skew the function in such a way that its
derivatives (if existing) point predominantly away from the global optimum. Higher
values of the parameter 𝑚 result in a “deeper” local optima. By setting these pa-
rameters to different values, we should be able to increase/decrease the difficulty
of the resulting optimization problems, and to bring out the advantages and the
disadvantages of different optimization methods.

Next, we investigated the behaviour of selected EC methods on the newly pro-
posed benchmark functions. The selected methods were: CMAES [7], DE [44],
PSO [79], AGKS algorithm [112], HSES [180], IMODE [140], LSHADE [160], and
MadDE [18]. To investigate the impact of the different values of the parameters of
the benchmark functions, we chose 100 parameter settings (for all functions F1-F4)
for computational evaluations. For the individual computations, we used rules sim-
ilar to the CEC’21 competition: the eight algorithms were evaluated on the four
benchmark functions with 100 different parameter settings with 𝐷 = {5, 10, 15}
dimensions.

Furthermore, we selected a few parametrizations of the proposed benchmark
functions to create a benchmark set. This selection was done by carefully ex-
amining the results of the comparison of the algorithms and choosing, for each
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Fig. 2.5: Shape of the benchmark functions F1-F4 for different values of the parameters
[A6].

Fig. 2.6: Comparison of the algorithms on the ambiguous benchmark set [A6].
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Fig. 2.7: Comparison of ELA measures between different parametrizations of F1-F4 and
BBOB, 𝐷 = 10 [A6].

benchmark function, two parametrization, that together resulted in the ambiguous
benchmark set. We also decided to include additional dimension 𝐷 = 20. This
resulted in the creation of a benchmark set with 32 instances (four functions F1-F4,
two parametrizations each, four different dimension), whose 1-D plots are shown
in Figure 2.5. The results of the comparison of the eight chosen algorithms on the
ambiguous benchmark set are presented in Figure 2.6 using the IOHprofiler [48] - for
a particular problem, if a rectangle, that represents a certain problem (horizontal
dimension) and a certain algorithm (vertical dimension), is bluer then the algorithm
is better for the given problem (and, the redder it is, the worse is the algorithm). In
the horizontal dimension, if the color of the rectangles remains the same, it signals
that the ranking of the given algorithm remains the same across different problems.

From this comparison, it can be seen that most of the algorithms, apart from PSO
and AGSK, were best-ranked for at least one of the problems in the set. Also, for
at least one problem, all algorithms placed in the bottom half of the rankings. This
signals that the chosen parametrizations cover a wide range of the single-objective
optimization problem space (measured by the performance of different algorithms).
However, it is clear from the results that some of the selected algorithms performed
consistently better than others.

To better explore the problem space that is covered by the different parametriza-
tions we computed different ELA features. The results of the ELA are summarized
in Figure 2.7, where the parametrizations chosen for the ambiguous benchmark set
with the benchmark functions from the BBOB (COCO) suite are shown. When
looking at these results, we can see that particularly the ELA measures of the cho-
sen F3 and F4 parametrizations fall into places where there are only a few BBOB
counterparts.
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2.4.3 | A critical problem in benchmarking and analysis of
evolutionary computation methods

In the paper [A3], we showed that some of the frequently used benchmark functions
have their respective optima in the centre of the feasible set and that this poses a
critical problem for the analysis of evolutionary computation methods. As written
in the introductory part of this section, two of the most popular benchmark sets for
comparing EC methods are the BBOB set and the CEC competition sets. There
is, however, another standard benchmark set that is extensively used for comparing
optimization methods consists of some of the most well-known functions such as
Ackley, Griewank, Rosenbrock, Rastrigin, or Schwefel. This set contains a small
design flaw - a large portion of the functions found in this set have the optimum
at a zero vector (or in the centre of the feasible set). This fact, on its own, does
not pose a serious problem, but comparing methods that incorporate a “check-the-
middle” procedure or a centre-bias (or zero-bias) operator on these benchmarks to
other methods is essentially meaningless. This issue was also identified during the
CEC 2021 competition.

The inclusion of the centre-bias operator is hardly ever plainly visible from the
description of the method. This is both a problem of the often-used metaphor-rich
jargon and the difficulty of the theoretical analysis of stochastic systems. Possible
mechanisms leading to a centre-bias operator in metaheuristics are the contraction
operator that was found in the Grey Wolf Optimization algorithm [116] and a search
bias that was found in the Salp Swarm Optimization algorithm [36]. The centre-bias
was also found in the Sooty Tern Optimization Algorithm and the Tunicate Swarm
Algorithm [90].

In the paper [A3], we took a closer look at seven recently published methods in
journals such as Applied Soft Computing, Information Sciences and Future Genera-
tion Computer Systems. We showed that all of the considered methods contained the
centre-bias operator. We will carried out a fair comparison between these relatively
new methods and two older ones — Differential Evolution (DE) and Particle Swarm
Optimization (PSO). Additionally, we included in the comparisons two methods
that performed well in the CEC competitions.

Out of the seven problematic methods, six performed the computational com-
parison on a very similar benchmark set, with thirteen of the considered problems
summarized in Table 2.1. Of these thirteen problems, eight have their respective
optimum at the zero vector. Four other problems have the optimum quite close to
the zero vector and give very good results when evaluated at the zero vector. Only
a single problem (F08) has the optimum located far from zero.

We use the following methodology to analyse the behaviour of the methods.
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Tab. 2.1: First 13 benchmark functions dimension 30. U -– unimodal, M — multimodal,
S — separable, N — non-separable, 𝑓* – the optimal function value, 𝑓(0) –
function value at the zero vector, 𝑥* – optimal solution.

ID name type range 𝑓 * 𝑓(0) 𝑥*
F01 Sphere U, S [-100,100] 0 0 [0,0,...]
F02 Schwefel 2.22 U, N [-100,100] 0 0 [0,0,...]
F03 Schwefel 1.2 U, N [-100,100] 0 0 [0,0,...]
F04 Schwefel 2.21 U, S [-100,100] 0 0 [0,0,...]
F05 Rosenbrock U, N [-30,30] 0 2.90E+01 [1,1,...]
F06 Step U, S [-100,100] 0 7.50E+00 [-0.5,-0.5,...]
F07 Quartic with noise U, S [-1.28,1.28] 0 0 [0,0,...]
F08 Schwefel 2.26 M, S [-500,500] -1.25E+04 0 [420.9, 420.9,...]
F09 Rastrigin M, S [-5.12,5.12] 0 0 [0,0,...]
F10 Ackley M, N [-32,32] 0 0 [0,0,...]
F11 Griewank M, N [-600,600] 0 0 [0,0,...]
F12 Penalized1 M, N [-50,50] 0 1.67E+00 [-1,-1,...]
F13 Penalized2 M, S [-50,50] 0 3.00E+00 [1,1,...]

First, the different methods were evaluated on the thirteen benchmark functions
without any additional modifications. The dimension of the problems was set to
30 and the maximum number of allowed function evaluations was set to 50,000.
As the performance measure, we chose the mean error (difference between optimal
function value and best function value found after the max iteration count) over
30 independent runs. The results showed that all the problematic methods (apart
from PSO and DE) perform extremely well on the problems that have optimum at
the zero vector (F01–F04, F07, F09–F11). Additionally, on the four problems that
produce good values when evaluated at the zero vector (F05, F06, F12, F13) the
methods performed very well. On F08, however, the performance of the problematic
methods was poor - five of the seven performed worse than PSO.

Next, we examined the effects of modifying these benchmark problems. We
introduce a shift operator, which moves the evaluated point by a predetermined
vector s, that is, instead of the benchmark function being 𝑓(𝑥), it is modified to
𝑓(𝑥+𝑠). Since the functions stay basically the same, one would expect the algorithms
to perform consistently. The shift vector was chosen as 10% of the range in each
dimension. The results showed that the supreme performance of the problematic
methods vanished, while the performance of PSO and DE stayed roughly the same.

We also evaluated the different methods on a often-used collection of real-world
problems [10]. These problems are in relatively low dimensions (between 2 and 11).
We set the maximum number of function evaluations to 50,000 (which is usually
done). The most striking insight from the computational experiments was that all
these real-world problems could be consistently solved by DE. Additionally, for 8
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of the 13 problems, more than half of the 11 methods achieved the exact same
results. This made the setting of this real-world benchmarking set and performance
metric (best result after a given number of function evaluations) not well suited for
comparing advanced algorithms.

To study the performance of the seven problematic methods on difficult prob-
lems for which they were not tuned, we decided to test them on the ambiuguous
benchmark set [A6]. The results showed that only a single one of the problematic
methods was significantly better than either PSO or DE. Three methods were com-
parable the to PSO, two performed very badly and the worst one performed barely
better than a random search. We also found that even the best-performing algo-
rithm of the problematic methods was dominated by the two algorithms from the
CEC competitions.

Based on the described computational comparisons it was clear that the seven
studied methods contain a centre-bias (or a zero-bias) operator that helped them
perform extremely well on functions that have their respective optima in the centre
of the feasible set. Some of these methods were analysed on and tuned to benchmark
sets where such functions constitute the majority of the problems. When compared
with other methods, they seemed to offer superior performance. However, when
evaluated on shifted problems, most of their superior performance all but vanishes.
And when evaluated on a proper benchmark set, some of them turn out to perform
just barely better than a random search.

Further, we provide several suggestions that could help to improve analysis and
benchmarking in evolutionary computation. Similar to other authors [125, 162], we
believe that benchmark sets should also include instances of real-world problems.
This seems particularly important since it was recently found that a large portion
(near 30%) of nature-inspired algorithms studied previously [161] had no application
associated to them. But, as we have shown, there are only a handful of frequently
used real-world engineering problems, and these are too easy to serve as benchmarks.
The EC community should initiate the construction of a large set of challenging real-
world benchmark problems.

One possible reason for the ubiquity of the troublesome benchmark problems is
their ease of use. They are relatively straightforward to program, and all of the
methods considered in this paper included them in their respective source code.
We advocated for the construction of an easy-to-use cross-platform repository, that
would collect: (1) several heterogeneous benchmark sets (BBOB, CEC competitions,
ambiguous benchmark set, real-world benchmarks, and similar ones) with a unified
way of calling the test problems; (2) trusted implementations (source codes) of both
standard EC methods and up-to-date state-of-the-art techniques; (3) data obtained
from running the algorithms (from (2)) on the benchmarks (from (1)).
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2.4.4 | A collection of robotics problems for benchmarking
evolutionary computation methods

In the paper [A5], we presented a collection of real-world robotics problems that
can be used for benchmarking evolutionary computation methods. The proposed
benchmark problems were a combination of inverse kinematics and path planning in
robotics that can be parameterized. As the framework for the benchmark problems,
we chose the 6-DOF collaborative robotic arm, which is controlled by changing the
angles 𝜃𝑖 in its joints. The [x,y,z]-coordinate position of the last link of the robot
can be found as

[𝑥, 𝑦, 𝑧]𝑇 = 𝐹𝐾(𝜃), (2.4.1)

where 𝐹𝐾 is the forward kinematics solution, and 𝜃 = [𝜃1, . . . , 𝜃6]𝑇 ,𝜃𝑖 ∈ [−2𝜋, 2𝜋],
𝑖 = 1, . . . , 6. In the proposed benchmark problems, we were interested in the trajec-
tories of the robot’s last link (end-effector), which corresponds to the way 𝜃 changes
in time 𝜏 , and can be expressed as

[𝑥(𝜏), 𝑦(𝜏), 𝑧(𝜏)]𝑇 = 𝐹𝐾(𝜃(𝜏)). (2.4.2)

The first quality of the trajectory we used was its length 𝐿, which (starting in 𝜏 = 0
and ending in 𝜏 = 1) can be expressed as

𝐿 =
∫︁ 1

0

√︁
𝑥′(𝜏)2 + 𝑦′(𝜏)2 + 𝑧′(𝜏)2d𝜏. (2.4.3)

The second quality of the trajectory was its closeness to a predefined point [𝑥𝑝, 𝑦𝑝, 𝑧𝑝],
which can be written as

min
𝜏∈[0,1]

|| [𝑥(𝜏) − 𝑥𝑝, 𝑦(𝜏) − 𝑦𝑝, 𝑧(𝜏) − 𝑧𝑝] ||2, (2.4.4)

and, in the case of multiple predefined points [𝑥𝑗
𝑝, 𝑦

𝑗
𝑝, 𝑧

𝑗
𝑝], 𝑗 = 1, . . . , 𝑃 , the closeness

(𝐶) to the farthest one

𝐶 = max
𝑗=1,...,𝑃

min
𝜏∈[0,1]

|| [𝑥(𝜏) − 𝑥𝑗
𝑝, 𝑦(𝜏) − 𝑦𝑗

𝑝, 𝑧(𝜏) − 𝑧𝑗
𝑝] ||2. (2.4.5)

As continuous control would pose too complex of a problem, we restricted our
attention to a situation where the angles 𝜃 change linearly from one setting 𝜃𝑎 to
the next 𝜃𝑏, i.e.

𝜃(𝜏) = 𝜃𝑎 + 𝜏(𝜃𝑏 − 𝜃𝑎). (2.4.6)

In the case where we want to have multiple points of change 𝜃0, . . . , 𝜃𝑀 one of the
possibilities is to model it as 𝑀 time intervals of length 1, i.e.:

𝜃(𝜏) = 𝜃𝜄 + (𝜏 − 𝜄)(𝜃𝜄 − 𝜃𝜄+1), for 𝜏 ∈ [𝜄, 𝜄+ 1], 𝜄 = 0, . . . ,𝑀 − 1. (2.4.7)
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Fig. 2.8: Trajectory (blue line) of one solution starting of the black cross with 𝑀 = 2
points of change (green crosses) and 𝑃 = 4 predefined points (red crosses).
Using 𝑁 = 100, 𝛾 = 100 the objective value 𝑓(𝜃1, 𝜃2) = 4.8641 [A5].

Even with the restriction on linear change in 𝜃, the expressions (2.4.3) and (2.4.5)
would be hard to compute analytically, which is why we resorted to a discretization
of 𝜏 into 𝑀 ·𝑁 evenly spaced values [𝜏1 = 0, . . . , 𝜏𝑀 ·𝑁 = 𝑀 ] and computed:

[𝑥(𝜏𝑖), 𝑦(𝜏𝑖), 𝑧(𝜏𝑖)] = 𝐹𝐾(𝜃(𝜏𝑖)), 𝑖 = 1, . . . ,𝑀 ·𝑁 (2.4.8)

�̂� =
𝑀 ·𝑁−1∑︁

𝑖=1
|| [𝑥(𝜏𝑖+1) − 𝑥(𝜏𝑖), 𝑦(𝜏𝑖+1) − 𝑦(𝜏𝑖), 𝑧(𝜏𝑖+1) − 𝑧(𝜏𝑖)] ||2 (2.4.9)

𝐶 = max
𝑗=1,...,𝑃

min
𝜏𝑖,𝑖=1,...,𝑀 ·𝑁

|| [𝑥(𝜏𝑖) − 𝑥𝑗
𝑝, 𝑦(𝜏𝑖) − 𝑦𝑗

𝑝, 𝑧(𝜏𝑖) − 𝑧𝑗
𝑝] ||2. (2.4.10)

For a given starting position 𝜃0, the objective function for all the considered
benchmark problems has the form:

𝑓(𝜃1, . . . , 𝜃𝑀) = 𝛾 · �̂�+ 𝐶, (2.4.11)

where the parameter 𝛾 ≥ 0 lets us control the degree to which we prefer trajectories
with shorter length (higher 𝛾), or higher precision in reaching the predefined points
(lower 𝛾). The resulting optimization problem is a “simple” box-constrained one:

minimize 𝑓(𝜃1, . . . , 𝜃𝑀)
subject to 𝜃𝜄 ∈ [−2𝜋, 2𝜋]6, 𝜄 = 1, . . . ,𝑀

The resulting benchmark function can be parametrized by:
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Fig. 2.9: Sensitivity of the objective value of the solution shown in Figure 2.8 on the first
two components of 𝜃1 [A5].

(i) the number of points of change 𝑀 , which determine the dimension of the
optimization problem 𝐷 = 6 ·𝑀

(ii) the number of predefined points 𝑃 to which the trajectory should get close to
(iii) the coefficient 𝛾 that scales the two objectives (trajectory length and closeness

to the farthest predefined point)
Figure 2.8 shows a solution to one problem instance with 𝑀 = 2, 𝑃 = 4, and

𝛾 = 100 (with 𝑁 = 100 as the discretization constant). Figure 2.9 shows the
sensitivity of the objective function value on the first two components of 𝜃1. It can
readily be seen that the objective is multimodal and nonseparable, which are both
desirable characteristics in benchmark functions.

In order to showcase the capabilities of the proposed benchmark functions in
differentiating various metaheuristics, we chose seven representative methods: Par-
ticle swarm optimization (PSO) [79], Differential evolution (DE) [44], Covariance
matrix adaptation evolution strategy (CMA-ES) [65], Artificial bee colony (ABC)
[75], Hybrid Sampling Evolution Strategy (HSES) [180], Adaptive Gaining-Sharing
Knowledge (AGSK) [112], and Success-history based adaptive differential evolution
with linear population size reduction (LSHADE) [160]. We conducted a thorough
numerical investigation of the proposed benchmark problems - each of the seven
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Fig. 2.10: The t-sne visualization of the ELA features (after normalization and using the
first components from the PCA) of the three benchmark sets [A5].

selected methods for numerical comparison was used to solve 200 benchmark prob-
lems. The results of this investigation are that the proposed benchmark problems
are quite difficult and that they can be successfully used for differentiating and
ranking the selected metaheuristics.

We also computed the ELA features of the proposed robotics problems to see
how they compare to the BBOB and CEC 2014 benchmark suits. We followed the
methodology described in [151] for the selection and visualization of the relevant
ELA features. The features that produced constant results on every problem and
those that produced invalid values were removed. Another set of removed features
were the ones that were sensitive to scaling and shifting. The last batch of features
that got removed were the highly correlated ones. For further analysis, the values
of the ELA features on the three benchmark sets were normalized, and we used
Principal Component Analysis (PCA) to reduce the number of features even further.
Using the first 8 components explained 99.85% of the variance. For visualizing the
results, we used the t-Distributed Stochastic Neighbor Embedding (t-sne). In the
this visualization, which is shown in Figure 2.10, benchmark problems that have
similar ELA features should be shown close to each other. We can see that the
proposed robotics benchmarks are not very similar to functions in either BBOB or
CEC 2014 sets. They are also not very similar to each other, at least in the sense
of the performed analysis.
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2.4.5 | Computational and Exploratory Landscape Analysis of
the GKLS Generator

In the paper [A4] (an expanded version of which can be found in [96]) we analyzed the
problems constructed by the GKLS generator. In the GKLS generator, a prespecified
number of test problems (a class of problems) is constructed by defining a convex
quadratic function (a paraboloid) which is systematically distorted by polynomials
in order to produce local (and one global) minima. The input parameters for this
construction are the following: type of the problem (ND: non-differentiable, D:
differentiable, D2: twice-differentiable) problem dimension (𝐷), number of local
minima (ℎ), the value of the global minimum (𝑓 *), radius (𝑟) of the attraction
region of the global minimizer, and the distance (𝑑) from the global minimizer to
the vertex of the quadratic function. All problems are constructed on [−1, 1]𝐷.

A visualization of different functions that can be generated by the GKLS and
the effect of different parameter choices is shown in Figure 2.11. Several interesting
observations can be made regarding the generated functions. Firstly, they are all
relatively well-conditioned. The local minimum of the “big” paraboloid is always in
the domain and has a function value of 0. The “attraction regions” of the different
local minima do not overlap (this is by design) - this also means that they become
more shallow when their number increases.

To study the effect of the different parameters on the constructed problems, we
set up the following computational analysis. We run three state-of-the-art meth-
ods both from the evolutionary computation (EC) and deterministic optimization
communities on the “canonical” GKLS-generated problems in dimensions 5 and 10.
We also construct a new class (“mod”) 50 of GKLS-generated problems (again, in

ℎ = 2, type D, 𝑑 = 0.9, 𝑟 = 0.1 ℎ = 5, type ND, 𝑑 = 0.66, 𝑟 = 0.5 ℎ = 10, type D, 𝑑 = 0.66, 𝑟 = 0.3

ℎ = 20, type D, 𝑑 = 0.9, 𝑟 = 0.1 ℎ = 50, type D, 𝑑 = 0.66, 𝑟 = 0.2 ℎ = 100, type ND, 𝑑 = 0.66, 𝑟 = 0.5

Fig. 2.11: Functions generated by the GKLS in dimension 𝐷 = 2 (𝑓* = −1 for all
functions) [96].
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𝐷 = 5, and 10) by the following procedure:
• Each problem 𝑖 = 1, . . . , 50 in this class will have different values of the pa-

rameters type𝑖, 𝑑𝑖, 𝑟𝑖, and ℎ𝑖, but the same 𝑓 *
𝑖 = −1.

• type𝑖 is decided by a coin flip between types D and ND (with the same prob-
ability).

• 𝑑𝑖 is a uniformly distributed random number on [0,1].
• 𝑟𝑖 = 𝑑𝑖/𝑢𝑖, where 𝑢𝑖 is a uniformly distributed random integer on [2,10], i.e.
𝑟𝑖 ∈ [𝑑𝑖/2, 𝑑𝑖/10].

• ℎ𝑖 = round(10𝑐𝑖), where 𝑐𝑖 is a uniformly distributed random number on [1,3],
i.e. ℎ ∈ [10, 103].

From the EC side, we chose two methods to run on the GKLS-generated prob-
lems. The first selected method was Adaptive Gaining-Sharing Knowledge (AGSK),
which was the runner-up of the CEC’20 competition [112]. The second method is
L-SHADE or Success-history based adaptive differential evolution with linear pop-
ulation size reduction [160]. From the deterministic methods, we selected BIRMIN
[123] as one of the best-performing methods from a recent extensive numerical study
[156].

For the numerical comparison, we run each method once on every problem from
each of the three classes (100 problems in both “simple” and “hard” classes, and 50
problems in the “mod” class) in dimensions 𝐷 = [5, 10], with a budget of 5·104·𝐷
available function evaluations. For every run, if the objective function value of the
resulting solution was less than or equal to 1E–8, it was considered as zero.

For dimension 𝐷 = 5, the Empirical cumulative distributions (ECDs) of sim-
ulated runtimes, measured in the number of function evaluations for 51 targets
10[−8..2] (similar analysis which is done in the COCO platform) are shown in Figure
2.12. There is a noticeable difference in the behavior of the three algorithms on the
“simple” and “hard” classes. On the “simple” class all three algorithms were able to
find either a good or the optimal solutions faster than on the “hard” class. There is
also a quite large difference between the performance of the three different methods
- BIRMIN clearly dominated the two EC methods, and AGSK turned out to be
better at finding good solutions at the later stages of the search than LSHADE.

The results change quite dramatically when looking at the “mod” class. Although
the performance of BIRMIN is still superior to that of the two EC methods, the
margin narrowed substantially. What is more, the relative performance (against the
“hard” class) of AGSK decreased, while for LSHADE it increased. For all three
classes, the local minimum of the “big” paraboloid (error value 1) was found by
every method within a few hundred function evaluations for BIRMIN and a few
thousand function evaluations for the EC methods.

The results for dimension 𝐷 = 10 show another substantial change - we can see
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a) b)

Fig. 2.12: ECD of simulated runtimes, measured in number of 𝑓 -evaluations for the 51
targets 10[−8..2] in dimension a) 𝐷 = 5, b) 𝐷 = 10 [96].

that all three classes are basically equivalent. The plateaus in the ECD plots between
the 0.19 and 0.20 values on the y-axis indicate the points where the methods found
the local minimum of the “big” paraboloid. Although this happened relatively early
for all methods, finding better local optima proved to be extremely challenging.

Next, we use ELA features [81] to show how the GKLS-generated problems
compare to the BBOB and CEC 2014 benchmark suits. We chose ELA feature
sets which only require samples of input and function value pairs and dimension
𝐷 = 10 for all considered suits. We chose to ignore the features that were sensitive
to function transformations [153] and used uniform sampling with 250 · 𝐷 samples
their computation [133].

We then followed the methodology described in [151] for the selection and visu-
alization of the relevant ELA features. The features that produced constant results
on every problem and those that produced invalid values were removed. Another
batch of features that got removed were the highly correlated ones.
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Fig. 2.13: The t-sne visualization of the ELA features (after normalization and using the
first seven components from the PCA) of the benchmark sets [96].

The values of the ELA features on the different benchmark sets were then nor-
malized, and we used Principal Component Analysis (PCA) to reduce the number of
features even further. For visualizing the results, we used the t-Distributed Stochas-
tic Neighbor Embedding (t-sne). In this visualization, which is shown in Figure
2.13, benchmark problems that have similar ELA features should be shown close to
each other. We can see that the t-sne visualization grouped most of the functions
from the BBOB and CEC 2014 suits together (in a few groups), while the “similar”
problems generated in the three GKLS suites take up most of the space.

In the analysis, we have shown that the GKLS generator produces “needle in a
haystack ” type problems which get extremely difficult to optimize as the problem
dimension grows. The GKLS generator could be successfully used for benchmark-
ing state-of-the-art methods in lower dimensions (𝐷 = 5) on some of the simpler
instances. However, in the higher dimension (𝐷 = 10), the performance of the three
considered methods was hard to differentiate as the problems became extremely dif-
ficult (given the computational budget). This difficulty of the generated instances
was also largely unaffected by the choice of parameters that the generator has.

It is possible that the GKLS generator could be modified to have a much “deeper”
local minima. As the task of finding the global minimum is practically impossible
in higher dimensions, having problems with lots of “good” local minima (i.e., better
ones than the local minimum of the “big” paraboloid) could be useful for analyzing
the exploration capabilities of optimization methods.

It is not very clear how one could meaningfully use the results of the computations
of the ELA features or the t-sne plots on such “needle in a haystack” problems. It is
probably impossible to have any sample-based features that would both uncover that
the problem is a “needle in a haystack” and be computationally tractable (as it would
amount to finding the “needle” in a reasonable amount of function evaluations).
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2.5 | Applications
As was written in the introduction, we can find the utilization of optimization models
in all aspects of our daily lives. Hence, applications of optimization can be found in
all technical and engineering fields.

The author of this thesis has the most experience in the applications of opti-
mization in waste management, mainly through collaborations with colleagues from
the Institute of Process Engineering (Faculty of Mechanical Engineering, Brno Uni-
versity of Technology). A majority of this collaboration was on strategic network
design problems that involved waste production and disposal. In [71], we devel-
oped a robust two-stage integer non-linear program for the support the strategic
decision-making in this area applying modern circular economy principles. In [154],
we presented a new model for integration of pricing and advertising strategies in con-
ceptual waste management planning. We introduced a multistage stochastic model
for legislation-induced planning of waste processing infrastructure in [91]. We also
developed a new quadratic-optimization based model for waste flow quantification
[166]. Another application-focused areas of interest of the author of this theses
are mixed-integer models for university rankings [89], outlier identification methods
[68], or dynamic programming approaches for the modelling of fuel mix changes in
district heating networks [131].

The application papers selected for the inclusion in this thesis have one charac-
teristic in common. They are not “just applications” of known models or techniques.
They either propose new models for the problem at hand, or they include algorith-
mic techniques that take advantage of the problem-specific structure. The three IF
journal papers that included in the thesis are:

[A12] J Kůdela, R Šomplák, V Nevrlý, T Lipovský, V
Smejkalová, L Dobrovský. Multi-objective strategic waste
transfer station planning. Journal of Cleaner Production,
230:1294–1304, 2019.

Author’s contribution: 55%.

Metrics: IF2019 = 7.426.

Ranking (JCR 2019 WoS): D1 - environmental sciences; Q1 -
engineering, environmental; Q1 - green & sustainable science
& technology.
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[A10] J Kůdela, P Popela. Chance constrained optimal
beam design: Convex reformulation and probabilistic robust
design. Kybernetika, 54(6):1201–1217, 2018.

Author’s contribution: 90%.

Metrics: IF2018 = 0.560.

Ranking (JCR 2018 WoS): Q4 - computer science, cybernet-
ics.

[A1] J Kůdela. Social distancing as p-dispersion problem.
IEEE Access, 8:149402–149411, 2020.

Author’s contribution: 100%.

Metrics: IF2020 = 3.367.

Ranking (JCR 2020 WoS): Q2 - computer science, informa-
tion systems; Q2 - engineering, electrical & electronic; Q2 -
telecommunications.
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2.5.1 | Multi-objective Strategic Waste Transfer Station Plan-
ning

The paper [A12] presents an approach utilizing an optimization model for the de-
sign of a transfer station grid for municipal solid waste collection. The presented
approach was based on two-stage stochastic programming, where the uncertainties
were projected through the model parameters. The result comprised of the sug-
gestions of transfer stations placement, which were robust with respect to future
realization of unknown parameters.

We used a multi-objective formulation of the model, which stemmed from the
desire to design systems that are both economical and with as small environmental
impact as possible. In this case, the environmental impact of a solution is measured
in terms of the total distance travelled by all the vehicles used in the transportation
of waste. The modelling technique employed to tackle the multi-objectivity was the
standard scalarization one [24], where the two objectives are given different weights,
which were used to construct a new single objective function that was minimized.
By appropriately changing the weights, one obtains the desired trade-off curve (or
a Pareto frontier) between the two objectives, as well as the corresponding optimal
decisions. The uncertainty in data was modelled as different possible scenarios, with
the objective computed as an average (trade-off between costs and distance) over
these scenarios.

The derived optimization model was utilized in a case study that involved the
transfer station planning in the Czech Republic for the mixed municipal waste. In
terms of scale, it dealt with the most detailed description of the road networks and
municipality structure available. In total, 6,258 nodes (municipalities producing
waste), 44 waste processing plants (15 of which were foreign, allowing a potential
export of the waste to Germany or Austria) and 116 possible places for the transfer
stations were considered (these sets are not mutually exclusive). For every possible
transfer station 6 options for its capacity were considered.

The first road network (connecting the municipalities) had 24,770 arcs and is
depicted in Figure 2.14. In order to differentiate between the transportation of
waste that does or does not use the transfer stations, a separate road network was
computed - for each possible transfer station was found the shortest path to each
waste-processing plant. In this pre-processing step, 5,075 shortest path optimization
problems were solved, resulting in the second network.

The first-stage of the optimization problem consisted only of the planning de-
cisions (on where to build the transfer stations) and is described by 696 binary
variables. The second-stage of the optimization problem used 29,889 continuous
decision variables.
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Fig. 2.14: A map showing the layout of the case study [A12].

The uncertain parameter that was considered in the model was the cost for
processing the waste at the 44 different plants. To appropriately capture the nature
of the inherent uncertainty, 1,000 possible scenarios for the waste treatment costs
were constructed to be used within the optimization. The resulting optimization
model had almost 30 million variables. The total number of constraints that depend
on scenarios was 36,307, meaning that the optimization model had over 36 million
constraints.

Because of the enormous number of variables of the considered optimization
model, we utilized the GBD with warm starts that we developed in our previous
work [A9]. The solution of the mixed-integer master problem was obtained using
a branch-and-cut method (with lazy cuts), calling the CPLEX 12.6.3 solver [104],
while the individual subproblems in the second stage were solved by the primal-dual
simplex method, calling the GUROBI 7.5 solver [61]. This combination of solvers
and algorithms achieved the best overall performance e the scheme reached the 1.5%
optimality gap for the problem formulation with 1,000 scenarios within 24 h (for one
setting of the scalarization weights).

The results showed that from the macro-level perspective, the mathematical
model could be used for the assessment of the optimal strategies (both tactical and
operational). It also provided means for the micro-level analysis of the impacts of
the selected strategies on the individual municipalities and waste processing plants.
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Fig. 2.15: The trade-off between reliability and optimal objective value [A10].

2.5.2 | Chance Constrained Optimal Beam Design: Convex
Reformulation and Probabilistic Robust Design

In paper [A10], we are dealt with a civil engineering application of optimization,
namely the optimal design of a loaded beam. We considered a fixed beam of a
given length with a rectangular cross-section that was subjected to a given load.
The task was to find the optimal design, in terms of the cross-section dimensions
that minimizes the weight of the beam. The requirement for the design was that
the maximum stress in the beam was less then a material-specific constant, that
ensured that the design was safe.

We used the FEM approximation of the ordinary differential equations that
describe the behaviour of the loaded beam [178]. We showed that this beam design
problem formulation can be formulated as a geometric programming problem [24].
For this formulation, we even derived an analytic solution.

Further, the structure of the problem allowed us to consider on of the material
constants (quality of the material) as a variable. We also made an additional restric-
tion on the solution that involved the maximum absolute deflection of the beam.
The resulting formulation was a geometric program in which every function both in
the objective and the constraints was a monomial. This allowed us to the transform
it into a linear program.

Next we investigated the robust and chance constrained variants of the problem,
utilizing what can be though of as the prototype of the P&D algorithm that we
presented in [A11]. In Figure 2.15 is depicted the resulting trade-off between the
reliability level and the optimal objective value.
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2.5.3 | Social Distancing as p-Dispersion Problem

In the paper [A1], we tackled the problem of positioning people in a given area, such
as in a restaurant, school, office, etc., in the context of social distancing measures.
We will posed the problem of using the available space to its full extent in the
following way: Given a fixed number 𝑝 of people, fit them into a predefined space
in such a way, that the minimum distance between any two persons is maximized.

On way to model this problem is through the 𝑝-dispersion problem [114](pDP),
where we are given a set of 𝑛 points, a dissimilarity (or distance) matrix 𝐷 =
{𝐷(𝑖, 𝑗) : 1 ≤ 𝑖, 𝑗 ≤ 𝑛} satisfying 𝐷(𝑖, 𝑗) ≥ 0 for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝐷(𝑖, 𝑖) = 0
for every 1 ≤ 𝑖 ≤ 𝑛, and an integer 𝑝 ≥ 2. The goal is to choose 𝑝 points from the
set of 𝑛 points in such a way, that the minimum pairwise dissimilarity (the distance
between any two points) within the selected points is maximized. The pDP is one
of the classical combinatorial optimization problems and is known to be NP-hard
[54].

There are different formulations and approaches for the pDP [126, 92]. In the
paper, we utilized the pure binary compact formulation [142]. Let (𝐼, 𝐸) be the
complete graph in which points 𝐼 = {1, . . . , 𝑛} are the vertices and 𝐸 = {(𝑖, 𝑗) ∈
𝐼 × 𝐼 : 𝑖 < 𝑗} are the edges. Given any distance 𝑑, we define subsets of edges as

𝐸(𝑑) = {(𝑖, 𝑗) ∈ 𝐸 : 𝐷(𝑖, 𝑗) < 𝑑} ⊆ 𝐸.

The compact pure binary formulation exploits the fact that the optimal distance is
identical to at least one of the entries in the dissimilarity matrix. Let 𝐷0 < 𝐷1 <

· · · < 𝐷𝑘𝑚𝑎𝑥 be the different non-zero values in 𝐷. The associated index sets are
𝐾 = {1, 2, . . . , 𝑘𝑚𝑎𝑥} and 𝐾0 = {0} ∪𝐾. This formulation uses two types of binary
variables: The binary location variable 𝑥𝑖 indicates if the point 𝑖 ∈ 𝐼 is selected.
For 𝑘 ∈ 𝐾, the binary variable 𝑧𝑘 indicates if the location decisions (the particular
selection of 𝑝 points) satisfy a minimum distance of at least 𝐷𝑘. The pure binary
program is the following:

max 𝐷0 +
∑︁

𝑘∈𝐾

(𝐷𝑘 −𝐷𝑘−1)𝑧𝑘

s.t.
∑︁

𝑖∈𝐼

𝑥𝑖 = 𝑝

𝑧𝑘 ≤ 𝑧𝑘−1, 𝑘 ∈ 𝐾, 𝑘 > 1
𝑥𝑖 + 𝑥𝑗 + 𝑧𝑘 ≤ 2, 𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸(𝐷𝑘)∖𝐸(𝐷𝑘−1)
𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ 𝐼

𝑧𝑘 ∈ {0, 1}, 𝑘 ∈ 𝐾

This formulation can be further strengthen using clique-like inequalities and compu-
tation can be sped-up by exploiting valid lower and upper bounds [142]. To solve this
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Fig. 2.16: Optimal placements, 𝑝 = 15. Initial mesh with 𝑛 = 102, 𝑧𝑟 = 552.63 (left).
Final mesh with 𝑛 = 8,745, 𝑧𝑟 = 622.75 (right) [A1].

Fig. 2.17: Optimal placements, 𝑝 = 30, 𝑟 = 1. Initial mesh with 𝑛 = 150, 𝑧𝑟 = 323.69
(left). Final mesh with 𝑛 = 575, 𝑧𝑟 = 352.96 (right) [A1].

formulation, we used a decremental clustering scheme [40] that provides guarantees
for optimality.

However, our goal was to devise a method for the continuous variant of the pDP is
extremely difficult to solve and the techniques for approaching it are usually bound
to convex feasible spaces [51]. In order to apply the pDP framework for general
spaces, the feasible space of the problem was discretized. This discretization was
carried out by triangulation of the two dimensional feasible area, with the vertices
of the triangles being the possible feasible points [59].

A natural question arises about the relationship between the granularity of the
triangulation and the objective value of the optimal solution of the associated pDP
– the finer the mesh, the better the solution (with higher smallest distance between
any two selected points). We addressed this issue by devising a mesh refinement
scheme and solving a series of pDPs on a progressively finer mesh.

Another “discretization” can be devised in the space of possible values of the
dissimilarity matrix 𝐷. As the problem gets more difficult with more unique values
in 𝐷, with each unique value having a separate binary variable in the optimization
model, we can greatly reduce the number of these added variables by rounding the
elements of 𝐷. The trade-off between the optimal objective value and computa-
tional efforts of these two discretization schemes were investigated in computational
experiments. Two representative results are shown in Figures 2.16 and 2.17.
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ABSTRACT The spread of COVID-19 and similar viruses poses new challenges for our society. There is a
strong incentive towards safety measures that help to mitigate the outbreaks. Many countries have imposed
social distancing measures that require a minimum distance between people in given places, such as schools,
restaurants, shops, etc. This in turn creates complications for these places, as their function is to serve as
many people as they were originally designed for. In this paper, we pose the problem of using the available
space in a given place, such that the social distancing measures are satisfied, as a p-dispersion problem.
We use recent algorithmic advancements, that were developed for the p-dispersion problem, and combine
them with discretization schemes to find computationally attainable solutions to the p-dispersion problem
and investigate the trade-off between the level of discretization and computational efforts on one side, and
the value of the optimal solution on the other.

INDEX TERMS social distancing, p-dispersion problem, decremental clustering, COVID-19

I. INTRODUCTION

THE outbreak of the COVID-19 had an enormous impact
on the world at large. To mitigate the spread of the virus,

various technologies, such as Internet of Things, Unmanned
Aerial Vehicles, blockchain, Artificial Intelligence, and 5G
are already in use [1]. In this paper, we take a look at the
problem of positioning people in a given area, such as in a
restaurant, school, office, etc., in order to minimize the spread
of viruses such as COVID-19. After the initial lockdown,
many countries imposed a set of social distancing measures
that should help to slow down the spread of the virus. These
measures impose a minimum distance between people in
a given area. This means that spaces that could previously
serve a large number people need to be adjusted for these
new measures. As it seems unlikely that we will see the
construction of new places that will be designed to abide
by these (hopefully temporary) measures, it is only natural
to try to find the best use of the “facilities” that are already
available. However, as the social distancing measures do not
have to be stable and can change over time, we will pose
the problem of using the available space to its full extent
in the following way: Given a fixed number p of people, fit
them into a predefined space in such a way, that the minimum
distance between any two persons is maximized. Afterwards,

by varying p, we can get the optimal (largest) distance that
the people can be separated by, and, given a particular social
distancing rule, we can determine the maximum number (and
placement) of people that will fit into the predefined space.
The problem of selecting p points in order to maximize the
minimum distance between any pair is called the p-dispersion
problem [2] and it is one of the classical combinatorial opti-
mization problems. Although easy to formulate, effective and
provably optimal methods for solving this problem are quite a
recent development. Most notably, the state-of-the-art meth-
ods are based on the formulation developed in 2017 in [3]
and the most successful method is the decremental clustering
scheme published in 2020 in [4]. It is these advancements
that made it possible to solve instances of the size sufficient
for our purpose. In this paper, we devise a discretization
scheme that is build on top of the decremental clustering to
find computationally attainable solutions to the p-dispersion
problem and investigate the trade-off between the level of
discretization and computational efforts on one side, and the
value of the optimal solution (the minimum distance between
any two points) on the other. The investigation is carried out
on two numerical examples, the first one is a place with a
“general” shape, the second one with an “auditorium-like”
shape.
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II. THE P-DISPERSION PROBLEM
A. DEFINITION AND FORMULATIONS
In the p-dispersion problem (pDP), we are given a set of n
points, a dissimilarity (or distance) matrix D = {D(i, j) :
1 ≤ i, j ≤ n} satisfying D(i, j) ≥ 0 for every 1 ≤ i, j ≤ n
and D(i, i) = 0 for every 1 ≤ i ≤ n, and an integer
p ≥ 2. The goal is to choose p points from the set of n
points in such a way, that the minimum pairwise dissimilarity
(the distance between any two points) within the selected
points is maximized. The pDP is an NP hard problem [5].
We denote this problem for given input parameters D and
p as pDP(D, p). One of the standard applications of the
pDP is the location of nuclear power plants, where one is
interested in minimizing the risk of losing multiple plants
in the event that only one plant is subjected to an enemy
attack. To achieve this, the desired selection of plants is that
in which the interplant distances are as large as possible [3].
A more peaceful applications of the pDP can be found in
location analysis of services, e.g., schools, hospitals, elec-
toral districts, or waste collection plants. A comprehensive
survey of the location applications of pDP can be found
in [6] and [7]. Another application of the pDP is found
in multiobjective optimization – if the Pareto frontier of a
problem contains multiple solutions, one can solve a pDP
to find p such solutions with most distinct features [8]. In
the same paper, an application in portfolio optimization is
presented – given a set of potential investment opportunities,
one wishes to choose a subset that reduces the closeness in
terms of features between the different investment options,
which reduces the risk associated with the portfolio.

Within the methodological contributions to the solution
of the pDP, several articles have dealt with the problem
of solving the pDP to proven optimality. A mixed-integer
quadratic formulation was introduced by [9], which can be
partially solved by a series of relaxations and reformulation-
linearization. A mixed-integer linear formulation of the prob-
lem using the “big M” constraints was defined in [6]. This
formulation can be retroactively thought of as a linearization
of the mixed integer quadratic model, that was developed
20 years afterward. Although the linear model is more com-
pact than the quadratic one, it provides much weaker upper
bounds.

Our attention will focus on a formulation introduced in [3],
which is a novel pure binary compact formulation. Using this
formulation, the authors reported substantial computational
advancements when compared with the other formulations.
Without loss of generality, we can assume that the dissim-
ilarity matrix D is symmetric. Let (I, E) be the complete
graph in which points I = {1, . . . , n} are the vertices and
E = {(i, j) ∈ I × I : i < j} are the edges. Given any
distance d, we define subsets of edges as

E(d) = {(i, j) ∈ E : D(i, j) < d} ⊆ E.
The compact pure binary formulation exploits the fact that
the optimal distance is identical to at least one of the entries
in the dissimilarity matrix. Let D0 < D1 < · · · < Dkmax

be the different non-zero values in D. The associated index
sets are K = {1, 2, . . . , kmax} and K0 = {0} ∪ K.
This formulation uses two types of binary variables: The
binary location variable xi indicates if the point i ∈ I is
selected. For k ∈ K, the binary variable zk indicates if the
location decisions (the particular selection of p points) satisfy
a minimum distance of at least Dk. The pure binary program
is the following:

max D0 +
∑

k∈K
(Dk −Dk−1)zk (1)

s.t.
∑

i∈I
xi = p (2)

zk ≤ zk−1, k ∈ K, k > 1 (3)

xi + xj + zk ≤ 2, k ∈ K, (i, j) ∈ E(Dk)\E(Dk−1)
(4)

xi ∈ {0, 1}, i ∈ I (5)
zk ∈ {0, 1}, k ∈ K (6)

The formulation (1)-(6) can be further strengthen using
clique-like inequalities and computation can be sped-up by
exploiting valid lower and upper bounds [3].

B. DECREMENTAL CLUSTERING METHOD
The decremental clustering method introduced in [4] for the
pDP utilizes the formulation (1)-(6). The usage of clustering
techniques for finding feasible solutions for combinatorial
problems is hardly new. For example, in vehicle routing and
scheduling, the “cluster-first, route-second” (see [10], [11])
and “route-first, cluster-second” (see [12], [13]) paradigms
were used to ease the computational burden of the hard
combinatorial problem. What sets the decremental clustering
method apart is that it provides guarantees for optimality.
Decremental clustering was also proposed for the solution of
the vertex p-center problem in [14] and [15].

We present the decremental clustering method with the
same notation and vocabulary as it was developed in [4].
A clustering of the n nodes, denoted by C is a family
{Ci : i = 1, . . . ,m} such that Ci ∩ Cj = ∅ for every
1 ≤ i < j ≤ m and ∪{Ci : 1, . . . ,m} = I . A
clustering C is said to be sufficiently refined if, for every set
Ci ∈ C, D(Ci) := max{D(u, v) : u, v ∈ Ci, u < v} < z∗,
where z∗ is the optimal value of pDP(D, p). The correctness
of the decremental clustering method is supported by the
following result (proved in [4]).
Lemma 1: Let C be a sufficiently refined clustering of the
nodes of size m. Let DC be a m × m dissimilarity matrix
where DC(i, j) = max{D(u, v) : u ∈ Ci, v ∈ Cj}. The
optimal value ζ∗ of the problem pDP(DC , p) provides an
upper bound of problem pDP(D, p).

The decremental clustering method works as follows. A
lower bound L ≤ z∗ is computed using a k-means algo-
rithm [16], in a procedure named heuristicPDP(D, p, s)
whose pseudocode is described in Algorithm 1. Since the
k-means clustering is a stochastic method, it is repeated
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multiple times as long as the value of the lower bound
keeps increasing (the authors of [4] stop after s = 10
iterations without being able to improve its value). An ini-
tial upper bound U is computed as the largest dissimi-
larity between any two points. Using the lower bound L,
we build an initial sufficiently refined clustering C and
a reduced dissimilarity matrix DC , using the procedure
initialClustering(D, p, L), whose pseudocode is
described in Algorithm 2. The main idea of the procedure
is to find the clusters with the largest inter-node distances
and split them into two, until the inter-node distance in all
clusters is less than L (which implies that it is less than
z∗). After these initial steps, the method uses two auxiliary
sets S and W (with S ⊆ W ), where S represents the
set of optimal nonsingleton clusters (S = {Ci : |Ci| ≥
2, i = 1, . . . ,m}), and W is the complete optimal solution
to the restricted pDP (w.r.t. DC). Iteratively, the sets S and
W are used to refine the current clustering, resulting in a
refined clustering C and dissimilarity matrix DC , using the
procedure splitAndAdd(S,W, C, DC), which is described
in Algorithm 3. The resulting reduced pDP is then solved,
yielding an upper bound U on the full problem, and its
optimal solution is used to update the sets S,W . The solu-
tion procedure solvePDP(DC , p, U,W ) has two parts – a
heuristic “preprocessing” method and an exact solver. The
heuristic procedure is based on the observation that in a large
number of iterations, the optimal value of the pDP problem
does not decrease from one iteration to the next, which is
a common feature of decremental relaxation schemes [17].
Therefore, before executing the exact solver, the heuristic
procedure checks the best possible selection of p points
out of the p + 1 points obtained from the splitAndAdd
procedure. If the value of this solution equals the upper bound
U from the previous iteration, the associated solution is then
optimal, and there is no need to execute the exact solver.
In our implementation, the exact solver comprise of solving
the model (1)-(6) using the modelling package JuMP [18] in
Julia [19], and the GUROBI solver [20]. The pseudocode
of the solvePDP procedure is described in Algorithm 4.
The whole decremental clustering algorithm is described in
Algorithm 5. It also incorporates a possible knowledge on a
lower bound L of the optimal value of (1)-(6), which will be
explained in the forthcoming section.

III. DISCRETIZATIONS
The continuous variant of the pDP is extremely difficult
to solve and the techniques for approaching it are usually
bound to convex feasible spaces [21]. In order to apply the
pDP framework developed earlier for general spaces, such
as classrooms, restaurants, beaches, etc., the feasible space
of the problem – the possible locations of the points – is
discretized. This discretization is carried out by triangulation
(or mesh generation) of the two dimensional feasible area,
with the vertices of the triangles being the possible feasible
points [22]. Naturally, a question arises about the relationship
between the granularity of the triangulation and the objective

Algorithm 1 heuristicPDP(D, p, s)
1: D, p, s← inputs
2: L← 0
3: streak ← 0
4: repeat
5: C ← k-means(D, p)
6: for i = [1 : p] do
7: ki ← point in Ci closest to its center
8: end for
9: d← min(D(ki, kj) : 1 ≤ i < j ≤ p)

10: if L < d then
11: streak ← streak + 1
12: else
13: L← d
14: streak ← 0
15: end if
16: until streak = s
17: return L

Algorithm 2 initialClustering(D, p, L)
1: D, p, L← inputs
2: m← p
3: C ← k-means(D, p)
4: compute DC

5: while max(DC(i, i) : 1 ≤ i ≤ m) > L do
6: i∗ ← arg max(DC(i, i) : 1 ≤ i ≤ m)
7: m← m+ 1
8: C1

∗ , C
2
∗ ← k-means(Ci∗ , 2)

9: Ci∗ ← C1
∗

10: Cm ← C2
∗

11: recompute DC

12: end while
13: return C, DC

Algorithm 3 splitAndAdd(S,W, C, DC)
1: S,W, C, DC ← inputs
2: if S = ∅ then
3: C ← C, DC ← DC (i.e., do nothing)
4: else
5: m← size DC

6: (s∗, w∗)← arg min(DC(s, w) : s ∈ S,w ∈W )
7: if w∗ ∈ S then
8: i∗ ← arg max(DC(u, u) : u ∈ {s∗, w∗})
9: else

10: i∗ ← s∗

11: end if
12: C1

∗ , C
2
∗ ← k-means(Ci∗ , 2)

13: Ci∗ ← C1
∗

14: Cm+1 ← C2
∗

15: recompute DC

16: end if
17: return C, DC
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Algorithm 4 solvePDP(DC , p, U,W)

1: DC , p, U,W ← inputs
2: for k = [1 : p+ 1] do
3: Uh(k) ← min(DC(i, j) : 1 ≤ i, j ≤ p + 1, i 6=

k, j 6= k)
4: end for
5: if max(Uh(k) : 1 ≤ k ≤ p+ 1) = U then
6: k∗ ← arg max(Uh(k) : 1 ≤ k ≤ p+ 1)
7: W ← {W (i) : 1 ≤ i ≤ p+ 1, i 6= k∗}
8: U ← U
9: else

10: U,W ← solve (1)-(6)
11: end if
12: return U,W

Algorithm 5 decrementalClustering(D, p, L)
1: D, p, L← inputs
2: L′ ← heuristicPDP(D, p, 10)
3: L← max(L,L′), U ← max(D(i, j) : 1 ≤ i < j ≤ n)
4: C, DC ← initialClustering(D, p, L)
5: S ← ∅, W ← ∅
6: repeat
7: C, DC ← splitAndAdd(S,W, C, DC)
8: U,W ← solvePDP(DC , p, U,W)
9: S ← {w ∈W : |Cw| ≥ 2}

10: until S = ∅ or L = U
11: return U,X ← {Cw : w ∈W}

value of the optimal solution of the associated pDP – the
finer the mesh, the better the solution (with higher smallest
distance between any two selected points). We address this
issue by devising a mesh refinement scheme and solving
a series of pDPs on a progressively finer mesh. The mesh
refinement works as follows: First, the area of each triangle in
the triangulation is computed. The triangles with larger than
average area are then split into 4 triangles by adding points is
the middle of their sides. The process is illustrated in Figure
1. A side effect of the refinement scheme is that by solving
the pDP on a coarser mesh, we obtain a guaranteed lower
bound on the optimal value of the pDP on a finer mesh.

Another “discretization” can be devised in the space of
possible values of the dissimilarity matrixD. As the problem
gets more difficult with more unique values in D, with each
unique value having a separate binary variable in the model
(1)-(6), we can greatly reduce the number of these added vari-
ables by rounding the elements of D. The trade-off between
the optimal objective value and computational efforts of these
two discretization schemes are investigated in the following
section. The pseudocode of the method used in the compu-
tational experiments, called refinePDP(D, p, L, r, T ), is
described in Algorithm 6. It supposes that an initial mesh
with p and D is available. The other inputs are a lower bound
L (if there is no prior knowledge about a possible lower
bound, then L = 0), a rounding factor r (with r = −1 being

rounding to the nearest tenths, r = 1 to nearest integers,
r = 2 to nearest tens, etc., and r = 0 no rounding) and a
time limit for the computation T .

Algorithm 6 refinePDP(D, p, L, r, T)
1: D, p, L, r, t← inputs
2: D′ ← round(D, r)
3: U,X ← decrementalClustering(D′, p, L)
4: L← U
5: repeat
6: D, p← refineMesh(D, p)
7: D′ ← round(D, r)
8: U,X ← decrementalClustering(D′, p, L)
9: L← U

10: until runTime > T
11: return U,X

IV. COMPUTATIONAL EXPERIMENTS
We investigate the effect of discretization on two examples.
The first one is a general shape depicted in Figure 1 and the
second one an auditorium-like shape shown in Figure 2. In
both examples, we examine the computational efforts to solve
the pDP problem for progressively finer mesh granularity and
for different values of p ∈ {5, 10, 15, 30} and r ∈ {0, 1, 2}.
In both examples, the time limit T was set to 24 hours. For
the first example, the maximal distance between any two
points (“the problem diameter”) was max(D) = 3240.8,
for the second example, it was max(D) = 2180. For each
problem instance, we report: n the number of points, ∆ the
square root of the area of the largest triangle in the mesh (a
useful measure of the granularity of the grid), r the rounding
factor, kmax the number of distinct elements in D′, z′∗ the
optimal objective value of the problem with D′, zr the “real”
objective value (without rounding), and t the time it took to
find the optimum. If the computations were not finished (the
time limit was reached), the best upper bound U is reported
in square brackets. If the computation of the instance was
terminated prematurely, because during the computation, the
upper bound U was equal to the lower bound L from the
solution of coarser discretization (i.e., the finer discretization
did not improve on the optimal value of the solution) the
instance is marked with a ‘*’. The instances that were not
computed, because the time limit was already reached, are
marked by a ‘–’. The computations were carried out on an
ordinary computer with 3.2 GHz i5-4460 CPU and 16 GB
RAM.

The numerical results of the computations are reported in
Table 1 for the first example and Table 2 for the second one.
The optimal placements (the ones with the best value of zr)
are shown in Figures 3-6 for the first example and in Figures
7-10 for the second one. The first general observations is that
in order to decrease ∆ by half, the number of points n needs
to be roughly quadrupled (which follows from the way the
mesh gets refined). The second general observation can be
made about the impact of the rounding factor r: Apart from a
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FIGURE 1. Initial mesh (left) and mesh after one round of refinement (right), first example.

FIGURE 2. Initial mesh, second example.

single instance, there was no difference in the “real” objective
value between instances with r = 0 and r = 1, while
there was a huge difference between the computational time
t. From these computational experiments, there is no doubt
that the rounding procedure presents a substantial benefit, as
the instances with rounding were computed around an order
of magnitude faster than the instances without rounding, and
some large instances could not be computed within the time
limit without the use of rounding.

The difference between r = 1 and r = 2 is much more
nuanced. In 83 % of the instances, the computations with r =
2 were faster. On the other hand, using r = 2 instead of r = 1
results on average in 0.43 % worse value of zr. Premature
termination is also more prevalent in the r = 2 case. Of the
48 successfully computed instances it occurred 14 times for
r = 2, compared to 8 times for r = 1.

The coarseness of the mesh naturally plays a crucial role in

both the objective value zr and the computational time t, with
finer meshes having higher objective value zr, but because of
the increase in the number of variables, take progressively
longer to compute. The improvement of the objective value
zr based on the mesh refinement is captured in Figure 11,
which shows the percentage improvements caused by the
increases in the number of mesh points n. Additionally, the
value of p also has an extensive impact on the computational
time. Similar to the findings in [4], we also find that the
decremental clustering scheme works very well for smaller
values of p, but the computations become progressively more
costly as p increases. The value of p = 30 seems to be close
to the limit of applicability of the method. On the one hand,
it means that in the context of social distancing it is well
applicable for use in situations, when the available space does
not allow for more than 30 persons, such as in classrooms,
restaurants, or offices. On the other hand, it still can be used
to compute valid upper bounds on the objective value even for
larger problems, which can be explored by various heuristics.

There is also a significant difference in the “difficulty”
between the two examples. Although the number of points n
and unique values kmax were similar for both examples in the
individual mesh refinement steps, the computational times
differ quite a lot, mainly for larger values of p. This can be at-
tributed to the “dual degeneracy” [4] occurring when a larger
number of clusters can be rearranged from one iteration to the
next to find solutions of the same cost. The second example
is more symmetric than the first one, meaning that it has a
larger number of the possible rearrangements. Naturally, the
optimal placements in Figures 7-10 have a straightforward
“symmetric” counterpart with the same objective value.

Lastly, the hexagonal pattern, that seems to emerge in
Figures 6 and 10 (both with p = 30) is no accident – the
hexagonal pattern is optimal for many location problems
(including the p-dispersion problem) with numerous facilities
covering a large area [23].
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FIGURE 3. Optimal placements, p = 5, r = 1. Initial mesh with n = 102, zr = 1,273.88 (left). Final mesh with n = 8,745, zr = 1,338.09 (right).

FIGURE 4. Optimal placements, p = 10, r = 1. Initial mesh with n = 102, zr = 749.72 (left). Final mesh with n = 8,745, zr = 805.25 (right).

FIGURE 5. Optimal placements, p = 15, r = 1. Initial mesh with n = 102, zr = 552.63 (left). Final mesh with n = 8,745, zr = 622.75 (right).

FIGURE 6. Optimal placements, p = 30, r = 2. Initial mesh with n = 102, zr = 325.77 (left). Final mesh with n = 1,891, zr = 395.42 (right).
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FIGURE 7. Optimal placements, p = 5, r = 1. Initial mesh with n = 150, zr = 1,139.49 (left). Final mesh with n = 9,313, zr = 1,183.01 (right).

FIGURE 8. Optimal placements, p = 10, r = 1. Initial mesh with n = 150, zr = 694.62 (left). Final mesh with n = 9,313, zr = 747.72 (right).

FIGURE 9. Optimal placements, p = 15, r = 1. Initial mesh with n = 150, zr = 518.40 (left). Final mesh with n = 2,273, zr = 555.93 (right).

FIGURE 10. Optimal placements, p = 30, r = 1. Initial mesh with n = 150, zr = 323.69 (left). Final mesh with n = 575, zr = 352.96 (right).
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FIGURE 11. The effect of the mesh refinement on the value of zr . First example on the left, second example on the right.

TABLE 1. Results of the computation, first example, max(D) = 3,240.8.

p = 5 p = 10
n ∆ r kmax z∗ zr t [s] z∗ zr t [s]

102 198.4
0 5,043 1,273.88 1,273.88 0.25 749.72 749.72 10.9
1 2,060 1,274 1,273.88 0.42 750 749.72 1.96
2 293 1,270 1,273.88 0.95 750 749.72 2.57

239 141.0
0 27,919 1,294.33 1,294.33 1.58 781.46 781.46 107
1 2,688 1,294 1,294.33 1.59 781 781.46 46.8
2 304 1,290 1,287.46 0.62 780 781.46 7.07

413 92.7
0 83,555 1,303.45 1,303.45 1.84 781.46* 781.46 475*
1 2,918 1,303 1,303.45 1.61 781* 781.46 35.4*
2 314 1,300 1,303.45 0.50 780* 781.46 19.3*

970 66.8
0 459,211 1,327.51 1,327.51 5.25 795.95 795.95 991
1 3,029 1,328 1,327.51 1.31 796 795.95 198
2 317 1,330 1,327.51 1.00 800 795.95 66.6

1,891 43.2
0 1,749,744 1,327.51 1,327.51 31.4 800.01 800.01 4,061
1 3,113 1,328* 1,327.51 2.51* 800 800.01 407
2 322 1,330* 1,327.51 2.95* 800* 795.95 242*

4,349 30.2
0 9,220,027 1,338.09 1,338.09 41.2 [802.98] [802.98] T = 24h
1 3,157 1,338 1,338.09 16.7 801 800.81 1,426
2 324 1,340 1,336.61 15.2 800* 795.95 1,170*

8,745 19.5
0 37,239,029 1,338.09* 1,338.09 4,134* – – –
1 3,202 1,338* 1,338.09 43.5* 805 805.25 2,546
2 325 1,340* 1,336.61 54.3* 810 805.07 1,922

p = 15 p = 30
n ∆ r kmax z∗ zr t [s] z∗ zr t [s]

102 198.4
0 5,043 552.63 552.63 50.6 325.77 325.77 12.6
1 2,060 553 552.63 6.73 326 325.77 32.3
2 293 550 546.54 4.41 330 325.77 23.3

239 141.0
0 27,919 585.37 585.37 195 370.06 370.06 256
1 2,688 585 585.37 69 370 370.06 56.7
2 304 590 585.37 22.9 370 365.37 33.2

413 92.7
0 83,555 589.65 589.65 1,162 375.00 375.00 4,707
1 2,918 590 589.65 135 375 375.00 415
2 314 590* 585.37 66.1* 380 375.00 206

970 66.8
0 459,211 601.68 601.68 26,771 [390.82] [390.82] T = 24h
1 3,029 602 601.65 1,153 386 386.41 4,635
2 317 600 595.33 791.8 390 385.07 3,334

1,891 43.2
0 1,749,744 [614.82] [614.82] T = 24h – – –
1 3,113 609 608.55 4,051 395 395.42 36,017
2 322 610 606.28 2,837 400 395.42 24,706

4,349 30.2
0 9,220,027 – – – – – –
1 3,157 617 616.77 15,699 [413] [413] T = 24h
2 324 620 615.21 16,695 [420] [420] T = 24h

8,745 19.5
0 37,239,029 – – – – – –
1 3,202 623 622.75 21,044 – – –
2 325 620* 615.21 18,185* – – –
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TABLE 2. Results of the computation, second example, max(D) = 2,180.

p = 5 p = 10
n ∆ r kmax z∗ zr t [s] z∗ zr t [s]

150 143.4
0 10,901 1,139.49 1139.49 21.9 694.62 694.62 87.1
1 1,846 1,139 1139.49 4.05 695 694.62 37.0
2 205 1,140 1139.49 0.59 690 687.56 5.28

382 107.2
0 71,690 1,161.70 1161.70 61.4 727.68 727.68 26.3
1 2,010 1,162 1161.70 5.65 728 727.68 12.7
2 212 1,160 1161.70 6.68 730 727.68 10.3

575 69.7
0 163,067 1,161.70* 1161.70 36.4* 730.36 730.36 202
1 2,062 1,162* 1161.70 47.59* 730 730.36 100
2 215 1,160* 1161.70 5.65* 730* 727.68 18.4

1,411 53.0
0 983,031 1,168.8 1168.82 374 738.54 738.54 3,741
1 2,120 1,169 1168.82 169 739 738.54 312
2 217 1,170 1168.82 26.3 740 737.39 240

2,273 34.5
0 2,258,704 1,168.8* 1168.82 104 738.54* 738.54 2,342*
1 2,144 1,169* 1168.82 170* 739* 738.54 460*
2 218 1,170* 1168.82 21.9* 740* 727.68 138*

5,655 26.2
0 15,805,824 1,183.01 1183.01 2,272 [767.81] [767.81] T = 24h
1 2,159 1,183 1183.01 263 748 747.72 1,185
2 218 1,180 1177.31 227 750 746.81 1,215

9,313 16.7
0 42,931,260 1,183.01* 1183.01 1,541 – – –
1 2,168 1,183* 1183.01 252* 748* 747.72 3,818*
2 219 1,180* 1177.31 178* 750* 746.81 2,720*

p = 15 p = 30
n ∆ r kmax z∗ zr t [s] z∗ zr t [s]

150 143.4
0 10,901 518.40 518.40 84.2 323.69 323.69 96.0
1 1,846 518 518.40 47.4 324 323.69 65.2
2 205 520 518.40 8.93 320 315.65 35.9

382 107.2
0 71,690 535.89 535.89 3,754 346.88 346.88 5,231
1 2,010 536 535.89 415 347 346.88 439
2 212 540 535.04 155 350 345.76 284

575 69.7
0 163,067 [562.73] [562.73] T = 24h [361.08] [361.08] T = 24h
1 2,062 545 544.59 793 353 352.96 2,763
2 215 540* 535.04 611* 350 345.76 1,577*

1,411 53.0
0 983,031 – – – – – –
1 2,120 552 551.72 12,203 [366] [366] T = 24h
2 217 550 546.01 9,190 [360] [366] T = 24h

2,273 34.5
0 2,258,704 – – – – – –
1 2,144 556 555.93 51,344 – – –
2 218 560 555.21 55,682 – – –

5,655 26.2
0 15,805,824 – – – – –
1 2,159 [572] [572] T = 24h – – –
2 218 [570] [570] T = 24h – – –

V. CONCLUSIONS

In this paper we have studied the problem of locating per-
sons in a given area, that should abide to social distancing
measures such as those arising in the time of COVID-19
and similar viruses. We have argued that the p−dispersion
problem can be used to efficiently model these situations.
We devised a discretization scheme that was build on top
of the decremental clustering method to get computationally
attainable solutions, which worked very well in the com-
putational study on the two artificial examples, especially
for smaller values of p. We have investigated the effect of
rounding of the dissimilarity matrix D on the computational
effort and conclude that it is an indispensable part of the
discretization scheme that has virtually no disadvantages in
terms of the quality of the obtained solution. We have also
seen the substantial increase in computational efforts for

higher values of p, which can be contributed to the “dual
degeneracy” of the clustering scheme.

For future research, fast heuristics that run parallel to the
decremental clustering scheme might further improve on the
computational time and the size of the problems that are
solvable by the presented method. Also, a mesh refinement
scheme based on the current optimal placement (instead of
the triangle size as presented here) could lead to improve-
ments in the objective value.
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Abstract—The development and comparison of new optimiza-
tion methods in general, and evolutionary algorithms in particu-
lar, rely heavily on benchmarking. In this paper, the construction
of novel zigzag-based benchmark functions for bound constrained
single objective optimization is presented. The new benchmark
functions are non-differentiable, highly multimodal, and have a
built-in parameter that controls the complexity of the function.
To investigate the properties of the new benchmark functions
two of the best algorithms from the CEC’20 Competition on
Single Objective Bound Constrained Optimization, as well as one
standard evolutionary algorithm, were utilized in a computational
study. The results of the study suggest that the new benchmark
functions are very well suited for algorithmic comparison.

I. INTRODUCTION

Benchmarking has a crucial role in the development of
novel search algorithms as well as in the assessment and
comparison of contemporary algorithmic ideas [1]. One of
the subclasses of the derivative-free optimization methods are
Evolutionary Algorithms (EAs), which proved to be very pow-
erful for solving black-box optimization problems. However,
because EAs generally lack theoretical performance results,
their development and performance comparison rely mainly
on benchmarking. Benchmarking experiments are set up for
performance comparison on given problem classes and should
support the selection of a suitable algorithm for a given real-
world application [2]. Benchmarks are also used to qualify the
theoretical predictions of the behaviour of algorithms [3].

There are two main lines of development in benchmarking
for EAs, the IEEE Congress on Evolutionary Computation
(CEC) competitions [4] and the Comparing Continuous Op-
timizer (COCO) benchmark suite [6]. The COCO suite is
a platform for comparing unconstrained continuous optimiz-
ers for numerical optimization. An advantage of the COCO
platform is a large number of algorithm results available for
comparison. Up to now, 231 distinct (classical as well as
contemporary) algorithms have been tested on the COCO
suite. On the other hand, the competitions that are organized
every year during the CEC aim to compare state-of-the-art
stochastic search algorithms. The CEC competitions provide
specific test environments for algorithm assessment and com-

parison. The benchmark functions are constructed from a set of
popular benchmark functions, such as the Rastrigin’s function,
Rosenbrock’s function, Griewank’s function, Ackley’s func-
tion, Schwefel’s function, and others [4]. A tunable benchmark
function for combinatorial problems was recently introduced
in [5].

In this paper, we propose novel zigzag-based benchmark
functions for bound constrained single objective optimization,
that are non-differentiable and highly multimodal. The rest of
the paper is organized as follows. Section II introduces the
individual components of the new benchmark functions and
provides insight into their construction. In Section III we report
on computational experiments where we compare two state-of-
the-art algorithms and one standard EA on a set of problems
that utilize the new benchmark functions. The conclusions and
future research are described in Section IV.

II. THE NOVEL BENCHMARK FUNCTIONS

The new benchmark functions are constructed as follows.
First, we devise a “zigzag” function z(x). For given parameters
k > 0,m > 0 the zigzag function z(x) at a point x ∈ R is
computed as:

z(x) =





m
(
1
2 + (−1)dkxe( dkxe+bkxc2 − kx)

)
, if (kx) /∈ Z

0, if kx
2 ∈ Z

m, otherwise,

where 2
k is the period and m is the amplitude of the zigzag

function, as depicted in Fig 1. The next step is a construction
of a multimodal function f(x), which is a sum of an absolute
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Fig. 1: Zigzag function z(x) with k = 0.1,m = 1.978-1-7281-8393-0/21/$31.00 ©2021 European Union



value of a high degree polynomial with one root in zero and
an absolute value function. The scaling of these two parts
is such that the function values on the interval [−200, 200]
lie between [0, 200] (this allows us to compose the function
with itself any number of times without running into severe
numerical difficulties). The reason we care about the behaviour
of the function on the interval [−200, 200], and not just the
interval [−100, 100] where the optimization will be carried out,
is because the benchmark functions will include a shift (and
a rotation/scaling). The “polynomial” part of the function f is
then multiplied with the zigzag function z(x). The particular
choice for the function f(x) in this paper is the following:

f(x)=3·10−9|(x−50)(x−190)x(x+70)(x+180)|z(x) + 0.2|x|

where the individual parts of the function are shown in Fig. 2,
and the impact of varying the parameter k of the zigzag
function z(x) is shown in Fig. 3. Fig. 3 also shows the
structure of the function f(x) composed with itself, i.e. the
function f(f(x)), for different values of k. The function f has
a single global optimum point in 0, is non-differentiable and
highly multimodal (the “degree of multimodality” depending
on the parameter k). Finally, the two proposed benchmark

-200 -150 -100 -50 0 50 100 150 200
0
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100

150 3 10
-9

|(x-50) (x-190) x (x+70) (x+180)|
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|(x-50) (x-190) x (x+70) (x+180)|

Fig. 2: Partial construction of the function f(x).

functions F1(x) and F2(x), for x = [x1, . . . , xD]T and
x ∈ [−100, 100]D, are the following:

f1(x) =
D∑

i=1

f(xi)

F1(x) = f1(M1(x− s1))

f2(x) =

D∑

i=1

f(f(xi))

F2(x) = f2(M2(x− s2))

where s1, s2 ∈ [−100, 100]D are random shifts of the optimal
solution and M1,M2 are random rotation/scaling matrices,
with eigenvalues in the range [0.5, 1]. The contour and surface
plots of F1(x) and F2(x) for D = 2 and different values of
the parameter k can be seen in Fig. 4. The rotation/scaling
matrices were constructed in the following way: for a given
dimension D, we generate a random square matrix A, and
construct a matrix B = A′A. Then we get matrices P,R,Q
from the singular value decomposition of B, i.e. B = PQR′.
Lastly, we generate a D dimensional vector v whose indi-
vidual components are uniformly distributed random values
on the interval [0.5,1], and we construct the matrix M as
M = P · diag(v) ·R′, where diag(·) transfors a vector into a
diagonal matrix. This ensures that the eigenvalues of M lie on
the interval [0.5,1]. The rotation/scaling matrix is an integral
part of the benchmark function [7], as it creates additional
difficulty for the optimization algorithms [8].

III. COMPUTATIONAL EXPERIMENTS

A. Optimization Algorithms and Experimental Settings

The first algorithm we chose for the computational com-
parison, is the canonical particle swarm optimization (PSO)
algorithm that simulates swarm behaviors of social animals
such as the bird flocking or fish schooling [9]. The particular
implementation and parameter setting for the PSO is the one
that was shipped along with the benchmark suite for the
CEC’20 Competition on Single Objective Bound Constrained
Optimization [4].

The second algorithm for the comparison is the winner of
the CEC’20 Competition on Single Objective Bound Con-
strained Optimization, the Improved Multi-operator Differen-
tial Evolution (IMODE) algorithm [10]. This algorithm uti-
lizes multiple differential evolution operators and a sequential
quadratic programming local search procedure for accelerating
its convergence.

The third algorithm for the comparison is the runner-up of
the same competition, the Adaptive Gaining-Sharing Knowl-
edge (AGSK) based algorithm [11]. This algorithm extends
and improves the original GSK [12] algorithm by adding
adaptive settings to the two important control parameters:
the knowledge factor and the knowledge ratio, which control
junior and senior gaining and sharing phases between the
solutions during the optimization loop.

We use the same benchmark rules as the CEC’20 competi-
tion: the three algorithms are evaluated on the two benchmark
functions with D = [5, 10, 15, 20] dimensions, parameter k =
[20, 2−1, 2−2, 2−3, 2−4], and a search space of [−100, 100]D.
As a change in the parameter m can be though of as a scaling
of the polynomial part of the function f , we set it to m = 1.
The maximum number of function evaluations were set to
50,000, 1,000,000, 3,000,000 and 10,000,000 fitness function
evaluations for problems with D = [5, 10, 15, 20], respectively.
All algorithms were run 30 times to obtain representative
results. For every run, if the function value of the solution was



-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

f(x) and f(f(x)) for k = 20

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

f(x) and f(f(x)) for k = 2−1

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

f(x) and f(f(x)) for k = 2−2

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

200

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

f(x) and f(f(x)) for k = 2−3

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

-200 -150 -100 -50 0 50 100 150 200

0

50

100

150

f(x) and f(f(x)) for k = 2−4

Fig. 3: Functions f(x) (left) and f(f(x)) (right) for different values of parameter k
.

less than or equal to 1e–8, it was set as zero. The particular
values of M and s can be found in the authors github 1.

For both IMODE and AGSK, we use the same parameter
settings that they used in the CEC’20 competition [13]. The
algorithms were run in a MATLAB R2020b, on a PC with
3.2 GHz Core I5 processor, 16 GB RAM, and Windows 10.

1https://github.com/JakubKudela89/Zigzag

B. Results

The results of the computational experiments with the three
algorithms are summarized in Table I for the benchmark
function F1(x), and Table II for the benchmark function
F2(x). In both tables, we report the best value over the 30
independent runs (min), the median value, the mean value, the
worst value (max), and the standard deviation (std). The best
result of the three algorithms in the categories min, median,



mean, and max is highlighted for each problem instance.
Firstly, it is clear from the results that both the benchmark

functions are not “impossible” to optimize, as there were
plenty of instances where the algorithms found the optimal
solution. However, the instances are not “too easy” so that the
algorithms find the optimum reliably – this, in our opinion,
makes these benchmark functions worth investigating. Another
observation to be made is that for both test functions, reducing
the zigzag parameter k really reduces the complexity of the
problems. In particular, the changes from k = 2−2 to k = 2−3

and then to k = 2−4 seem to have the biggest impact, while
the statistical results for problems with k = [20, 2−1, 2−2] are
relatively stable (for the same dimension D). Unsurprisingly,
the difficulty of the test problems also increases with the
dimension D.

The most surprising results come from the comparison of
the three algorithms. Let us first focus on the first benchmark
function F1(x). In dimension D = 5, the most successful
algorithm was the PSO, with both AGSK and IMODE being
weaker (without any noticeable difference between them) for
all instances but the most simple one with k = 2−4. For
D = 10, the situation is a bit different – while PSO again
dominated the difficult instances k = [20, 2−1, 2−2, 2−3],
it was IMODE that was best for the instance k = 2−4,
but AGSK performed better that IMODE on the instances
k = [20, 2−1, 2−2, 2−3]. For D = 15, AGSK is the worst of the
three on all instances, with PSO dominating for k = [20, 2−1],
and IMODE dominating the rest. The results for the largest
instances with D = 20 have PSO being the best algorithm
for all but the simplest instance k = 2−4, where it is on the
same level as IMODE. AGSK and IMODE behave similarly
for k = [20, 2−1, 2−2] while IMODE is clearly better for
k = [2−3, 2−4].

The results for the second benchmark function F2(x) are
somewhat similar. PSO again dominates the difficult instances
for k = [20, 2−1, 2−2, 2−3] for all dimension but for D = 15,
where IMODE seems to work a bit better. On the simplest
instance k = 2−4, IMODE is best in dimensions D = [15, 20],
with D = 10 having AGSK as the winner, and D = 5 being
solved perfectly by all three algorithms. AGSK is the weakest
algorithm of the three in all dimensions, apart from D = 10.

Overall, on both of the newly proposed benchmark func-
tions, neither of the two best algorithms from the CEC’20
competition performed significantly better than a standard
PSO. We would argue that this a prime reason for investigating
these benchmark functions even further and for including them
in future competitions and benchmark suits.

IV. CONCLUSION

In this paper, we presented two novel zigzag-based bench-
mark functions for bound constrained single objective opti-
mization, which have a simple build-in parameter that can
be used to increase their complexity. The construction of
these functions is straightforward enough to allow for a wide
range of variations, extension, and further study. We also used
the two best algorithms from the CEC’20 competition and a

standard PSO for computational experiments on test instances
utilizing the newly proposed benchmark functions. The results
of the experiments suggest that the new benchmark functions
are well suited for algorithmic comparison. Future research
will encompass comparing a wider selection of algorithms,
and developing multimodal benchmark functions [14] using
the presented technique.
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TABLE I: Statistics of the best objective function values after the maximum number of function evaluations of the different
algorithms on the first benchmark function F1(x) for different values of D and k. The algorithm with best value over the 30
independent runs (min), the best median value, the best mean value, and the best worst value (max) for the particular instance
and is emphasized in bold.

D = 5 D = 10 D = 15 D = 20
PSO AGSK IMODE PSO AGSK IMODE PSO AGSK IMODE PSO AGSK IMODE

k = 20

min 0 0 9.37e–06 1.73e–04 0 1.12e+00 2.80e–01 2.53e+00 2.70e+00 1.01e+00 5.23e+00 6.06e+00
median 0 0 1.76e–02 1.64e–01 5.22e–01 1.91e+00 1.91e+00 5.06e+00 3.90e+00 2.87e+00 7.67e+00 8.44e+00
mean 0 1.87e–02 6.98e–02 4.08e–01 7.61e–01 1.93e+00 1.92e+00 4.89e+00 3.86e+00 3.18e+00 7.67e+00 8.51e+00
max 0 2.77e–01 4.08e–01 2.42e+00 2.37e+00 2.73e+00 4.33e+00 6.31e+00 5.24e+00 6.94e+00 9.72e+00 1.03e+01
std 0 5.47e–02 7.46e–01 6.57e–01 7.48e–01 4.71e–01 1.12e+00 9.45e–01 5.92e–01 1.60e+00 1.15e+00 9.07e–01

k = 2−1

min 0 0 6.75e–08 9.22e–06 0 3.68e–01 8.81e–01 0 2.64e+00 1.12e+00 5.52e+00 7.27e+00
median 0 0 8.84e–04 4.45e–01 9.04e–01 2.34e+00 3.38e+00 4.90e+00 4.02e+00 3.39e+00 8.76e+00 8.85e+00
mean 0 6.89e–02 4.23e–02 6.80e–01 1.02e+00 2.25e+00 3.49e+00 4.80e+00 3.99e+00 3.60e+00 8.67e+00 8.88e+00
max 2.57e–08 1.00e+00 2.67e–01 1.91e+00 2.74e+00 3.19e+00 6.58e+00 6.11e+00 5.10e+00 7.61e+00 1.03e+01 1.05e+01
std 0 2.00e–01 7.98e–02 6.34e–01 7.84e–01 6.64e–01 1.64e+00 1.14e+00 5.72e–01 1.38e+00 1.13e+00 7.54e–01

k = 2−2

min 0 0 0 2.14e–03 0 1.31e+00 9.60e–01 3.01e+00 5.40e–01 8.02e–01 6.65e+00 4.25e+00
median 0 1.10e–07 1.34e–04 6.44e–01 1.67e+00 2.13e+00 3.47e+00 5.01e+00 3.16e+00 3.37e+00 8.49e+00 8.08e+00
mean 3.73e–02 3.25e–02 2.99e–02 6.24e–01 1.59e+00 2.12e+00 3.70e+00 4.82e+00 3.04e+00 3.53e+00 8.48e+00 7.91e+00
max 8.02e–01 2.87e–01 5.22e–01 1.61e+00 2.99e+00 3.65e+00 7.54e+00 5.72e+00 4.06e+00 7.86e+00 1.01e+01 9.61e+00
std 1.55e–01 7.68e–02 1.13e–01 3.26e–01 7.84e–01 5.39e–01 1.86e+00 7.13e–01 7.79e–01 1.30e+00 9.56e–01 1.09e+00

k = 2−3

min 0 0 0 1.48e–05 0 8.41e–04 0 2.94e+00 8.67e–04 0 5.96e+00 2.74e+00
median 0 0 0 3.79e–02 3.20e–01 1.55e+00 3.85e+00 4.65e+00 9.60e–01 3.70e+00 7.91e+00 5.83e+00
mean 0 2.79e–04 1.52e–06 4.21e–01 8.00e–01 1.41e+00 3.75e+00 4.58e+00 8.23e–01 3.64e+00 8.09e+00 5.78e+00
max 0 8.14e–03 2.22e–05 1.92e+00 2.74e+00 2.36e+00 8.06e+00 5.71e+00 1.65e+00 7.17e+00 1.05e+01 7.53e+00
std 0 1.48e–03 5.48e–06 5.51e–01 9.79e–01 6.59e–01 1.92e+00 6.86e–01 5.20e–01 1.71e+00 1.04e+00 1.28e+00

k = 2−4

min 0 0 0 3.97e–06 0 0 0 0 0 0 3.83e+00 1.28e+00
median 0 0 0 4.59e–03 0 0 3.20e+00 3.83e+00 0 3.07e+00 7.60e+00 3.23e+00
mean 0 0 0 2.00e–01 8.53e–02 3.49e–07 3.41e+00 3.62e+00 0 3.21e+00 7.37e+00 2.96e+00
max 0 0 0 1.28e+00 1.28e+00 7.75e–06 8.88e+00 4.99e+00 0 6.12e+00 9.06e+00 3.97e+00
std 0 0 0 4.11e–01 3.24e–01 1.48e–06 2.11e+00 1.19e+00 0 1.60e+00 1.17e+00 7.34e–01

TABLE II: Statistics of the best objective function values after the maximum number of function evaluations of the different
algorithms on the first benchmark function F2(x) for different values of D and k. The algorithm with best value over the 30
independent runs (min), the best median value, the best mean value, and the best worst value (max) for the particular instance
and is emphasized in bold.

D = 5 D = 10 D = 15 D = 20
PSO AGSK IMODE PSO AGSK IMODE PSO AGSK IMODE PSO AGSK IMODE

k = 20

min 0 0 4.44e–05 1.70e–05 0 1.01e–01 9.66e–02 3.64e–01 2.40e–01 8.69e–02 6.03e–01 5.26e–01
median 0 6.20e–03 1.20e–02 1.68e–02 1.69e–01 2.13e–01 3.65e–01 6.85e–01 4.15e–01 4.75e–01 9.09e–01 8.01e–01
mean 1.75e–02 2.24e–02 1.84e–02 4.03e–02 1.61e–01 2.03e–01 4.91e–01 6.47e–01 4.00e–01 4.99e–01 8.89e–01 7.81e–01
max 1.30e–01 1.25e–01 5.18e–02 1.92e–01 2.87e–01 2.61e–01 1.56e+00 8.40e–01 4.94e–01 2.23e+00 1.08e+00 9.30e–01
std 2.95e–02 3.19e–02 1.72e–02 4.95e–02 7.54e–02 4.38e–02 4.34e–01 1.12e–01 6.23e–02 3.87e–01 1.24e–01 9.74e–02

k = 2−1

min 0 0 7.68e–06 3.68e–07 0 1.31e–01 1.11e–02 3.73e–01 2.90e–01 5.30e–02 4.25e–01 6.77e–01
median 0 9.77e–08 1.91e–03 7.61e–03 1.22e–01 2.39e–01 3.16e–01 6.73e–01 5.40e–01 3.42e–01 9.89e–01 1.18e+00
mean 0 3.74e–03 5.26e–03 2.32e–02 1.29e–01 2.52e–01 3.41e–01 6.44e–01 5.32e–01 3.81e–01 9.98e–01 1.16e+00
max 0 3.67e–02 2.81e–02 1.23e–01 3.67e–01 4.12e–01 8.91e–01 8.59e–01 6.68e–01 9.25e–01 1.32e+00 1.37e+00
std 0 9.20e–03 6.91e–03 3.68e–02 1.08e–01 7.34e–02 2.24e–01 1.21e–01 9.66e–02 2.33e–01 2.14e–01 1.39e–01

k = 2−2

min 0 0 1.32e–08 8.14e–06 0 4.56e–02 1.06e–01 1.38e–01 1.57e–01 2.05e–01 2.69e–01 5.38e–01
median 0 0 1.17e–05 6.24e–03 1.29e–01 2.12e–01 3.68e–01 4.74e–01 3.11e–01 4.06e–01 9.12e–01 8.98e–01
mean 1.83e–04 2.44e–03 1.99e–03 2.82e–02 1.27e–01 1.96e–01 4.00e–01 4.57e–01 3.20e–01 4.27e–01 8.84e–01 8.82e–01
max 5.49e–03 2.35e–02 2.71e–02 2.00e–01 3.62e–01 3.38e–01 9.49e–01 6.54e–01 4.37e–01 7.04e–01 1.25e+00 1.10e+00
std 1.00e–03 5.73e–03 5.61e–03 4.80e–02 8.63e–02 7.96e–02 2.18e–01 1.23e–01 6.62e–02 1.44e–01 1.91e–01 1.33e–01

k = 2−3

min 0 0 0 2.67e–08 0 4.74e–02 0 1.12e–01 1.45e–02 7.57e–02 2.93e–01 2.98e–01
median 0 0 3.32e–08 1.38e–04 7.16e–02 8.30e–02 3.02e–01 2.60e–01 1.04e–01 2.53e–01 5.87e–01 3.93e–01
mean 1.08e–03 1.04e–03 4.02e–06 2.84e–02 7.51e–02 9.08e–02 2.76e–01 2.54e–01 9.97e–02 2.77e–01 5.52e–01 3.96e–01
max 3.26e–02 1.42e–02 4.90e–05 1.27e–01 1.59e–01 1.72e–01 5.15e–01 3.32e–01 1.63e–01 4.94e–01 7.02e–01 5.05e–01
std 5.95e–03 3.35e–03 1.07e–05 4.18e–02 5.08e–02 3.00e–02 1.30e–01 5.24e–02 3.69e–02 1.21e–01 9.42e–02 4.94e–02

k = 2−4

min 0 0 0 6.19e–08 0 0 0 0 0 2.19e–02 1.12e–01 9.46e–05
median 0 0 0 4.38e–05 0 0 8.40e–02 1.53e–01 0 1.97e–01 3.05e–01 1.54e–01
mean 0 0 0 2.97e–03 0 1.00e–06 1.22e–01 1.47e–01 0 2.01e–01 2.91e–01 1.52e–01
max 0 0 0 2.19e–02 0 1.12e–05 3.91e–01 2.28e–01 0 3.70e–01 3.85e–01 2.16e–01
std 0 0 0 7.57e–03 0 2.68e–06 1.16e–01 4.86e–02 0 7.70e–02 6.51e–02 4.33e–02



F1(x) and F2(x) for k = 20

F1(x) and F2(x) for k = 2−1

F1(x) and F2(x) for k = 2−2

F1(x) and F2(x) for k = 2−3

F1(x) and F2(x) for k = 2−4

Fig. 4: Contour and surface plots of the benchmark functions F1(x) (left) and F2(x) (right) for different values of parameter
k. The optimum is highlighted by a red marker.
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A critical problem in benchmarking  
and analysis of evolutionary computation 
methods

Jakub Kudela     

Benchmarking is a cornerstone in the analysis and development of 
computational methods, especially in the field of evolutionary computation, 
where theoretical analysis of the algorithms is almost impossible. In this 
Article, we show that some of the frequently used benchmark functions have 
their respective optima in the centre of the feasible set and that this poses a 
critical problem for the analysis of evolutionary computation methods. We 
carry out an analysis of seven recently published methods and find that these 
contain a centre-bias operator that lets them find optima in the centre of the 
benchmark set with ease. However, this mechanism makes their comparison 
with other methods (that do not have a centre-bias) meaningless. We 
compare the computational performance of these seven new methods to 
two long-standing ones in evolutionary computation (‘differential evolution’ 
and ‘particle swarm optimization’) on shifted problems and on more 
advanced benchmark problems. Only one of the seven methods performed 
consistently better than the pair of old methods, three performed on par, 
two performed very badly and the worst one performed barely better than a 
random search. We provide several suggestions that could help to improve 
analysis and benchmarking in evolutionary computation.

Inspired by natural behaviours, the field of evolutionary computation 
(EC) has produced a multitude of pivotal metaheuristic algorithms 
over its rich history. Among them are such classical methods as genetic 
algorithms, evolutionary strategy, differential evolution and particle 
swarm optimization. These methods found their places in various 
complex applications where the use of exact algorithms was inadequate 
or too computationally expensive. However, over the past few years, 
there has been an explosion of ‘novel’ methods that draw on natural 
principles. The bestiary of EC1, a catalogue of nature-based algorithms, 
already lists over 250 algorithms that claim to be inspired by natural 
processes. After a multitude of these methods were found to hide a 
lack of novelty behind metaphor-rich jargon2–6, a call was made from 
within the EC community7. In the letter, the collective of authors and 
signatories identified four main issues with the high-volume inflow of 
new methods: useless metaphors, lack of novelty, poor experimental 

validation and comparison, and publishing these methods in off-topic 
journals. In this text, we will show that there is another serious problem 
with the experimentation and comparison of different methods.

As metaheuristics are generally difficult to analyse analytically, 
most of the reasoning about their viability is done through bench-
marking8. If a method performs well on a generally accepted set of 
problems, it has a high chance of being seen as valid. Over the years, 
many different benchmark functions and sets have been proposed in 
journal articles9, but the most popular ones have been constructed 
for special sessions (competitions) on black-box optimization at two 
conferences: the Institute of Electrical and Electronics Engineers (IEEE) 
Congress on Evolutionary Computation (CEC), and the Genetic and 
Evolutionary Computation Conference (GECCO), where the Black-Box 
Optimization Benchmarking (BBOB) workshop is held. The BBOB 
functions are a part of the COCO platform for comparing optimization 
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the links to the repositories of the methods are no longer working13. 
Some authors also voiced their critique of the artificial nature of these 
benchmark sets14, and instead advocated for testing optimization 
algorithms on real-world problems15.

Another standard benchmark set that is extensively used for com-
paring optimization methods consists of some of the most well-known 
functions such as Ackley, Griewank, Rosenbrock, Rastrigin, or Schwefel, 
but it also contains a small design flaw. A large portion of the functions 
found in this set have the optimum at a zero vector (or in the centre of 
the feasible set). This fact, on its own, does not pose a serious problem, 
but comparing methods that incorporate a “check-the-middle” proce-
dure or a centre-bias (or zero-bias) operator on these benchmarks to 
other methods is essentially meaningless. This issue was also identified 
during the CEC 2021 competition16.

algorithms10, while the benchmarks from the CEC competitions (which 
started in 2005 and continue to this day) can be found on the github 
of one of the authors11. As was shown previously12, the characteristics 
of the functions used in these two benchmarks are very different. The 
CEC benchmarks are composed of similar subfunctions, possibly 
giving an advantage to algorithms that perform well on these fewer 
subfunctions. It was also found that the CEC functions share more 
similarities among themselves than with those found in the BBOB12. 
A tremendously useful feature of both the repository of the CEC com-
petitions and the COCO platform is their inclusion of algorithms and 
data. In the repository of the CEC competitions, the best-performing 
algorithms are shared along with their results. On the COCO platform, 
the results of different methods can be found. However, only a hand-
ful of the source codes for the methods are included, and some of 

Table 1 | The often-used benchmark functions, dimension 30

ID Name Function Type Range f* f(0) x*

F01 Sphere
f (x) =

n
∑
i=1

xi2
U, S [−100, 100] 0

F02 Schwefel 2.22
f (x) =

n
∑
i=1
|xi| +

n
∏
i=1

|xi|
U, N [−100, 100] 0 0 [0, 0, …]

F03 Schwefel 1.2
f (x) =

n
∑
i=1
(

i
∑
j=1

xj2)
U, N [−100, 100] 0 0 [0, 0, …]

F04 Schwefel 2.21 f (x) = max
i

|xi| , 1 ≤ i ≤ n U, S [−100, 100] 0 0 [0, 0, …]

F05 Rosenbrock
f (x) =

n−1
∑
i=1

[100 (xi+1 − xi2)
2 + (xi − 1)2]

U, N [−30, 30] 0 29.0 [1, 1, …]

F06 Step
f (x) =

n
∑
i=1
(xi + 0.5)2

U, S [−100, 100] 0 7.50 [−0.5, −0.5, …]

F07 Quartic with noise
f (x) =

n
∑
i=1

ixi4 + rand (0, 1)
U, S [−1.28, 1.28] 0 0 [0, 0, …]

F08 Schwefel 2.26
f (x) =

n
∑
i=1
−xi sin (√|xi|)

M, S [−500, 500] −1.25×104 0 [420.9, 420.9, …]

F09 Rastrigin
f (x) =

n
∑
i=1
[xi2 − 10 cos (2𝜋𝜋xi) + 10]

M, S [−5.12, 5.12] 0 0 [0, 0, …]

F10 Ackley
f (x) = −20exp(−0.2 ( 1

n

n
∑
i=1

xi2)
0.5

)

− exp ( 1
n

n
∑
i=1

cos (2𝜋𝜋xi)) + 20 + e

M, N [−32, 32] 0 0 [0, 0, …]

F11 Griewank
f (x) = 1

4000

n
∑
i=1

xi2 −
n
∏
i=1

cos ( xi
√i
) + 1

M, N [−600, 600] 0 0 [0, 0, …]

F12 Penalized1 f (x) = 𝜋𝜋

n
{10 sin (𝜋𝜋y1)

+
n−1
∑
i=1

(yi − 1)2 [1 + 10 sin2 (𝜋𝜋yi+1)] + (yn − 1)

+
n
∑
i=1

u (xi, 10, 100,4) , yi = 1 + xi+1
4
,

u (xi,a, k,m) = {
k (xi − a)m xi > a
0 − a < xi < a

k (−xi − a)m xi < a

M, N [−50, 50] 0 1.67 [−1, −1, …]

F13 Penalized2 f (x) = 0.1 {sin2 (3𝜋𝜋x1)

+
n
∑
i=1
(xi − 1)2 [1 + sin2 (3𝜋𝜋xi + 1)]

+ (xn − 1)2 [1 + sin2 (2𝜋𝜋xn)]}

+
n
∑
i=1

u (xi, 5, 100,4)

M, S [−50, 50] 0 3.00 [1, 1, …]

U, unimodal; M, multimodal; S, separable; N, nonseparable; f*, the optimal function value; f(0), function value at the zero vector; x*, optimal solution.
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The inclusion of the centre-bias operator is hardly ever plainly 
visible from the description of the method. This is both a problem of 
the often-used metaphor-rich jargon and the difficulty of the theoreti-
cal analysis of stochastic systems. Possible mechanisms leading to a 
centre-bias operator in metaheuristics are the contraction operator 
that was found in the Grey Wolf Optimization algorithm17 and a search 
bias that was found in the Salp Swarm Optimization algorithm18. The 
centre-bias was also found in the Sooty Tern Optimization Algorithm 
and the Tunicate Swarm Algorithm19.

In the remainder of this text, we will take a closer look at seven 
recently published methods in journals such as Applied Soft Comput-
ing, Information Sciences and Future Generation Computer Systems. 
The methods in question are the Komodo Mlipir Algorithm (KMA)20, 
the Slime Mould Algorithm (SMA)21, the Butterfly Optimization Algo-
rithm (BOA)22, the Gradient-Based Optimizer (GBO)23, the enhanced 
Marine Predators Algorithm (MPA)24, the Harris Hawks Optimization 
(HHO)25 and the Sooty Tern Optimization Algorithm (STOA)26. We will 
show that all of the abovementioned methods contain the centre-bias 
operator. We will try to carry out a fair comparison between these 
relatively new methods and two older ones—Differential Evolution 
(DE) and Particle Swarm Optimization (PSO). Additionally, we include 
in the computations two methods that performed well in the CEC 
competitions, namely LSHADE27 (which was the basis of many of 
the best-performing methods in the past CEC competitions) and 
HSES28 (winner of the CEC 2018 competition). For all the methods, 
we chose to use the parameter setting recommended in the corre-
sponding publications, without any parameter tuning29. The code 
for all the experiments can be found at https://doi.org/10.24433/ 
CO.1268126.v1 (ref. 30).

Results
Problematic benchmark problems
Out of the seven abovementioned methods, six performed the com-
putational comparison on a very similar benchmark set, with thirteen 
of the considered problems summarized in Table 1. The only one that 
did not use these functions was the GBO (it still used functions that 
exhibit the same issue). Except for GBO and BOA, these were the first 
thirteen problems in the considered benchmark sets. Of these thirteen 
problems, eight have their respective optimum at the zero vector. Four 
other problems have the optimum quite close to the zero vector and 
give very good results when evaluated at the zero vector. Only a single 
problem (F08) has the optimum located far from zero.

Behaviour without a shift
We use a previously devised methodology19 to analyse the behaviour 
of the methods. First, the different methods were evaluated on the 
thirteen benchmark functions without any additional modifications. 
The dimension of the problems was set to 30 and the maximum number 
of allowed function evaluations was set to 50,000. As the performance 
measure, we chose the mean error (difference between optimal func-
tion value and best function value found after the max iteration count) 
over 30 independent runs. The results are reported in Table 2 (in the 
format produced by the respective methods). Although there is no 
practical meaning in numbers like 2.25×10–133, these were the num-
bers reported by the respective methods (and the numbers on which 
statistical analyses were performed in the respective publications). 
The more interesting thing to note is that all the methods in question 
(apart from PSO and DE) perform extremely well on the problems that 
have optimum at the zero vector (F01–F04, F07, F09–F11). The only 
exception is STOA, which performed badly on F10. Additionally, on 
the four problems that produce good values when evaluated at the 
zero vector (F05, F06, F12, F13) the methods perform very well—all but 
BOA outperform the old DE and PSO methods. On F08, however, the 
performance of these methods was poor, and GBO, BOA, MPA, KMA, 
and STOA are all worse than PSO. Interestingly, HSES is also worse than 
PSO on F08—this might be explained by the fact that the CEC competi-
tions allow for much more function evaluations (which is what HSES 
was designed and tuned for).

Behaviour with a shift
Now, we examine the effects of modifying these benchmark problems. 
Following previous work19, we introduce a shift operator, which moves 
the evaluated point by a predetermined vector s, that is, instead of the 
benchmark function being f (x), it is modified to f (x + s). Since the 
functions stay basically the same, one would expect the algorithms to 
perform consistently. The shift vector was chosen as 10% of the range 
in each dimension—for example, for F01, s = [20, 20,…]. We ran the 
considered methods again 30 times (this time, any result smaller than 
1×10–8 was considered as zero). The results (mean error) are shown in 
Table 3. This time, only one of the newly proposed methods (disregard-
ing LSHADE and HSES) was able to consistently find the optimum, and 
only for a single problem. It was GBO for F01, which is not very surpris-
ing, as GBO uses Newton’s method in each step and the F01 problem is 
a quadratic function (GBO also performed very well on F06, which is 
almost a quadratic function). Besides this single instance, the supreme 

Table 2 | Mean error over 30 independent runs on the unshifted benchmark functions

ID HHO SMA GBO BOA MPA KMA STOA PSO DE LSHADE HSES

F01 2.79×10–15 0 5.43×10–267 3.31×10–9 4.39×10–61 0 9.32×10–19 0.186 3.82×10–2 1.28×10–12 1.48×10–10

F02 1.71×10–8 5.06×10–234 2.25×10–133 4.91×10–10 1.49×10–31 0 1.04×10–12 3.54 2.79 6.37×10–6 3.05×10–3

F03 2.63×10–16 0 4.10×10–216 3.59×10–9 1.34×10–8 0 1.21×10–9 3.30×104 1.89×104 4.13×10–4 4.79×102

F04 8.42×10–13 1.61×10–227 4.42×10–119 1.37×10–6 5.89×10–23 0 3.92×10–6 38.4 13.5 5.08×10–3 3.82×10–2

F05 2.06×10–3 0.371 39.2 48.8 44.3 25.7 27.9 2.92×104 6.09×102 20.7 27.7

F06 1.08×10–5 2.60×10–3 6.36×10–8 7.75 8.64×10–8 0 2.08 89.8 6.68 9.76×10–13 3.38×10–10

F07 1.03×10–4 7.49×10–5 2.81×10–4 4.16×10–3 4.30×10–4 8.67×10–5 1.30×10–3 0.408 8.56×10–2 3.19×10–3 1.58×10–2

F08 0.111 0.222 6.17×103 1.53×104 5.93×103 3.55×103 6.89×103 3.25×103 1.43×104 1.64×102 7.25×103

F09 0 0 0 83.8 0 0 1.16 1.80×102 3.98×102 10.8 33.9

F10 2.10×10–11 8.88×10–16 8.88×10–16 9.66×10–7 8.88×10–16 8.88×10–16 19.3 3.68 1.53 2.38×10–7 7.45×10–4

F11 7.40×10–15 0 0 7.47×10–10 0 0 8.60×10–3 1.87 1.07 6.89×10–12 3.79×10–10

F12 4.15×10–7 1.05×10–3 2.77×10–9 0.477 3.41×10–5 1.01×10–6 0.136 61.0 1.13 5.36×10–14 3.32×10–10

F13 7.34×10–6 1.45×10–3 2.01×10–2 4.86 0.210 2.21×10–3 1.66 1.06×104 6.36 1.06×10–12 3.19×10–7

Bold indicates results that are worse than PSO or DE.
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performance of the novel methods is gone, while the performance of 
PSO, DE, LSHADE and HSES stay roughly the same. Even more impor-
tantly, it seems that GBO, MPA, and in particular both BOA and STOA 
offer only a slight (or no) advantage over the pair of two-decades-old 
methods. Although drastically corrected, the results for HHO, KMA 
and SMA suggest that they may contain some computational advance-
ments (even against LSHADE or HSES on problems such as F05, 
F07-F09). Or perhaps they were tuned to perform well on these bench-
mark problems24. We also performed the same analysis for adding both 
shift and rotation, which had the same conclusion (the results can be 
found in Supplement Table 1).

Comparison on a collection of real-world problems
As many authors emphasize the need to test the algorithms on 
real-world applications, the next comparison considers benchmark 
functions based on these types of problems. The main issue with the 
real-world problems is that they are rarely part of any benchmark sets, 
with two notable exceptions. The first one is the CEC 2011 competition 
benchmark set, which is unfortunately still rarely used in practice14. 
The second one consists of 13 engineering problems31 in relatively low 
dimensions (between 2 and 11), which can be found in Table 4.

Except for KMA, the other six considered methods compared 
their performance with other algorithms on at least three of real-world 
problems (in their respective publications). The most popular prob-
lems were P12 (in five of the seven considered methods), and P2 and P3 
(both in four). Even though the authors of the six methods that used 
the real-world problems shared the source code of the methods (and 
the abovementioned problematic benchmarks), they did not include 
the implementation used to optimize the real-world problems. This is 
a rather important issue, as all considered real-world problems have 
constraints and there are different techniques that can be used for their 
incorporation into the objective. Another problem is the selection of 
algorithms used for comparisons. Although most of the considered 
methods were compared against PSO or DE in the synthetic bench-
marks, only MPA and STOA also included them in the comparison on 
the real-world problems.

For the computational experiments with these real-world prob-
lems, we used a previously published implementation31. We also chose 
to incorporate the constraints into the objective by a simple linear 
penalization31. The maximum number of function evaluations was set 
to 50,000 and each method was run 30 times. The results of these com-
putations (mean objective function value) are summarized in Table 4. 
The most striking thing to note is that all these real-world problems can 

be consistently solved by DE. The second important observation is that 
although HHO and SMA performed well on the shifted benchmarks, 
this did not translate to the set of real-world problems. Conversely, 
even though STOA performed very badly on the shifted benchmarks, 
it achieved relatively good results on the real-world problems (similar 
to PSO). BOA remained among the worst methods. On the other hand, 
the results of the best-performing methods (DE, LSHADE, MPA, KMA, 
and GBO) are extremely similar. Additionally, for 8 of the 13 problems, 
more than half of the 11 methods achieved the exact same results. This 
makes this setting of the benchmarking set and performance metric 
(best result after a given number of function evaluations) not well 
suited for comparing advanced algorithms.

Comparison on a more advanced benchmark set
To study the performance of the seven studied methods on difficult 
problems for which they were not tuned, we decided to test them on 
a more advanced benchmark set and followed a procedure employed 
previously19 to carry out the numerical experiments. We chose the 
ambiguous benchmark set32 with 32 multimodal, nondifferentiable, 
nonseparable functions in dimensions 5, 10, 15 and 20 (eight in each 
dimension). Even though some of the methods were able to optimize 
thousand-dimensional functions (on the problematic benchmark set), 
we felt that more ‘moderate’ dimensions were sufficient for the com-
parison. The number of available function evaluations were increased 
to 50,000, 200,000, 500,000 and 1,000,000 for dimensions 5, 10, 15 
and 20, respectively. Additionally, we implemented a random search 
(RS) method that did not perform any optimization and only used the 
maximum number of function evaluation to randomly sample points 
and found the best one among them. The methods were run 30 times 
on each of the 32 problems. Detailed results of this comparison are 
reported in Supplementary Table 4.

To give a meaningful ranking of the methods, we chose the Glicko-2 
rating system33. Detailed results of the rating can be found in Sup-
plementary Table 2, while its graphical representation is shown in 
Fig. 1. We also performed the Friedman rank-sum test, the results of 
which closely follow the Glicko-2 rating (these can be found in Sup-
plementary Table 3). Only one method, MPA, was ranked significantly 
higher than either PSO or DE. Three methods got approximately the 
same rating as PSO—KMA, GBO and SMA. Although they do not seem 
to bring any advantage over PSO/DE, they performed reasonably well 
even on difficult problems. The same cannot be said about HHO, STOA 
and BOA. Although HHO got very good results on the shifted bench-
marks from the previous evaluation, it performed quite badly on the 

Table 3 | Mean error over 30 independent runs on the shifted benchmark functions

ID HHO SMA GBO BOA MPA KMA STOA PSO DE LSHADE HSES

F01 2.80×10–3 9.36×10–3 0 5.10×103 2.24×10–6 1.42×10–2 3.48×103 0.246 2.61×10–2 0 0

F02 4.24×10–2 0.279 3.01×10–2 35.5 0.633 3.62 38.2 2.77 3.06 9.55×10–6 3.23×10–3

F03 4.19 23.4 9.43×102 9.08×104 9.57×102 6.23×102 7.32×103 3.09×104 1.64×104 4.16×10–4 4.13×102

F04 7.28×10–3 7.37×10–2 18.5 20.0 11.2 0.333 19.9 38.3 13.1 3.75×10–3 3.84×10–2

F05 2.44×10–2 1.09 1.07×102 2.95×106 1.57×102 17.2 5.88×105 2.89×104 5.88×102 21.2 29.4

F06 4.76×10–3 3.87×10–2 3.96×10–5 1.24×104 1.04×10–4 2.05 3.93×103 72.1 7.10 0 1.19×10–7

F07 5.77×10–4 7.91×10–3 8.35×10–2 4.03 0.236 2.62×10–3 0.867 0.382 8.18×10–2 3.33×10–3 1.64×10–2

F08 7.92×10–2 0.122 6.09×103 1.50×104 6.43×103 1.19×103 7.55×103 3.89×103 1.50×104 1.80×102 4.41×103

F09 1.28×10–2 3.57×10–2 48.4 1.15×102 48.6 13.9 33.1 1.59×102 3.98×102 11.0 44.4

F10 1.17×10–2 8.20×10–2 4.00 14.7 2.74 0.711 12.6 3.39 1.44 2.57×10–7 7.55×10–4

F11 5.03×10–3 0.279 1.14×10–2 1.10×102 5.93×10–3 6.17×10–2 32.6 1.82 1.06 0 0

F12 1.13×10–5 6.94×10–4 5.68 1.31×102 2.50 5.17×10–5 57.4 4.19×102 1.27 0 0

F13 1.39×10–4 8.78×10–3 13.7 1.97×106 0.387 1.28×10–2 2.47×105 4.83×103 5.94 0 4.11×10–7

Results in bold are those that are worse than PSO or DE.
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ambiguous benchmark set. Similarly, STOA performed reasonably well 
on the real-world benchmarks, but it did not translate to the ambigu-
ous benchmark set. Lastly, BOA had the worst results of the seven 
new methods, and on some problems was even outperformed by RS. 
It should be emphasized that even the best-performing algorithm of 
the methods in question (KMA) was dominated by the two algorithms 
from the CEC competitions (LSHADE and HSES).

Discussion
Based on the described computational comparisons it is clear that the 
seven studied methods contain a centre-bias (or a zero-bias) operator 
that helps them perform extremely well on functions that have their 
respective optima in the centre of the feasible set (or give very good 
values when evaluated there). Some of these methods were analysed 
on and tuned to benchmark sets where such functions constitute the 
majority of the problems. When compared with other methods, they 
seemed to offer superior performance. However, when evaluated on 
shifted problems, most of their superior performance all but vanishes. 
And when evaluated on a proper benchmark set, some of them turn out 
to perform just barely better than a random search.

In a recent large computational study34, the authors compared 95 
EC techniques on a benchmark set of 195 test functions implemented in 
scipy35. Out of the methods presented in this paper, DE ranked the best 
(thirteenth), followed by SMA and PSO, while both BOA and STOA rank 
among the worst. More interestingly, the authors also studied the effect 
of reducing the number of considered test functions and algorithms 
on the resulting ranking. They have found that STOA improved its rank 

from eighty-sixth to being the best algorithm if the number of prob-
lems/algorithms was reduced by half (with similar statements holding 
for more algorithms). A question is whether this behaviour could be 
explained by the sensitivity of the test functions to the centre-bias 
operator that STOA contains.

The one method that performed consistently well on all bench-
mark sets considered in this work was MPA. Not coincidentally, MPA 
was the only method that was in its original publication thoroughly 
tested also on more complex benchmark problems (from CEC 2014 and 
CEC 2017 competitions) and was compared to several state-of-the-art 
methods based on DE (best-performing methods from some of the 
CEC competitions). The second-best method from the comparison 
on the ambiguous benchmark set and one that also performed well 
on the real-world benchmark set was KMA. Although KMA was not 
tested on any advanced benchmark set, it was compared to some of the 
DE-based state-of-the-art methods. Unfortunately, comparing newly 
proposed methods to state-of-the-art techniques is still the exception 
rather than the norm9,34.

Similar to other authors14,15, we believe that benchmark sets should 
also include instances of real-world problems. This seems particularly 
important since it was recently found that a large portion (near 30%) 
of nature-inspired algorithms studied previously36 had no application 
associated to them. But, as we have seen, there are only a handful of 
frequently used real-world engineering problems, and these are too 
easy to serve as benchmarks. The EC community should initiate the 
construction of a large set of challenging real-world benchmark prob-
lems. The Mixed Integer Programming Library (MIPLIB)37, developed 

Table 4 | Mean objective value over 30 independent runs on the collection of real-world problem

Description Dim HHO SMA GBO BOA MPA KMA STOA PSO DE LSHADE HSES

P01 Speed 
reducer

7 7.540×103 2.994×103 2.994×103 3.142×103 2.994×103 2.994×103 3.005×103 3.028×103 2.994×103 2.994×103 2.994×103

P02 Tension/
compression 
spring design

3 1.344×10–2 1.335×10–2 1.267×10–2 1.727×10–2 1.267×10–2 1.267×10–2 1.361×10–2 1.378×10–2 1.267×10–2 1.267×10–2 1.436×10–2

P03 Pressure 
vessel design

4 3.672×104 6.348×103 6.248×103 2.381×104 6.248×103 6.256×103 6.603E×103 8.331×103 6.248×103 6.248×103 6.515×103

P04 Three-bar 
truss design 
problem

2 2.645×102 2.697×102 2.639×102 2.640×102 2.639×102 2.639×102 2.639×102 2.639×102 2.639×102 2.639×102 2.639×102

P05 Design of 
gear train

4 3.161×10–8 5.203×10–9 9.756×10–10 8.031×10–5 2.799×10–11 1.252×10–11 2.155×10–9 2.797×10–9 2.701×10–12 1.526×10–11 6.377×10–10

P06 Cantilever 
beam

5 1.382 1.340 1.340 4.117 1.340 1.340 1.352 1.340 1.340 1.340 1.340

P07 Minimize 
I-beam 
vertical 
deflection

4 8.798×104 1.307×102 1.307×10–2 1.362×10–2 1.307×10–2 1.307×10–2 1.307×10–2 1.330×10–2 1.307×10–2 1.307×10–2 1.310×10–2

P08 Tubular 
column 
design

2 26.56 26.49 26.49 26.57 26.49 26.49 26.50 26.49 26.49 26.49 26.49

P09 Piston lever 4 2.432×102 12.15 17.70 86.72 1.057 1.057 67.99 30.15 1.057 1.057 91.36

P10 Corrugated 
bulkhead 
design

4 7.012 11.39 6.843 7.110 6.843 6.843 6.930 6.843 6.843 6.843 6.843

P11 Car side 
impact 
design

11 25.90 23.09 22.98 24.86 22.86 22.89 23.30 23.26 22.84 22.84 23.06

P12 Design of 
welded beam 
design

4 2.794 1.727 1.725 2.128 1.725 1.725 1.839 1.725 1.725 1.725 1.725

P13 Reinforced 
concrete 
beam design

3 1.655×102 1.594×102 1.594×102 1.597×102 1.594×102 1.594×102 1.594×102 1.594×102 1.594×102 1.594×102 1.597×102

Values in bold are the best-scoring methods on the particular problem.
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by the mathematical programming community, could serve as a great 
source of inspiration. Its most current version (MIPLIB 2017) consists of 
1,065 carefully chosen real-world integer programming problems (from 
both academia and industry), 240 of which are specifically selected for 
benchmarking the performance of optimization solvers.

One possible reason for the ubiquity of the troublesome bench-
mark problems is their ease of use. They are relatively straightfor-
ward to program, and all of the methods considered in this paper 
included them in their respective source code (except for GBO, which 
used different functions with the same problem). We advocate for 
the construction of an easy-to-use cross-platform repository, that 
would collect: (1) several heterogeneous benchmark sets (BBOB, CEC 
competitions, ambiguous benchmark set, real-world benchmarks, 
and similar ones) with a unified way of calling the test problems; (2) 
trusted implementations (source codes) of both standard EC methods 
and up-to-date state-of-the-art techniques; (3) data obtained from 
running the algorithms (from (2)) on the benchmarks (from (1)). The 
use of heterogeneous benchmarks in testing EC methods has long 
been advocated for14, and we have seen that the best-performing 
method from our comparison was the one that was originally tested 
on multiple benchmark sets.The ability to compare both standard 
and state-of-the-art methods is also needed (again, the best methods 
from our comparison were compared against the state-of-the-art 
ones). Having a single repository with both the source code and the 
corresponding data to these methods would greatly benefit both the 
researchers who want to experiment with different modifications of 
these methods, or, conversely, the ones who have only limited experi-
ence with the programming language in which the method is written, 
but nevertheless want to use them in their comparisons. In this regard, 
we feel that the COCO platform is a step in the right direction, but it 
lacks breadth (it uses only the BBOB benchmarks and provides limited 
source codes) and is still very underutilized.

It is our opinion that the field of evolutionary computation needs 
to adopt more rigorous benchmarks and approaches to analyse and 
compare newly proposed methods.

Methods
Source code
The links for the source codes for the different methods can be found 
in the respective publications. For the DE and PSO algorithms, we used 
the implementations that were shipped alongside the files for the CEC 
2021 (ref. 38) and CEC 2020 (ref. 39) competitions, respectively. All the 
parameters for the considered methods, as well as the code used to 

run the experiments (written in MATLAB), can be found at https://doi.
org/10.24433/CO.1268126.v1 (ref. 30).

Ambiguous benchmark set
The functions in the ambiguous benchmark set32 are based on a zigzag 
pattern40. The functions were chosen with the help of several of the 
best-performing methods from different CEC competitions, as well 
as some standard ones. Each of the functions induced statistically sig-
nificant ranking among the algorithms, but the ranking for the whole 
set remained ambiguous (hence the name).

Glicko-2 rating
The Glicko-2 rating is an Elo-base system that uses games between the 
methods (based on randomly selected runs). Glicko-2 was found to 
be particularly suitable for comparing evolutionary algorithms33,41, 
giving similar conclusions to the nonparametric Wilcoxon’s test42. 
We used the implementation of this ranking within the IOHProfiler43, 
a web-based benchmarking and profiling tool for (meta)heuristics 
used in optimization.

Data availability
Data used for the benchmark functions will be made available at https://
doi.org/10.24433/CO.1268126.v1 (ref. 30).

Code availability
The code that supports the findings of this study will be made available 
at https://doi.org/10.24433/CO.1268126.v1 (ref. 30).
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ABSTRACT
The GKLS generator is one of the most used testbeds for benchmark-
ing global optimization algorithms. In this paper, we conduct both
a computational analysis and the Exploratory Landscape Analysis
(ELA) of the GKLS generator. We utilize both canonically used and
newly generated classes of GKLS-generated problems and show
their use in benchmarking three state-of-the-art methods (from evo-
lutionary and deterministic communities) in dimensions 5 and 10.
We show that the GKLS generator produces “needle in a haystack”
type problems that become extremely difficult to optimize in higher
dimensions. We also conduct the ELA on the GKLS generator and
then compare it to the ELA of two other widely used benchmark
sets (BBOB and CEC 2014), and discuss the results.
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1 INTRODUCTION
Solving real-world black-box optimization problems is a very chal-
lenging task, especially in problems with expensive function eval-
uation that require simulation runs [10]. The development, uti-
lization, and comparison of optimization methods on such real-
world problems are usually prohibitively expensive. For such tasks,
benchmarking optimization methods on artificially constructed
testbeds become pivotal, with the expectation that the behavior of
the methods on these benchmark sets translates well into real-world
problems.
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Over the years, various benchmark suites have been proposed,
in which different global function properties are represented. In
the evolutionary computation community, the two most utilized
benchmark sets are the Black-Box Optimization Benchmarking
(BBOB) suite [4] which is now part of the COCO platform [5], and
the suites that were presented at the Congress on Evolutionary
Computation (CEC) competitions [8].

In the global (deterministic) optimization community, one of the
most popular benchmark sets is the one produced by the GKLS
generator [3]. The advantage of the GKLS generator is that for
each generated problem, the location and function value of its
local and global minima are known. Although the GKLS generator
can be used to create various types of problems (based on input
parameters), there are 8 classes of problems (2 for dimensions 2, 3, 4,
and 5) each containing 100 functions that are generally used [14, 19].
The GKLS generator was also recently used for the construction of
general-constrained [16] test problems.

In order to quantify the low-level properties of optimization
problems, various features of the landscape can be computed [11].
Such analysis falls under the field of Exploratory Landscape Analy-
sis (ELA) [12]. The most notable uses of ELA are in the visualization
of the problem space of various optimization benchmark problem
sets [17], and in automated algorithm selection [6]. In this paper,
we conduct computational analysis and ELA of the GKLS-generated
problems. An extended version of this paper can be found in [9].

2 GKLS GENERATOR
In the GKLS generator, a prespecified number of test problems (a
class of problems) is constructed by defining a convex quadratic
function (a paraboloid) which is systematically distorted by poly-
nomials in order to produce local (and one global) minima. The
input parameters for this construction are the following: type of
the problem (ND: non-differentiable, D: differentiable, D2: twice-
differentiable), problem dimension (𝐷), number of local minima (ℎ),
the value of the global minimum (𝑓 ∗), radius (𝑟 ) of the attraction
region of the global minimizer, and the distance (𝑑) from the global
minimizer to the vertex of the quadratic function. All problems are
constructed on [−1, 1]𝐷 .

A visualization of different functions that can be generated by
the GKLS is shown in Figure 1. Several interesting observations
can be made regarding the generated functions. Firstly, they are
all relatively well-conditioned. The local minimum of the “big”
paraboloid is always in the domain and has a function value of
0. The “attraction regions” of the different local minima do not
overlap (this is by design) - this also means that they become more
shallow when their number increases. The eight most used classes
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ℎ = 2, type D, 𝑑 = 0.9, 𝑟 = 0.1 ℎ = 20, type D, 𝑑 = 0.9, 𝑟 = 0.1 ℎ = 100, type ND, 𝑑 = 0.66, 𝑟 = 0.5

Figure 1: Functions generated by the GKLS in dimension 𝐷 = 2 (𝑓 ∗ = −1 for all functions).

Table 1: Most used GKLS test classes.

Class “Difficulty” Type 𝐷 𝑓 ∗ 𝑑 𝑟 ℎ
1 simple D 2 -1 0.90 0.20 10
2 hard D 2 -1 0.90 0.10 10
3 simple D 3 -1 0.66 0.20 10
4 hard D 3 -1 0.90 0.20 10
5 simple D 4 -1 0.66 0.20 10
6 hard D 4 -1 0.90 0.20 10
7 simple D 5 -1 0.66 0.30 10
8 hard D 5 -1 0.66 0.20 10

(each with 100 functions) of GKLS-generated problems are shown
in Table 1.

3 COMPUTATIONAL ANALYSIS
Although the classes in the same dimension share some character-
istics, what is arguably more important is whether different algo-
rithms will “perform” in the same way on these classes of problems.
We run three state-of-the-art methods both from the evolutionary
computation (EC) and deterministic optimization communities on
the “canonical” GKLS-generated problems in dimensions 5 and 10
(which uses the same “simple” and “hard” parameters as dimension
5). We also construct a new class (“mod”) with 50 GKLS-generated
problems (again, in 𝐷 = 5, and 10) by the following procedure:

• Each problem 𝑖 = 1, . . . , 50 in this class has different values
of the parameters type𝑖 , 𝑑𝑖 , 𝑟𝑖 , and ℎ𝑖 , but the same 𝑓 ∗𝑖 = −1.

• type𝑖 is decided by a coin flip between types D and ND (with
the same probability).

• 𝑑𝑖 is a uniformly distributed random number on [0,1].
• 𝑟𝑖 = 𝑑𝑖/𝑢𝑖 , where 𝑢𝑖 is a uniformly distributed random inte-
ger on [2,10], i.e. 𝑟𝑖 ∈ [𝑑𝑖/2, 𝑑𝑖/10].

• ℎ𝑖 = round(10𝑐𝑖 ), where 𝑐𝑖 is a uniformly distributed random
number on [1,3], i.e. ℎ ∈ [10, 103].

From the EC side, we chose two methods to run on the GKLS-
generated problems. The first selectedmethodwasAdaptive Gaining-
Sharing Knowledge (AGSK), whichwas the runner-up of the CEC’20
competition [13]. The second method is L-SHADE or Success-
history based adaptive differential evolution with linear population
size reduction [21]. From the deterministic methods, we selected
BIRMIN [14] as one of the best-performing methods from a recent
extensive numerical study [19].

The implementation and parameter choices for LSHADE and
AGSK were taken from [1] (the implementations are available at the
GitHub1 of one of the authors). The implementation and parameter
choices for BIRMIN were taken from the DIRECTGOLib [20].

For the numerical comparison, we run each method once on
every problem from each of the three classes (100 problems in both
“simple” and “hard” classes, and 50 problems in the “mod” class) in
dimensions 𝐷 = [5, 10], with a budget of 5·104·𝐷 available function
evaluations. For every run, if the objective function value of the
resulting solution was less than or equal to 1E–8, it was considered
as zero. The code for the experiments (and the generator for the
test problems) can be found at the author’s Github2.

For dimension 𝐷 = 5, the Empirical cumulative distributions
(ECDs) of simulated runtimes, measured in the number of function
evaluations for 51 targets 10[−8..2] (similar analysis which is done
in the COCO platform) are shown in Figure 2. There is a noticeable
difference in the behavior of the three algorithms on the “simple”
and “hard” classes. On the “simple” class all three algorithms were
able to find either a good or the optimal solutions faster than on
the “hard” class. There is also a quite large difference between
the performance of the three different methods - BIRMIN clearly
dominated the two EC methods, and AGSK turned out to be better
at finding good solutions at the later stages of the search than
LSHADE.

The results change quite dramatically when looking at the “mod”
class. Although the performance of BIRMIN is still superior to
that of the two EC methods, the margin narrowed substantially.
What is more, the relative performance (against the “hard” class)
of AGSK decreased, while for LSHADE it increased. For all three
classes, the local minimum of the “big” paraboloid (error value
1) was found by every method within a few hundred function
evaluations for BIRMIN and a few thousand function evaluations
for the EC methods.

The results for dimension 𝐷 = 10 show another substantial
change - we can see that all three classes are basically equivalent.
The plateaus in the ECD plots between the 0.19 and 0.20 values
on the y-axis indicate the points where the methods found the
local minimum of the “big” paraboloid. Although this happened
relatively early for all methods, finding better local optima proved
to be extremely challenging.

1https://github.com/subhodipbiswas/MadDE
2https://github.com/JakubKudela89/GKLS-GECCO
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a) b)

Figure 2: ECD of simulated runtimes, measured in number
of 𝑓 -evaluations for the 51 targets 10[−8..2] in dimension a)
𝐷 = 5, b) 𝐷 = 10.

dimension 𝐷 = 5

dimension 𝐷 = 10

Figure 3: Relative frequencies of function values of local
minima of the different classes.

a)

b)

Figure 4: Scatter plots of the dependence of a) function values
of local minima with function value < 0, b) number of local
minima with function value < 0 on ℎ and dimension 𝐷 .

Looking back to the function plots shown in Figure 1, we see that
having more local minima (i.e., higher ℎ) meant that they became
shallower. We can see this effect in Figure 3, where the relative
frequencies of function values of the local minima for the three
classes are plotted (the “simple” and “hard” classes have almost the
same values of all the local minima, which is a consequence of the
implemented pseudorandom number generator). In Figure 4 we can
see that although there are really fewer local minima in dimension
𝐷 = 10 with negative function values, they are spread out more
evenly than in the case of dimension 𝐷 = 5, even when the number
of local minima is high.

The functions that the GKLS generator produces are of the “nee-
dle in a haystack” kind [2]. If one does not stumble upon the region
of the space where the global minimizer (or at least a local mini-
mizer with “good” function value) has its region of attraction, either
by chance (in the case of the EC methods) or by space partition
(whose cost is bound to be exponential in the dimension 𝐷), the
solution one gets is the local minimum of the “big” paraboloid. The
functions give no hints on where such good points might be.

4 EXPLORATORY LANDSCAPE ANALYSIS
We use ELA features [7] to show how the GKLS-generated problems
compare to the BBOB and CEC 2014 benchmark suits. We chose
ELA feature sets which only require samples of input and function
value pairs and dimension 𝐷 = 10 for all considered suits. We chose
to ignore the features that were sensitive to function transforma-
tions [18] and used uniform sampling with 250 · 𝐷 samples their
computation [15].

We then followed the methodology described in [17] for the se-
lection and visualization of the relevant ELA features. The features
that produced constant results on every problem and those that
produced invalid values were removed. Another batch of features
that got removed were the highly correlated ones.
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Figure 5: The t-sne visualization of the ELA features (after
normalization and using the first seven components from
the PCA) of the benchmark sets.

The values of the ELA features on the different benchmark sets
were then normalized, and we used Principal Component Analysis
(PCA) to reduce the number of features even further. Using the
first 7 PCA components explained 99.68% of the variance. For visu-
alizing the results, we used the t-Distributed Stochastic Neighbor
Embedding (t-sne). In this visualization, which is shown in Figure
5, benchmark problems that have similar ELA features should be
shown close to each other. We can see that the t-sne visualization
grouped most of the functions from the BBOB and CEC 2014 suits
together (in a few groups), while the “similar” problems generated
in the three GKLS suites take up most of the space.

5 CONCLUSION
In this paper, we analyzed the problems constructed by the GKLS
generator. In the computational analysis, we have shown that it
produces “needle in a haystack ” type problems which get extremely
difficult to optimize as the problem dimension grows. The GKLS
generator could be successfully used for benchmarking state-of-the-
art methods in lower dimensions (𝐷 = 5) on some of the simpler
instances. However, in the higher dimension (𝐷 = 10), the perfor-
mance of the three considered methods was hard to differentiate as
the problems became extremely difficult (given the computational
budget). This difficulty of the generated instances was also largely
unaffected by the choice of parameters that the generator has.

It is possible that the GKLS generator could be modified to have
a much “deeper” local minima. As the task of finding the global
minimum is practically impossible in higher dimensions, having
problems with lots of “good” local minima (i.e., better ones than
the local minimum of the “big” paraboloid) could be useful for
analyzing the exploration capabilities of optimization methods.

It is not very clear how one could meaningfully use the results
of the computations of the ELA features or the t-sne plots on such
“needle in a haystack” problems. It is probably impossible to have
any sample-based features that would both uncover that the prob-
lem is a “needle in a haystack” and be computationally tractable (as
it would amount to finding the “needle” in a reasonable amount of
function evaluations).

Lastly, it would be interesting to find real-world black-box con-
tinuous problems which have the “needle in a haystack” character
and show if the methods that were “trained” on such problems (such
as BIRMIN) really offer an advantage (at least in lower dimensions).
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Abstract. The utilization of benchmarking techniques has a crucial
role in the development of novel optimization algorithms, and also in
performing comparisons between already existing methods. This is espe-
cially true in the field of evolutionary computation, where the theoretical
performance of the method is difficult to analyze. For these benchmark-
ing purposes, artificial (or synthetic) functions are currently the most
widely used ones. In this paper, we present a collection of real-world
robotics problems that can be used for benchmarking evolutionary com-
putation methods. The proposed benchmark problems are a combination
of inverse kinematics and path planning in robotics that can be parame-
terized. We conducted an extensive numerical investigation that encom-
passed solving 200 benchmark problems by seven selected metaheuristic
algorithms. The results of this investigation showed that the proposed
benchmark problems are quite difficult (multimodal and non-separable)
and that they can be successfully used for differentiating and ranking
various metaheuristics.

Keywords: Evolutionary computation · Metaheuristics · Benchmarking
· Robotics.

1 Introduction

The field of evolutionary computation (EC) produced over its long history sev-
eral crucial metaheuristic optimization algorithms, that took inspiration from
natural processes. These algorithms found their use in numerous complex appli-
cations, where the utilization of conventional methods was inadequate or overly
computationally demanding [23]. Over the last decade, there has been an explo-
sion of ”novel” methods that draw on natural principles [4]. Many of these novel
methods have been found to hide their lack of novelty behind a metaphor-rich
jargon [3], or flawed experimental analysis [27,21].

As nature-inspired metaheuristics are usually hard to analyze analytically,
their utility is conventionally analyzed through benchmarking [13]. There have
been many different benchmark functions and sets proposed by various authors
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[9,22], but the most popular and widely used benchmark set have been devel-
oped for special sessions (competitions) on black-box optimization in two EC
conferences: the IEEE Congress on Evolutionary Computation (CEC), and the
Genetic and Evolutionary Conference (GECCO), where the Black-Box Opti-
mization Benchmarking (BBOB) workshop was held. The BBOB functions con-
stitute a part of the COCO platform for comparing optimization algorithms
[12], while the benchmark functions from the different CEC competitions can
be found on GitHub of one of the authors. It was shown that the characteristics
of the functions used in the CEC and BBOB benchmark sets are very differ-
ent [10]. However, the use of these benchmark sets is not without critique, as
some authors criticized the artificial nature of these benchmark sets [31], and
recommended testing optimization algorithms on real-world problems instead
[39].

A possible way of comparing the characteristics of the different benchmark
sets is by using the Exploratory Landscape Analysis (ELA) [25]. In this approach,
the benchmark functions are represented by a collection of landscape features
(numerical measures) that describe the different aspects of the functions. The
ELA can subsequently be used for designing representative benchmark suites [5],
or for feature-based algorithm selection [37].

One of the areas that utilized EC methods to a large extent is robotics
[40,29]. The locomotion of snake-like robots using genetic algorithms (GA) was
investigated in [14]. The inverse kinematics (IK) problem in robot path tracking
[15,30] was approached using particle swarm optimization (PSO) variants [8] or
slime mould algorithm [41]. EC methods were used in tracking control of re-
dundant mobile manipulator [20], robot part sequencing and allocation problem
with collision avoidance [6], or in the control tuning of omnidirectional mobile
robots [33]. Another robotics application where EC methods are widely uti-
lized is trajectory or path planning [1,24]. Using GA and PSO, the authors of
[28] studied energy-efficient robot configuration and motion planning. Another
applications of EC methods [32] investigated an autonomous unmanned aerial
vehicle path-planning for predisaster assessment or path planning and tracking
of a quadcopter for payload hold-release missions [2].

In this paper, we present a collection of parametrizable problems in robotics
that combine inverse kinematics and path planning problems, and show that they
can be successfully used in benchmarking EC methods. The rest of the paper
is structured as follows. Section 2 describes the 6-DOF (Degrees of Freedom)
collaborative robotic arm that is used as the base framework. In Section 3 are
defined the benchmark problems and their parametrization. In Section 4 we
briefly describe the seven EC methods that were selected for running numerical
tests on the proposed benchmarks. Section 5 gives a detailed account of the
results of the numerical test. In Section 6, we provide ELA of the problems
and a comparison to problems from the BBOB and CEC 2014 sets. Finally,
conclusions and future research directions are discussed in Section 7.
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2 Forward Kinematics of a Robotic Arm

As the framework for the benchmark problems, we chose the 6-DOF collabora-
tive robotic arm UR3 CB-Series1, shown in Figure 1. The solution of forward
kinematics (FK) requires the knowledge of the so-called Denavit-Hartenberg (D-
H) table, shown in Table 1. The table has become a standard used in robotics,
having been first published in [7]. The commonly used convention of the D-H
table is defined by four parameters. These parameters describe how the reference
frame of each link is attached to the robot. Each inertial reference frame of each
link is then assigned an additional robot reference frame. The parameters are
defined for each joint i ∈ [1, n], which represents the table:

– αi : angle about common normal from zi to zi+1

– θi : angle about previous z axis from xi to xi+1

– ai : length of the common normal or radius about previous z axis for revolute
joint

– di : offset along previous z axis to the common normal

Fig. 1. UR3 D-H parameters

The solution for the calculation of the FK itself using the D-H parameters
can then be approached by multiplying the individual D-H matrices. For the
solution, so-called standard (distal) matrices or modified (proximal) matrices
can be used. The basic difference between the standard D-H parameters and the
modified D-H parameters is the locations of the coordinates system attached to
the links. The modification consists of both the calculation of the D-H matrix
itself and the change of the D-H table. To switch from a standard D-H table to
a modified D-H table, it is necessary to perform the shift operation αi = αi−1

and ai = ai−1 where i ∈ [1, n], α1 = αn, a1 = an. The calculation of the forward
kinematics is then a matrix in which the vector p represents the translational

1 https://www.universal-robots.com/cb3/
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part and R represents the rotation matrix, which can then be converted into
quaternions or euler angles. The modified D-H matrix can then have its advan-
tage when calculating the Jacobian or determining the rotation and translation
of the individual joints of the robot. Homogeneous transformation matrix Ti

is represented as the product of four basic transformations [34]. The calcula-
tion of the resulting matrix Tn of the n-axis robot can generally be described
mathematically as follows:

Tn =

n∏

i=1

Ti (1)

Ti = RotziθiTranszidi
Transxiai

Rotxiαi
=

=




cos θi − sin θi cosαi sin θi sinαi ri cos θi
sin θi cos θi cosαi − cos θi sinαi ri sin θi
0 sinαi cosαi di
0 0 0 1


 =




R p

0 0 0 1




Ti = Rotxiαi−1Transxiai−1RotziθiTranszidi =

=




cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1

sin θi sinαi−1 cos θi sinαi−1 cosαi−1 −di cosαi−1

0 0 0 1


 =




R p

0 0 0 1




Table 1. Universal Robots UR3 CB-Series D-H table

Joint i θi [rad] αi [rad] ai [m] di [m]

1 0 π/2 0 0.1519

2 0 0 -0.24365 0

3 0 0 -0.21325 0

4 0 π/2 0 0.11235

5 0 −π/2 0 0.08535

6 0 0 0 0.0819
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3 Definition of the Benchmark Problems

The αi, ai, and di values are fixed (as they depend on the particular robot design)
and the robot is controlled by changing the angles θi. The [x,y,z]-coordinate
position of the last link of the robot can be found as the translation part p in
the matrix Tn. We will denote this relationship simply as

[x, y, z]T = FK(θ), (2)

where FK is the forward kinematics solution, and θ = [θ1, . . . , θ6]
T ,θi ∈ [−2π, 2π],

i = 1, . . . , 6. In the proposed benchmark problems, we will be interested in the
trajectories of the robot’s last link (end-effector), which corresponds to the way
θ changes in time τ , and can be expressed as

[x(τ), y(τ), z(τ)]T = FK(θ(τ)). (3)

The first quality of the trajectory we will use is its length L, which (starting in
τ = 0 and ending in τ = 1) can be expressed as

L =

∫ 1

0

√
x′(τ)2 + y′(τ)2 + z′(τ)2dτ. (4)

The second quality of the trajectory will be its closeness to a predefined point
[xp, yp, zp], which can be written as

min
τ∈[0,1]

|| [x(τ)− xp, y(τ)− yp, z(τ)− zp] ||2, (5)

and, in the case of multiple predefined points [xj
p, y

j
p, z

j
p], j = 1, . . . , P , the close-

ness (C) to the farthest one

C = max
j=1,...,P

min
τ∈[0,1]

|| [x(τ)− xj
p, y(τ)− yjp, z(τ)− zjp] ||2. (6)

As continuous control would pose too complex of a problem, we will restrict
our attention to a situation where the angles θ change linearly from one setting
θa to the next θb, i.e.

θ(τ) = θa + τ(θb − θa). (7)

In the case where we want to have multiple points of change θ0, . . . , θM one of
the possibilities is to model it as M time intervals of length 1, i.e.:

θ̂(τ) = θι + (τ − ι)(θι − θι+1), for τ ∈ [ι, ι+ 1], ι = 0, . . . ,M − 1. (8)

Even with the restriction on linear change in θ, the expressions (4) and (6)
would be hard to compute analytically, which is why we resort to a discretization
of τ into M ·N evenly spaced values [τ1 = 0, . . . , τM ·N = M ] and compute:

[x(τi), y(τi), z(τi)] = FK(θ̂(τi)), i = 1, . . . ,M ·N (9)

L̂ =

M ·N−1∑

i=1

|| [x(τi+1)− x(τi), y(τi+1)− y(τi), z(τi+1)− z(τi)] ||2 (10)

Ĉ = max
j=1,...,P

min
τi,i=1,...,M ·N

|| [x(τi)− xj
p, y(τi)− yjp, z(τi)− zjp] ||2. (11)
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Fig. 2. Trajectory (blue line) of one solution starting of the black cross with M = 2
points of change (green crosses) and P = 4 predefined points (red crosses). Using
N = 100, γ = 100 the objective value f(θ1, θ2) = 4.8641.

For a given starting position θ0, the objective function for all the considered
benchmark problems has the form:

f(θ1, . . . , θM ) = γ · L̂+ Ĉ, (12)

where the parameter γ ≥ 0 lets us control the degree to which we prefer tra-
jectories with shorter length (higher γ), or higher precision in reaching the pre-
defined points (lower γ). The resulting optimization problem is a “simple” box-
constrained one:

minimize f(θ1, . . . , θM )

subject to θι ∈ [−2π, 2π]6, ι = 1, . . . ,M

The resulting benchmark function can be parametrized by:

(i) the number of points of change M , which determine the dimension of the
optimization problem D = 6 ·M

(ii) the number of predefined points P to which the trajectory should get close
to

(iii) the coefficient γ that scales the two objectives (trajectory length and close-
ness to the farthest predefined point)

Figure 2 shows a solution to one problem instance with M = 2, P = 4,
and γ = 100 (with N = 100 as the discretization constant). Figure 3 shows the
sensitivity of the objective function value on the first two components of θ1. It
can readily be seen that the objective is multimodal and nonseparable, which
are both desirable characteristics in benchmark functions.
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Fig. 3. Sensitivity of the objective value of the solution shown in Figure 2 on the first
two components of θ1.

4 Selected Algorithms for the Numerical Investigation

In order to showcase the capabilities of the proposed benchmark functions in
differentiating various metaheuristics, we chose seven representative methods.
Four of them constitute the “standard algorithms”:

PSO: One of the oldest selected methods for benchmarking is Particle swarm op-
timization (PSO) [18]. This method was designed by simulating a simplified
social model inspired by the foraging behaviour of a bird flocking or fish
schooling.

DE: Another of the old methods is Differential evolution (DE) [36]. In essence,
DE represents a method that aims to maintain and create new populations
of candidate solutions by combining existing ones according to given rules
and keeping the candidate solution with the best properties in the defined
optimization problem.

CMA-ES: The last old methods selected for benchmarking is the Covariance matrix
adaptation evolution strategy (CMA-ES) [11]. CMA-ES combines the use
of evolution strategy and covariance matrix adaptation to apply numerical
optimization.

ABC: One of the more recent metaheuristics is Artificial bee colony (ABC) [16].
This method, like PSO, is inspired by the biological behaviour of animals,
in this case, based on the intelligent foraging behaviour of a bee swarm.
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The other three methods constitute some of the most successful algorithm in
the CEC competitions.

HSES: Hybrid Sampling Evolution Strategy (HSES) was the winner of the CEC’18
Competition. It is an evolution strategy optimization algorithm that com-
bined CMA-ES and the univariate sampling method [42].

AGSK: Adaptive Gaining-Sharing Knowledge (AGSK) was the runner-up of the
CEC’20 competition. The algorithm improved the original GSK algorithm
by adding adaptive settings to its two control parameters: the knowledge
factor and ratio, which control junior and senior gaining and sharing phases
during the optimization process [26].

LSHADE: The last selected method is L-SHADE or Success-history based adaptive
differential evolution with linear population size reduction [38]. This meta-
heuristic method has its basis in adaptive DE, which involves success-history-
based parameter adaptation. The proposed method then provides an exten-
sion in the form of using linear population size reduction, which results in
population size reduction according to a linear function.

We also decided to add to the comparison a random search (RS) method,
that simply sampled (using uniform sampling) maximum available number of
points and chose the best one among them.

5 Numerical Investigation

For the numerical investigation of the selected algorithms on the proposed bench-
mark functions we chose the problems with M = [1, . . . , 5] and P = [3, . . . , 6]
(i.e., 20 possibilities). For each of the 20 problems, 10 random instances (random
points in the reachable space of the robot) were generated. As the metaheuristics
are stochastic, each of them was run 20 times on a given instance (to get statisti-
cally representative results). In total, each of the seven compared algorithms was
run on 200 optimization problems. The maximum number of function evaluation
(FES) was set to FES = 10,000 ·D. The benchmark functions (as well as the
metaheuristic algorithms) were implemented in MATLAB and can be found at
a public Zenodo2 and GitHub repository3. We did not perform any parameter
tuning [17].

A representative result of the computations can be seen in Figure 4, where the
best solutions/trajectories (out of the 20 runs) found by the different methods
for one problem instance (with P = 4, M = 2) are shown. For this instance,
CMAES found the best solution, followed by PSO, ABC, and LSHADE. An
interesting observation is that these solutions are qualitatively quite different.
Although they all come close to the desired points, the order in which they
approach differs.

2 https://doi.org/10.5281/zenodo.7584647
3 https://github.com/JakubKudela89/Robotics-Benchmarking
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Fig. 4. Best solutions/trajectories (out of the 20 runs) found by the different methods
for one problem instance (with P = 4, M = 2).
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a) b)

c) d)

Fig. 5. Convergence plots for different instances with, a) D = 6 (P = 4,M = 1,
instance 4), b) D = 12 (P = 3,M = 2, instance 1), c) D = 18 (P = 5,M = 3, instance
5), d) D = 24 (P = 4,M = 4, instance 7). Solid lines show the median values, while
dashed lines show the worst and the best values (over the 20 runs).

Representative convergence plots for the considered methods are shown in
Figure 5, where the solid lines show the progression of the median values, while
the dashed lines show the worst and best values. These convergence plots show
that there was quite a large difference between the selected methods in basically
all stages of the search. It also shows that there is a substantial variance in the
performance of a given algorithm within the instances.

For the ranking of the methods, we chose to focus only on the values at end
of the search (after using all the FES available function evaluations). The re-
sults of the Friedman rank tests on the 20 problems (each having 10 instances
on which each of the methods was run 20 times) are shown in Table 2. From
these results, we can see that the proposed benchmark function were successful
in differentiating the various methods, especially for problems in higher dimen-
sions. What is interesting is the effect of M and P on the resulting ranking.
As M directly influences the problem dimension, it had, unsurprisingly, a sub-
stantial effect on the ranking. Interestingly, the effect of P was also noticeable
- increasing P generally meant that the (relative) performance of DE and ABC
deteriorated, while the performance of HSES and PSO improved. Overall, the
best-performing method was LSHADE, followed by CMAES and AGKS. The
relatively bad ranking of HSES (and also AGSK) might be explained by the fact
that the CEC competitions allow for much more function evaluations (which is
what both HSES and AGSK were designed and tuned for).
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Table 2. Mean ranks from Friedman tests for the different benchmark problems. Best
three methods are highlighted in bold.

D = 6, FES = 60,000

ABC AGSK CMAES DE HSES LSHADE PSO RS

P = 3,M = 1 3.70 2.36 6.18 3.93 4.87 2.83 4.98 7.16

P = 4,M = 1 4.24 2.87 5.96 4.34 2.78 3.24 5.52 7.06

P = 5,M = 1 4.06 2.99 6.28 3.63 2.97 3.44 5.63 7.02

P = 6,M = 1 4.38 2.98 5.98 3.94 2.40 3.48 5.69 7.17

D = 12, FES = 120,000

ABC AGSK CMAES DE HSES LSHADE PSO RS

P = 3,M = 2 4.65 4.18 3.72 2.20 6.41 2.58 4.48 7.81

P = 4,M = 2 4.83 4.08 4.43 2.77 5.31 2.43 4.26 7.91

P = 5,M = 2 4.76 3.78 4.63 2.78 5.66 2.16 4.35 7.91

P = 6,M = 2 4.60 3.76 5.15 2.97 5.20 2.44 4.06 7.86

D = 18, FES = 180,000

ABC AGSK CMAES DE HSES LSHADE PSO RS

P = 3,M = 3 4.22 3.97 2.73 4.90 6.15 2.00 4.17 7.87

P = 4,M = 3 4.58 3.50 3.08 5.12 5.72 1.70 4.40 7.92

P = 5,M = 3 4.61 3.63 3.23 5.18 5.65 2.00 3.86 7.86

P = 6,M = 3 4.37 3.38 3.32 6.47 5.15 1.75 3.74 7.83

D = 24, FES = 240,000

ABC AGSK CMAES DE HSES LSHADE PSO RS

P = 3,M = 4 4.29 3.89 2.13 6.28 5.55 1.65 4.27 7.96

P = 4,M = 4 4.31 3.66 2.41 6.43 5.70 1.51 4.04 7.96

P = 5,M = 4 4.40 3.62 2.71 6.45 5.69 1.54 3.71 7.91

P = 6,M = 4 4.51 3.66 2.10 6.96 5.18 1.89 3.88 7.84

D = 30, FES = 300,000

ABC AGSK CMAES DE HSES LSHADE PSO RS

P = 3,M = 5 4.26 4.36 1.80 6.67 5.24 1.61 4.10 7.98

P = 4,M = 5 4.13 3.96 2.03 6.84 5.55 1.49 4.05 7.98

P = 5,M = 5 4.28 3.85 2.03 6.90 5.67 1.56 3.79 7.95

P = 6,M = 5 4.45 3.62 1.88 7.00 5.43 1.67 4.03 7.93

6 Exploratory Landscape Analysis

We use ELA features to show how the proposed robotics problems compare to the
BBOB and CEC 2014 benchmark suits. In order to calculate the ELA features,
we used the flacco library [19]. As we are not able to supply exact function
definitions (in our case, the function evaluates a simulation of the movement
of the robotic arm), we chose ELA feature sets which only require samples of
input and function value pairs: ela distr, ela meta, disp, nbc, pca, and ic. We
used uniform sampling with 250D samples. As the dimensions of the problems
in BBOB (D = 2, 3, 5, 10, 20, and 40), CEC 2014 (D = 2, 10, 30, 50, and 100),
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Table 3. Minimum and Maximum values of the relevant ELA features on the three
benchmark sets. Extremal values are highlighted in bold.

ELA feature BBOB CEC 2014 This study
min max min max min max

ela distr.skewness -2.97E+00 8.28E+00 -6.63E-01 6.47E+00 -4.76E-01 9.54E-01
ela distr.kurtosis -4.94E-01 9.67E+01 -3.38E-01 6.50E+01 -8.43E-01 2.30E+00
ela distr.number of peaks 1.00E+00 1.80E+01 1.00E+00 2.60E+01 1.00E+00 9.00E+00
ela meta.lin simple.adj r2 1.38E-04 1.00E+00 -2.30E-03 8.23E-01 -1.11E-03 2.19E-01
ela meta.lin simple.intercept -9.17E+02 9.62E+08 5.22E+02 5.63E+10 2.37E+01 4.37E+01
ela meta.lin w interact.adj r2 2.14E-04 1.00E+00 -9.41E-04 9.04E-01 5.78E-03 2.61E-01
ela meta.quad simple.adj r2 3.98E-03 1.00E+00 -3.61E-03 9.88E-01 4.24E-02 2.52E-01
ela meta.quad w interact.adj r2 3.67E-05 1.00E+00 -1.26E-02 1.00E+00 1.64E-01 3.78E-01
disp.ratio median 05 7.17E-01 1.01E+00 7.26E-01 1.02E+00 9.93E-01 1.05E+00
nbc.nb fitness.cor -6.41E-01 -1.78E-01 -6.30E-01 -1.90E-01 -5.83E-01 -4.83E-01
pca.expl var.cor init 8.18E-01 9.09E-01 8.18E-01 9.09E-01 9.23E-01 9.23E-01
pca.expl var PC1.cov init 1.07E-01 1.00E+00 1.10E-01 1.00E+00 2.36E-01 4.36E-01

and our robotics problems (D = 6, 12, 18, 24, and 30) differ, we used D = 10 for
the BBOB and CEC 2014 benchmarks, and D = 12 for our robotics problems,
as these were the closest choices. There were 24 problems in the BBOB set, 30
problems in the CEC 2014 set, and 40 robotics problems (10 instances for P =
3, 4, 5, and 6).

We followed the methodology described in [35] for the selection and visual-
ization of the relevant ELA features. The features that produced constant results
on every problem and those that produced invalid values were removed. Another
set of removed features were the ones that were sensitive to scaling and shifting.
The last batch of features that got removed were the highly correlated ones. The
12 features that remained, along with their maximum and minimum values on
the three benchmark sets are shown in Table 3.

For further analysis, the values of the ELA features on the three benchmark
sets were normalized, and we used Principal Component Analysis (PCA) to
reduce the number of features even further. Figure 6 shows a representation of the
12 PCA components obtained when comparing the ELA features (normalized)
calculated on the combined set of CEC 2014, BBOB, and robotics problems.
Using the first 8 components explained 99.85% of the variance.

For visualizing the results, we used the t-Distributed Stochastic Neighbor
Embedding (t-sne). In the this visualization, which is shown in Figure 7, bench-
mark problems that have similar ELA features should be shown close to each
other. We can see that the proposed robotics benchmarks are not very similar
to functions in either BBOB or CEC 2014 sets. They are also not very similar
to each other, at least in the sense of the performed analysis.
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Fig. 6. The amount of explained variance per component when performing PCA on
the ELA features calculated on the combined set of 2014 CEC, BBOB, and robotics
problems.

7 Conclusion

In this paper, we presented a collection of parametrizable benchmark functions
for comparing EC methods. The benchmark functions were a blend of real-world
robotics problems in inverse kinematics and path planning. We conducted a thor-
ough numerical investigation of the proposed benchmark problems - each of the
seven selected methods for numerical comparison was used to solve 200 bench-
mark problems. The results of this investigation are that the proposed bench-
mark problems are quite difficult (multimodal and non-separable) and that they
can be successfully used for differentiating and ranking various metaheuristics.
The proposed methods can be applied to different types of 6-DOF robotic ma-
nipulators by simply changing the parameters of the D-H table.

There is still further work to be done. The benchmark problems will be im-
plemented in more languages, especially the ones that are most used for the
development of EC methods (e.g., Python and C++). We also plan on the in-
tegration with a proper simulator of the robotic arm in Unity. Another research
directions will be in investigating more problem types (such as energy opti-
mization, or following a fixed sequence of points), the effect of different choices
for the robotic arm model, and in comparing deterministic and surrogate-based
techniques.

Acknowledgements This work was supported by the IGA BUT No. FSI-S-
23-8394 “Artificial intelligence methods in engineering tasks”.
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Fig. 7. The t-sne visualization of the ELA features (after normalization and using the
first components from the PCA) of the three benchmark sets.
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35. Škvorc, U., Eftimov, T., Korošec, P.: Understanding the problem space in single-
objective numerical optimization using exploratory landscape analysis. Applied
Soft Computing 90, 106138 (2020)

36. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces. Journal of global optimization 11(4), 341–359
(1997)

37. Tanabe, R.: Benchmarking feature-based algorithm selection systems for black-box
numerical optimization. IEEE Transactions on Evolutionary Computation (2022)

38. Tanabe, R., Fukunaga, A.S.: Improving the search performance of shade using lin-
ear population size reduction. In: 2014 IEEE congress on evolutionary computation
(CEC). pp. 1658–1665. IEEE (2014)

39. Tzanetos, A., Dounias, G.: Nature inspired optimization algorithms or simply vari-
ations of metaheuristics? Artificial Intelligence Review 54(3), 1841–1862 (2021)

40. Yadav, V., Botchway, R.K., Senkerik, R., Oplatkova, Z.K.: Robotic automation of
software testing from a machine learning viewpoint. Mendel Journal 27(2), 68–73
(2021)

41. Yin, S., Luo, Q., Zhou, G., Zhou, Y., Zhu, B.: An equilibrium optimizer slime
mould algorithm for inverse kinematics of the 7-dof robotic manipulator. Scientific
Reports 12(1), 1–28 (2022)

42. Zhang, G., Shi, Y.: Hybrid sampling evolution strategy for solving single objective
bound constrained problems. In: 2018 IEEE Congress on Evolutionary Computa-
tion (CEC). pp. 1–7. IEEE (2018)



A6



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144067, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

New Benchmark Functions for
Single-Objective Optimization Based on
a Zigzag Pattern
JAKUB KUDELA1 and RADOMIL MATOUSEK1
1Institute of Automation and Computer Science, Brno University of Technology, Czech Republic

Corresponding authors: Jakub Kudela (e-mail: Jakub.Kudela@vutbr.cz), Radomil Matousek (email: matousek@fme.vutbr.cz).

This work was supported by IGA Brno University of Technology: No. FSI-S-20-6538.

ABSTRACT Benchmarking plays a crucial role in both development of new optimization methods, and in
conducting proper comparisons between already existing methods, particularly in the field of evolutionary
computation. In this paper, we develop new benchmark functions for bound-constrained single-objective
optimization that are based on a zigzag function. The proposed zigzag function has three parameters that
control its behaviour and difficulty of the resulting problems. Utilizing the zigzag function, we introduce
four new functions and conduct extensive computational experiments to evaluate their performance as
benchmarks. The experiments comprise of using the newly proposed functions in 100 different parameter
settings for the comparison of eight different optimization algorithms, which are a mix of canonical methods
and best performing methods from the Congress on Evolutionary Computation competitions. Using the
results from the computational comparison, we choose some of the parametrization of the newly proposed
functions to devise an ambiguous benchmark set in which each of the problems introduces a statistically
significant ranking among the algorithms, but the ranking for the entire set is ambiguous with no clear
dominating relationship between the algorithms. We also conduct an exploratory landscape analysis of the
newly proposed benchmark functions and compare the results with the benchmark functions used in the
Black-Box-Optimization-Benchmarking suite. The results suggest that the new benchmark functions are
well suited for algorithmic comparisons.

INDEX TERMS numerical optimization, benchmarking, single objective problems, exploratory landscape
analysis

I. INTRODUCTION

BENCHMARKING plays a pivotal part in the develop-
ment of new algorithms as well as in the comparison

and assessment of contemporary algorithmic ideas [1]. For
instance, one of the most powerful classes of algorithms for
solving black-box optimization problems are Evolutionary
Algorithms (EAs). An issue with EAs is that there are only
a few theoretical performance results, which means that their
performance comparisons and development rely heavily on
benchmarking. These benchmarking experiments are con-
structed for performance comparisons on given classes of
problems and should support the selection of appropriate
algorithms for a given real-world application [2]. Another
utilization of benchmarking is in the qualification of the
theoretical predictions of the behaviour of algorithms [3].

There are, currently, two main lines of development in
benchmarking for EAs, the IEEE Congress on Evolutionary
Computation (CEC) competitions [4], that have been running
in the current form since 2013, and the the Black-Box-
Optimization-Benchmarking [5] workshops (BBOB work-
shops), which started in 2009. Both of these venues provide
a variety of materials that describe the various benchmarks,
and provide code for the best-performing algorithms in a
given year. Also, the BBOB benchmarks are run on a plat-
form called the Comparing Continuous Optimizer (COCO)
benchmark suite [6]. The COCO suite serves as a place for
comparing various algorithms for unconstrained continuous
numerical optimization. On the other hand, the CEC competi-
tions that are organized every year aim at comparing state-of-
the-art stochastic search methods on test environments that
are specifically crafted each year. These benchmark functions
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z(x, k,m, λ) =

{
1−m+ m

λ (|x|/k − b|x|/kc), if |x|/k − b|x|/kc ≤ λ,
1−m+ m

1−λ (1− |x|/k + b|x|/kc), otherwise,
(1)

φ1(x, k,m, λ) = 3·10−9|(x− 40)(x− 185)x(x+ 50)(x+ 180)|z(x, k,m, λ) + 10| sin(0.1x)|
φ2(x, k,m, λ) =φ1(φ1(x, k,m, λ), k,m, λ)

φ3(x, k,m, λ) = 3| ln(1000|x|+ 1)|z(x, k,m, λ) + 30− 30| cos( x

10π
)|

φ4(x, k,m, λ) =φ3(φ3(x, k,m, λ), k,m, λ)

(2)

are developed from a set of commonly used benchmark
functions, such as the Ackley’s function, Griewank’s func-
tion, Rastrigin’s function, Rosenbrock’s function, Schwefel’s
function, and many others [7]. However, recent research has
found that the BBOB and CEC benchmark suites have a
poor coverage of the corresponding problem space [8, 9, 10],
have a very similar distribution in certain landscape analysis
measures [11], and are highly correlated from the perspective
of the performance of different algorithms [12, 13, 14].

In this paper, we introduce four new benchmark functions
for bound-constrained single-objective optimization that are
based on a zigzag pattern, and are non-differentiable and
highly multimodal. Inspired by recently proposed tunable
benchmark functions for combinatorial problems [15], the
newly proposed functions have three parameters that can
change their behaviour and difficulty. We conduct exten-
sive numerical experiments to investigate how the different
parametrizations work as benchmarks and show that they can
be successfully used for algorithmic comparisons.

The rest of the paper is organized as follows. Section II
introduces the individual components of the zigzag function
and the newly proposed benchmark functions, and provides
insight into their construction. In Section III we report on
extensive computational experiments where we compare 100
different parametrizations of the newly proposed benchmark
functions on eight EAs that are a mix of canonical methods
as well as the best performing methods from the CEC compe-
titions. In Section IV we devise an ambiguous benchmark set
that is based on selected parametrizations of the benchmark
functions. The individual problems in this set displayed good
capabilities in giving unambiguous rankings for the consid-
ered algorithms, but taken as a whole set produced no clear
dominating relationship between the performances of all the
considered algorithms. In Section V, we conduct exploratory
landscape analysis of the proposed functions and show how
they compare to the functions from the BBOB suite. The
conclusions and future research directions are outlined in
Section VI.

II. NEW BENCHMARK FUNCTIONS
The newly proposed benchmark functions are constructed in
the following way. First, a so-called “zigzag” z(x, k,m, λ)
(or triangular wave) function is constructed based on the
formula in (1), where b · c is the floor operator. Apart from

the point x ∈ R at which it should be evaluated, the zigzag
function also contains three other parameters: k > 0 that
controls its period, m ∈ [0, 1] that controls its amplitude,
and λ ∈ (0, 1) that controls the location of its local minima.
The effect of the individual parameters on the shape of the
zigzag function can be seen in Fig. 1. For m = 0 the zigzag
function is identically equal to 1 for any point x (regardless
of the values of the other two parameters).
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FIGURE 1. Zigzag function for different values of the parameters.

In the following step, we construct four basic benchmark
functions (F1-F4) that combined the zigzag function with dif-
ferent multimodal functions, and that inherit the parameters
from the zigzag function. Their construction starts with four
1-D functions φ1, . . . , φ4, which are formulated in (2).

The common theme of all of these functions is that they
are bounded on the interval [-200, 200] by a maximum value
of 200 (which allows for composing the functions with
themselves without running to numerical difficulties), and
there is a single global minimum located at 0, with function
value 0. Although the optimization will take place only on
the interval [-100, 100] we will use a shift vector to change
the placement of the optimal point (hence, the need for the
functions to be “well-behaved” on [-200, 200]).

To obtain the benchmark functions for a dimension D,
we use a simple sum of the functions φ for the individual
components, but modify the inputs by a shift vector s ∈
[−100, 100]D and a rotation/scaling matrix M:

fj(x, k,m, λ) =
D∑

i=1

φj(xi, k,m, λ) j = 1, . . . , 4

Fj(x, k,m, λ) = fj(Mj(x− sj), k,m, λ) j = 1, . . . , 4

The matrices M are constructed in the exact same manner
as in [16]. Both of these components are an integral part
of good benchmark functions [17], as they create some
additional difficulty for the various optimization algorithms
[4, 18]. The shapes of the functions F1-F4 in one dimension
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FIGURE 2. Shape of the benchmark functions F1-F4 for different values of the parameters.

(without any shift or scaling) for selected values of the
parameters can be seen in Fig. 2, while their corresponding
contour and surface plots for 2-D (this time, with shift and
rotation/scaling) can be found in Appendix A. The individual
parameters of the zigzag function, apart for their primary
role in defining the shape of the zigzag, also serve secondary
roles. The parameter k can be though of as a “ruggedness”
parameter, that makes the zigzag more frequent. The param-
eter λ can be seen as a “deception” parameter, as low values
of λ skew the function in such a way that its derivatives (if
existing) point predominantly away from the global optimum
(in the case of the 1-D examples in Fig. 2, away from
x = 0). Higher values of the parameterm result in a “deeper”
local optima. By setting these parameters to different values,
we should be able to increase/decrease the difficulty of the
resulting optimization problems [15], and to bring out the
advantages and the disadvantages of different optimization
methods.

III. COMPARISON ON ALGORITHMS

A. ALGORITHM SELECTION AND EXPERIMENTAL
SETTING

In this section, we investigate the behaviour of selected EAs
on the newly proposed benchmark functions for different
values of the input parameters. We chose two main categories
of algorithms for this investigation: a) generally known and
used EAs, b) best performing algorithms from the CEC Com-
petitions on Bound Constraint Single Objective Optimization
[4]. The other unifying theme of the chosen algorithms was
that they had their code publicly available for the MATLAB
language. The eight selected algorithms were:

• Adaptive Gaining-Sharing Knowledge
(AGSK) – the runner-up of the CEC’20 competition.
The algorithm improves and extends upon original GSK
[19] algorithm by adding adaptive settings to two main
control parameters: the knowledge factor and the knowl-
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edge ratio, that control junior and senior gaining and
sharing phases among the solutions during the optimiza-
tion process [20].

• Covariance Matrix Adaptation Evolution Strategy
(CMAES) – a canonical algorithm that adapts the co-
variance matrix of a mutation distribution [21].

• Differential Evolution
(DE) – a canonical algorithm, one of the most widely
used ones for continuous optimization [22]. The im-
plementation and parameter settings for DE used in
this paper was the one that was shipped alongside the
benchmark suite for the CEC’21 Competition.

• Hybrid Sampling Evolution Strategy
(HSES) – winner of the CEC’18 Competition. An evo-
lution strategy optimization algorithm which combined
CMAES and the univariate sampling method [23].

• Improved Multi-operator Differential Evolution
(IMODE) – winner of the CEC’20 Competition. This
algorithm employs multiple differential evolution op-
erators and a sequential quadratic programming local
search technique for accelerating its convergence [24].

• Linear Population Size Reduction SHADE
(LSHADE) – one of the most popular variants of adap-
tive DE, that was used as a basis for many of the best
performing algorithms in the CEC Competitions in past
few years [25].

• Multiple Adaptation DE Strategy
(MadDE) – one of the best performing algorithms in the
CEC’21 competition. This is another modification of the
DE algorithm that uses a multiple adaptation strategy
for its search mechanisms and for adapting its control
parameters at the same time [26].

• Particle Swarm Optimization
(PSO) – another canonical algorithm that simulates
swarm behavior of various social animals such as the
fish schooling or bird flocking [27]. The implementation
and parameter settings for PSO used in this paper was
the one that was shipped alongside the benchmark suite
for the CEC’20 Competition.

To investigate the impact of the different values of the
parameters of the benchmark functions, we chose 100 pa-
rameter settings (for all functions F1-F4) for computational
evaluations, which are reported in Table 1. For the indi-
vidual computations, we used rules similar to the CEC’21
competition: the eight algorithms were evaluated on the four
benchmark functions with 100 different parameter settings
with D = {5, 10, 15} dimensions, and a search space of
[−100, 100]D. The maximum number of function evaluations
were set to 50,000, 200,000, 500,000 fitness function evalu-
ations for problems with D = {5, 10, 15}, respectively. All
algorithms were run 30 times to get representative results.
For every run, if the objective function value of the resulting
solution was less than or equal to 1E–8, it was considered as
zero. For all algorithms, we used the same parameter settings
that was used in the corresponding CEC competition [28].

TABLE 1. Different parameter settings used in the computations.

ID k m λ ID k m λ ID k m λ ID k m λ
1 1 0.10 0.01 26 1 0.50 0.01 51 1 0.90 0.01 76 1 1.00 0.01
2 2 0.10 0.01 27 2 0.50 0.01 52 2 0.90 0.01 77 2 1.00 0.01
3 4 0.10 0.01 28 4 0.50 0.01 53 4 0.90 0.01 78 4 1.00 0.01
4 8 0.10 0.01 29 8 0.50 0.01 54 8 0.90 0.01 79 8 1.00 0.01
5 16 0.10 0.01 30 16 0.50 0.01 55 16 0.90 0.01 80 16 1.00 0.01
6 1 0.10 0.10 31 1 0.50 0.10 56 1 0.90 0.10 81 1 1.00 0.10
7 2 0.10 0.10 32 2 0.50 0.10 57 2 0.90 0.10 82 2 1.00 0.10
8 4 0.10 0.10 33 4 0.50 0.10 58 4 0.90 0.10 83 4 1.00 0.10
9 8 0.10 0.10 34 8 0.50 0.10 59 8 0.90 0.10 84 8 1.00 0.10

10 16 0.10 0.10 35 16 0.50 0.10 60 16 0.90 0.10 85 16 1.00 0.10
11 1 0.10 0.50 36 1 0.50 0.50 61 1 0.90 0.50 86 1 1.00 0.50
12 2 0.10 0.50 37 2 0.50 0.50 62 2 0.90 0.50 87 2 1.00 0.50
13 4 0.10 0.50 38 4 0.50 0.50 63 4 0.90 0.50 88 4 1.00 0.50
14 8 0.10 0.50 39 8 0.50 0.50 64 8 0.90 0.50 89 8 1.00 0.50
15 16 0.10 0.50 40 16 0.50 0.50 65 16 0.90 0.50 90 16 1.00 0.50
16 1 0.10 0.90 41 1 0.50 0.90 66 1 0.90 0.90 91 1 1.00 0.90
17 2 0.10 0.90 42 2 0.50 0.90 67 2 0.90 0.90 92 2 1.00 0.90
18 4 0.10 0.90 43 4 0.50 0.90 68 4 0.90 0.90 93 4 1.00 0.90
19 8 0.10 0.90 44 8 0.50 0.90 69 8 0.90 0.90 94 8 1.00 0.90
20 16 0.10 0.90 45 16 0.50 0.90 70 16 0.90 0.90 95 16 1.00 0.90
21 1 0.10 0.99 46 1 0.50 0.99 71 1 0.90 0.99 96 1 1.00 0.99
22 2 0.10 0.99 47 2 0.50 0.99 72 2 0.90 0.99 97 2 1.00 0.99
23 4 0.10 0.99 48 4 0.50 0.99 73 4 0.90 0.99 98 4 1.00 0.99
24 8 0.10 0.99 49 8 0.50 0.99 74 8 0.90 0.99 99 8 1.00 0.99
25 16 0.10 0.99 50 16 0.50 0.99 75 16 0.90 0.99 100 16 1.00 0.99

All algorithms were run in a MATLAB R2020b, on a PC with
3.2 GHz Core I5 processor, 16 GB RAM, and Windows 10.
The particular values of matrices M and shifts s, as well as
the implementation of the benchmark functions in MATLAB,
can be found in the authors github1.

B. RESULTS
First, we investigate the “difficulty” of the four benchmark
functions (with the 100 different parameter setting) by count-
ing the number of unsolved instances, i.e., the number of
times out of the 30 runs that any of the eight algorithms was
not able to reach function value of at least 1E–8 within the
specified number of function evaluations. These results are
summarized in Fig. 3. The first thing to notice is that the
basic forms of the benchmark functions with no zigzag (with
m = 0) were not “impossible” to solve for at least some of
the algorithms, regardless of the dimension. However, the in-
stances were also not “too easy” so that the algorithms could
reliably find the optimum – this, in our opinion, makes these
benchmark functions worth investigating. Unexpectedly, in-
creasing the dimension of the problem led to increase in the
number of unsolved instances. The parameter m displayed
the highest effect on the difficulty of the resulting problem –
larger values ofm (meaning a more pronounced zigzag) gen-
erated problems that were harder to solve. Similarly, lower
values of the parameter λ ∈ {0.01, 0.1} generally produced
more difficult instances. The effects of different values of the
parameter k were more subtle and function-dependent. For
F1 and F2, increasing the period of the zigzag together with
low values of λ produced the most difficult instances. For F3,
increasing k exhibited a decrease in difficulty. Finally, for F4,
the effect of k was mixed, with some instances being more or
less difficult with increasing k.

More interesting result can be found in comparing the
individual algorithms on the different benchmark functions.
For this comparison, we used the IOHprofiler [29], which is a

1https://github.com/JakubKudela89/Zigzag
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FIGURE 3. Number of unsolved instances for benchmark function F1-F4 for different values of parameters and dimensions.

benchmarking and profiling tool for optimization heuristics.
Within the IOHprofiler, we chose the comparison based
on a fixed-budget (defined by the maximum number of
function evaluations) and compared the algorithms on each
benchmark function and each dimension separately for all
the 100 parameter settings. The ranking of the algorithms
was obtained by using a Deep Statistical Comparison (DSC)
analysis [30], which works by comparing distributions of
the obtained solutions instead of using descriptive statis-
tics. For the visualization of the results, we employed the
PerformViz approach [31], which shows the algorithms that

are most suited for a given problem and similarities among
both problems and algorithms, within a single plot. The
threshold for statistical significance was set to 0.05 for all
comparisons. The results of the comparisons are shown in
Fig. 4 and Fig. 5. For a particular problem, if a rectangle,
that represents a certain problem (horizontal dimension) and
a certain algorithm (vertical dimension), is bluer then the
algorithm is better for the given problem (and, the redder it
is, the worse is the algorithm). In the horizontal dimension,
if the color of the rectangles remains the same, it signals that
the ranking of the given algorithm remains the same across
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F1 F2

FIGURE 4. Comparison of the algorithms on different parameters settings for benchmark functions F1-F2, D = {5, 10, 15}.

different problems. On the other hand, if the rectangles have
the same color in the vertical dimension, it means that there
was no significant difference between the performance of
the individual algorithms (and, probably, that this particular
parameter settings is not very well suited to serve as a
benchmark function).

For F1 in D = 5, there is a large section of parame-
ter values that produced problems on which there was no
significant difference among most of the algorithms. These
were the parameter settings with either low m = 0.1, or
lower m ≤ 0.5 and higher λ ≥ 0.9. The rest of the prob-
lems produced relatively stable rankings, where LSHADE
performed the best, followed by DE and AGSK. The worst
performing methods were PSO and HSES. Interestingly,
there was a group of parameter settings for which otherwise
well-performing DE struggled (and was ranked as the worst)
– these settings corresponded to high values of m ≥ 0.9
and k ≥ 8 and lower values of λ ≤ 0.5. For D = 10,
there were only a few instances on which the algorithms
were not well comparable. There were, however, two large
groups of parameter settings on which two seemingly similar

algorithms, CMAES and HSES, performed very differently.
For the first group, that can be characterized by lower values
of m ≤ 0.5, CMAES ranked as a third best, while HSES
ranked as the worst. For the second group (m ≥ 0.9), the
ranking of HSES became much better (between second and
fifth), while CMAES became the worst ranking one. Overall,
LSHADE remained the best performing algorithm, followed
by DE, while PSO again ranked among the worst. A very
similar pattern can be observed also for D = 15, where
rankings of HSES and CMAES depended heavily on the
value of m. A notable difference is that MadDE became the
best performing algorithm, followed by LSHADE and DE.

For F2 in D = 5, there were no notable parameter settings
that would result in an ambiguous ranking of the algorithms.
The DE method experienced the largest variability in perfor-
mance, while it ranked among the worst for problems with
high values of k ≥ 8 and m ≥ 0.9, it was the best ranked
algorithm for problems with low m = 0.1, and mediocre
for the other problem settings. This time, the best performing
algorithm overall was IMODE, followed by LSHADE and
MadDE, while PSO performed the worst. For D = 10, there

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144067, IEEE Access

Kudela et al.: New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern

F3 F4

FIGURE 5. Comparison of the algorithms on different parameters settings for benchmark functions F3-F4, D = {5, 10, 15}.

were again instances for which the ranking was ambiguous,
but this time they corresponded to the “difficult” instances
with larger values of m > 0.9 and k ≥ 8, and low
λ ≤ 0.1. Similarly to the previous case, DE performed well
on the instances with low values of m = 0.1, but its per-
formance degraded for larger m. The best ranked algorithm
was LSHADE, followed by MadDE, IMODE and HSES.
This time, the worst performing methods were CMAES and
AGSK. For D = 15, the situation changed quite drastically.
The parameter settings resulting in ambiguous ranking were
the ones with low values of k ≤ 4. Once again, the ranking
of DE depended heavily on m. By far the best performing
method was the canonical CMAES, while the worst were
AGSK and PSO.

For F3 there were no parameter settings that would result
in an ambiguous ranking in any of the investigated dimen-
sions. For D = 5, the methods that were the most impacted
by changes in parameters were HSES and CMAES, which
both benefited from low values of k ≤ 4 and high m ≥ 0.9,
and DE, which struggled for higher values of m ≥ 0.9
but otherwise ranked among the best. A peculiar behaviour

can be seen for AGSK, that performed relatively well for
problems with either low values of m = 0.1, or for m = 0.5
with larger values of λ ≥ 0.9, or for m ≥ 0.9 but only
with λ = 0.9 and k = 16. Otherwise, AGSK performed
consistently among the worst, along with CMAES and PSO,
while the best ranking algorithm was LSHADE, with HSES
and DE also ranking high for some settings. For D = 10,
the issues that DE had with high values of m remained.
Meanwhile, HSES performed very well for problems with
m ≥ 0.9, while LSHADE and DE dominated the rest.
Interestingly, CMAES also performed relatively well, apart
from the instances with m = 0.9. The consistently worst
performing algorithms were AGSK and PSO. A very similar
patter also appeared in D = 15, where HSES and CMAES
dominated the instances with m ≥ 0.9, while LSHADE and
DE dominated the rest.

For F4, there were a few instances that resulted in an am-
biguous ranking, but we did not notice any clear pattern. For
D = 5, there was a large variability in the best performing
algorithm, as all algorithms apart from PSO and AGSK were
ranked as the best one for some parameter settings. HSES
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FIGURE 6. Comparison of the algorithms on the ambiguous benchmark set.

struggled with problems with both m ≥ 0.5 and λ ≤ 0.1,
but otherwise performed the best. CMAES had a similar
dependence on the parameters, apart from a few instances
with lower values of k ≤ 2, where it performed very well.
LSHADE, IMODE, and MadDE performed consistently well
on all instances, while DE performed well on instances with
either low values of m = 0.1, or on instances that had
simultaneously high values of m ≥ 0.9, λ ≥ 0.9, and
k = 16. For D = 10, HSES and CMAES ranked the best
in the majority of instances. What separated them was that
CMAES was better ranked for problems with eitherm = 0.1,
or withm = 0.2 together with k ≤ 2, while HSES dominated
the rest. IMODE showed mediocre performance, apart from
instances with m = 0.1, where it performed significantly
worse, and where, coincidentally, DE performed much better
than on the other instances. LSHADE ranked consistently at
the top, while PSO, AGSK and DE (for m ≥ 0.5) ranked
at the bottom. Finally, for D = 15, the best performing
algorithm again depended mainly on m. For m ≥ 0.9, HSES
was by far the best one (while DE was the worst), while for
m ≤ 0.5, DE and CMAES were ranked as the best. Both
LSHADE and MadDE performed consistently well across all
instances, while PSO and AGSK were the worst.

Generally speaking, the performance of some algorithms,
such as DE, HSES, and CMAES, exhibited high dependence
on the parametrization of the benchmark functions, while
others showed only little dependence. Among the three pa-
rameters, m had the most pronounced effect on the rankings,
while λ and k showed significant effect mainly for particular
combinations off all three parameters (in a similar fashion
to the investigation of the number of unsolved instances).
On the other hand, most of the parametrizations displayed
good ability to differentiate between the various algorithms.
The algorithm that performed consistently well across the
different benchmarks was LSHADE – it is, then, unsurpris-

ing that it was chosen as the basis of many of the best
performing algorithms for the CEC competitions in recent
years. Naturally, studying the performance of the algorithms
on problems in even higher dimensions, or with modified
number of function evaluations, could bring more varied
results.

IV. CREATING AMBIGUOUS BENCHMARK SET
In this section, we select a few parametrizations of the
proposed benchmark functions to create a benchmark set.
This selection had several goals. The first was to choose
parametrizations that result in a clear ranking (for the specific
problem). The second was to choose parametrizations across
the range of possible values of the parameters. And the
third was to select the parametrizations in such a way that
the rankings for the resulting benchmark set are ambiguous.
The last goal corresponds to having a benchmark set that is
comprised of functions on which different algorithms per-
form differently, without a clear favourite. This selection was
done by carefully examining the results of the comparison of
the algorithms and choosing, for each benchmark function,
two parametrization, that together resulted in the ambigu-
ous benchmark set. We also decided to include additional
dimension D = 20, with a maximum of 1,000,000 function
evaluations for these parametrizations (this was excluded
from the previous comparisons because of excessive com-
putational requirements). This resulted in the creation of a
benchmark set with 32 instances (four functions F1-F4, two
parametrizations each, four different dimension), that are
summarized in Table 2. The 1-D plots of the chosen functions
can be seen in Fig. 2, while their 2-D contour and surface
plots can be seen in the Appendix A.

Detailed results of the computations, including conver-
gence analysis and detailed statistics, can be found in the
Appendix B. The results of the comparison of the eight
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TABLE 2. Parametrizations for the ambiguous benchmark set.

ID function D k m λ ID function D k m λ
1 F1 5 16 1 0.01 17 F3 5 16 0.9 0.01
2 F1 10 16 1 0.01 18 F3 10 16 0.9 0.01
3 F1 15 16 1 0.01 19 F3 15 16 0.9 0.01
4 F1 20 16 1 0.01 20 F3 20 16 0.9 0.01
5 F1 5 8 0.5 0.01 21 F3 5 8 0.9 0.9
6 F1 10 8 0.5 0.01 22 F3 10 8 0.9 0.9
7 F1 15 8 0.5 0.01 23 F3 15 8 0.9 0.9
8 F1 20 8 0.5 0.01 24 F3 20 8 0.9 0.9
9 F2 5 2 0.5 0.99 25 F4 5 16 0.1 0.1

10 F2 10 2 0.5 0.99 26 F4 10 16 0.1 0.1
11 F2 15 2 0.5 0.99 27 F4 15 16 0.1 0.1
12 F2 20 2 0.5 0.99 28 F4 20 16 0.1 0.1
13 F2 5 1 1 0.1 29 F4 5 4 0.9 0.01
14 F2 10 1 1 0.1 30 F4 10 4 0.9 0.01
15 F2 15 1 1 0.1 31 F4 15 4 0.9 0.01
16 F2 20 1 1 0.1 32 F4 20 4 0.9 0.01

FIGURE 7. Results of the post-hoc test. For a given row: red cell – the
algorithm in the row performs significantly better than the algorithm in the
column; blue cell – performs significantly worse; grey cell – the ranking is
ambiguous.

chosen algorithms on the ambiguous benchmark set are
presented in Fig. 6. From this comparison, it can be seen
that most of the algorithms, apart from PSO and AGSK,
were best-ranked for at least one of the problems in the set.
Also, for at least one problem, all algorithms placed in the
bottom half of the rankings. This signals that the chosen
parametrizations cover a wide range of the single-objective
optimization problem space (measured by the performance
of different algorithms). However, it is clear from the results
that some of the selected algorithms performed consistently
better than others. To quantify this relationship, we used the
post-hoc test from the aforementioned DSC framework, the
results of which are shown in Fig. 7. For a given row (one
selected algorithm), if a column has a red color, it means that
the selected algorithm performs significantly better (with a
statistical significance threshold of 0.05) on the benchmark
set that the algorithm in the column. If it has a blue color,
it means that it performs significantly worse, and, if it has a

grey color, the ranking is ambiguous. From Fig. 7, we can
see that PSO and AGSK are ranked as the worst (but with
unclear comparison between the two), and that LSHADE is
ranked better that AGSK, CMAES, DE, IMODE, and PSO
(but not better that HSES and MadDE). Other than that,
the algorithms are mutually incomparable on our ambiguous
benchmark set.

V. EXPLORATORY LANDSCAPE ANALYSIS
To better explore the problem space that is covered by
the different parametrizations of the proposed benchmark
functions, we used the method of exploratory landscape
analysis (ELA) [32], within the flacco library [33]. We focus
only on the landscape features that have been found to be
invariant under shift and scale [10] and the ones that provide
expressive results [8]. The 20 selected ELA measures were
the following:
• cm_angle.angle.mean
• ela_distr.skewness
• ela_distr.kurtosis
• ela_distr.number_of_peaks
• ela_meta.lin_simple.adj_r2
• ela_meta.lin_simple.intercept
• ela_meta.lin_simple.coef.min
• ela_meta.quad_w_interact.adj_r2
• ela_meta.quad_simple.adj_r2
• ela_meta.lin_w_interact.adj_r2
• disp.ratio_mean_02
• disp.ratio_median_25
• nbc.nb_fitness.cor
• pca.expl_var_PC1.cov_init
• pca.expl_var.cov_init
• pca.expl_var.cor_init
• ic.eps.ratio
• ic.eps.s
• ic.h.max
• ic.m0

We chose only a single dimension D = 10 as the rep-
resentative and used 8,000 function evaluations for robust
computation of the features [8]. We performed additional
analysis to find the effect of the parameters on the resulting
ELA features and found that the main difference stemmed
from varying the parameter m, which was the same param-
eter that had the highest impact on the number of unsolved
instances and on the ranking of the selected optimization
algorithms. The results of the ELA are summarized in Fig.
8, where the plotted lines are grouped based on the value of
the parameter m. Although the results show high diversity
in the values of the individual measures, it is hard to judge
how diverse these values are compared to the commonly used
benchmark functions. This is why we provide a comparison
of all the parametrizations of F1-F4 and the parametrizations
chosen for the ambiguous benchmark set with the benchmark
functions from the BBOB suite [5], that are shown in Fig.
9. In general, the values of the ELA measures covered by
the different parametrizations of the F1-F4 functions were
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FIGURE 8. Parallel plots of the results of ELA for different parametrizations of F1-F4, D = 10, grouped by the value of the parameter m.
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FIGURE 9. Comparison of ELA measures between different parametrizations of F1-F4 and BBOB, D = 10.

comparable to the ones covered by the BBOB benchmark
functions. Notably, some F1-F4 parametrizations covered
values that were outside the range of the BBOB functions
for measures cm_angle.angle.mean, disp.ratio_mean_02,
disp.ratio_median_25, pca.expl_var_PC1.cov_init, ic.eps.s,
and ic.eps.ratio. When looking at the parametrizations of
F1-F4 for the ambiguous benchmark set, we can see that
particularly the ELA measures of the chosen F3 and F4
parametrizations fall into places where there are only a few
BBOB counterparts. This suggests that either including these
benchmark functions into the BBOB suite, or creating a new
benchmark suite that includes them, could provide a better
coverage of the problem space of bound-constrained single-
objective optimization problems.

VI. CONCLUSION
In this paper, we introduced four new benchmark functions
for bound constrained single objective optimization that are
based on a highly parametrizable zigzag pattern. The con-
struction of these benchmark functions was straightforward
enough to allow for a broad range of extensions, variations,

and further study. The extensive computational experiments
showed that different parametrizations of these functions
can serve as good benchmarks, and we were able to create
an ambiguous benchmark set on which the ranking of the
selected algorithms was unclear, although the ranking on the
individual instances was clear-cut. These results, together
with the conducted exploratory landscape analysis, suggest
that the new benchmark functions are well suited for algorith-
mic comparisons. Future research directions will encompass
comparing even broader selection of algorithms, particularly
ones that were not very well represented by the studied
methods (such as swarm intelligence algorithms). Another
interesting path will be in investigating the role of bias in
the optimal function value (in our experiments, all optima
had the function value of 0). Finally, we plan on developing
new multimodal benchmark functions [34] by utilizing the
presented framework.

.
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APPENDIX A CONTOUR AND SURFACE PLOTS OF SELECTED FUNCTIONS

F1, k = 16,m = 1.0, λ = 0.01 F1, k = 8,m = 0.5, λ = 0.01

F2, k = 2,m = 0.5, λ = 0.99 F2, k = 1,m = 1.0, λ = 0.10

F3, k = 16,m = 0.9, λ = 0.01 F3, k = 8,m = 0.9, λ = 0.90

F4, k = 16,m = 0.1, λ = 0.10 F4, k = 4,m = 0.9, λ = 0.01

FIGURE 10. Contour and surface plots of the parametrization of F1-F4 used for the ambiguous benchmark set.
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APPENDIX B CONVERGENCE PLOTS AND DETAILED STATISTICS OF THE SELECTED ALGORITHMS ON THE
AMBIGUOUS BENCHMARK SET

10
2

10
3

10
4

iteration

10
-2

10
0

fu
n

c
ti
o

n
 v

a
lu

e

F1, D =  5, k = 16, m = 1.00, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

iteration

10
-1

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 10, k = 16, m = 1.00, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

iteration

10
0

10
2

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 15, k = 16, m = 1.00, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

10
6

iteration

10
0

10
2

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 20, k = 16, m = 1.00, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

iteration

10
-5

10
0

fu
n

c
ti
o

n
 v

a
lu

e

F1, D =  5, k =  8, m = 0.50, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

iteration

10
-5

10
0

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 10, k =  8, m = 0.50, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

iteration

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 15, k =  8, m = 0.50, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

10
2

10
3

10
4

10
5

10
6

iteration

10
0

10
1

10
2

fu
n

c
ti
o

n
 v

a
lu

e

F1, D = 20, k =  8, m = 0.50, lambda= 0.01

AGSK

IMODE

CMAES

DE

HSES

LSHADE

PSO

MadDE

FIGURE 11. Convergence plots for F1 parametrizations (ID 1-8).
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FIGURE 12. Convergence plots for F2 parametrizations (ID 9-16).
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FIGURE 13. Convergence plots for F3 parametrizations (ID 17-24).
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FIGURE 14. Convergence plots for F3 parametrizations (ID 25-32).

16 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3144067, IEEE Access

Kudela et al.: New Benchmark Functions for Single-Objective Optimization Based on a Zigzag Pattern

TABLE 3. Detailed statistics of the 30 runs of the selected algorithms on the ambiguous benchmark set.

ID AGSK CMAES DE HSES IMODE LSHADE MadDE PSO

1

min 0.079 0 4.7E-05 0.148 0 0 0 0.148
median 0.382 0.079 1.810 0.148 0.192 0.016 0.098 0.690
mean 0.389 1.120 1.700 0.182 0.165 0.045 0.139 0.783
max 0.629 6.674 2.978 0.533 0.375 0.227 0.377 1.822
std 0.123 1.748 0.877 0.075 0.109 0.056 0.100 0.505

2

min 1.257 0 0 0.306 0.237 0.002 0.080 0.306
median 2.407 6.692 0.341 0.464 0.805 0.139 0.475 0.751
mean 2.389 9.639 1.250 0.507 0.889 0.132 0.485 0.993
max 3.332 26.041 19.712 0.918 1.753 0.268 0.997 2.598
std 0.486 9.996 3.616 0.119 0.407 0.087 0.163 0.606

3

min 2.534 0 0.158 0.079 0.621 0.254 0.158 1.066
median 3.643 39.538 0.582 0.237 1.228 0.482 0.380 2.587
mean 3.584 30.451 0.777 0.244 1.270 0.450 0.353 2.770
max 4.641 49.380 2.816 0.464 2.680 0.649 0.533 6.899
std 0.548 19.186 0.620 0.092 0.465 0.088 0.094 1.282

4

min 6.394 0 0.227 0.909 1.835 0.200 1.136 0.988
median 7.750 0.237 1.105 1.210 3.430 0.526 1.882 2.292
mean 8.132 0.284 1.110 1.221 3.512 0.527 1.871 2.679
max 10.757 0.858 2.062 1.660 5.721 0.745 2.437 6.379
std 1.144 0.187 0.482 0.156 1.049 0.122 0.277 1.340

5

min 0 0 0 0 0 0 0 0
median 0 0 0 2.159 0 0 0 1.148
mean 0.006 0.077 0.077 1.228 0.077 0 0.603 1.838
max 0.189 1.148 1.148 3.308 1.148 0 2.296 7.452
std 0.035 0.291 0.291 1.202 0.291 0 0.763 1.850

6

min 0 0 0 4.456 2.159 0 1.148 2.319
median 4.202 0 0 5.604 3.950 0 2.296 5.380
mean 3.818 1.779 0.790 5.796 3.870 2.4E-07 2.675 5.777
max 6.568 13.668 4.456 7.901 5.798 6.1E-06 4.593 10.896
std 1.645 3.678 1.252 0.803 1.212 1.1E-06 0.995 2.437

7

min 3.445 0 0 1.148 5.0E-06 0.003 0 3.444
median 11.628 1.148 1.148 2.296 2.296 1.164 1.148 13.075
mean 11.302 3.697 1.412 2.717 2.586 1.487 1.526 12.509
max 14.614 35.888 5.741 5.741 4.456 3.455 3.445 20.485
std 2.284 8.487 1.515 0.976 1.054 0.942 0.747 3.695

8

min 15.209 0 0 10.934 8.912 0.002 2.296 8.912
median 22.856 1.148 2.296 14.379 13.231 2.306 10.497 15.633
mean 23.114 1.297 2.797 14.180 13.583 1.877 9.913 15.192
max 29.106 4.456 8.912 17.550 19.534 4.466 12.744 23.990
std 3.309 1.258 2.218 1.731 2.636 1.186 2.273 4.007

9

min 0.351 0 0 0 0 0 0 0
median 2.876 1.886 6.1E-05 2.173 0 0.003 0.807 3.365
mean 2.908 2.396 0.865 1.695 0.254 0.497 0.925 3.274
max 5.554 9.906 8.781 2.881 1.961 1.995 1.886 9.186
std 1.355 2.719 2.037 0.882 0.659 0.832 0.942 2.023

10

min 7.886 0 0 5.664 1.886 0.002 1.605 1.605
median 12.487 21.548 3.966 9.116 6.085 3.715 5.757 9.497
mean 12.865 16.344 10.284 9.108 5.989 3.283 5.745 9.717
max 17.286 37.279 28.568 14.860 9.641 6.727 9.033 17.369
std 2.040 13.365 10.621 2.360 2.127 1.710 1.909 3.814

11

min 19.195 0 1.886 6.519 8.714 4.348 5.185 12.838
median 25.994 2.173 5.953 10.248 12.758 9.845 8.918 20.023
mean 25.629 2.807 8.006 10.219 12.961 9.169 8.968 22.022
max 32.357 8.416 34.796 14.028 17.685 13.648 12.851 43.048
std 3.492 2.678 6.217 1.690 2.222 2.560 1.848 7.163

12

min 30.890 0 3.210 15.752 19.499 6.852 10.187 15.232
median 41.565 3.327 8.426 23.186 26.333 12.499 18.971 25.418
mean 41.338 4.129 9.680 23.674 26.167 12.471 18.161 26.322
max 50.257 10.308 21.103 30.395 36.428 18.686 24.438 43.032
std 4.713 3.007 4.534 3.463 4.169 2.740 3.826 7.099

13

min 0 0 5.6E-08 0 0 0 0 0.199
median 1.842 0.637 1.917 0.637 0 0.014 0.469 1.620
mean 1.867 1.950 2.042 0.573 0.141 0.195 0.322 1.969
max 3.528 8.261 6.146 1.274 0.470 0.695 0.640 6.072
std 1.029 2.449 2.140 0.257 0.219 0.268 0.255 1.371

14

min 5.961 0 4.0E-04 1.474 1.274 0.485 0 0.199
median 10.284 26.534 22.105 2.549 4.134 1.661 2.551 9.113
mean 10.248 20.786 19.752 2.534 4.004 1.722 2.797 10.249
max 14.187 30.922 30.011 3.385 7.986 3.130 9.179 26.090
std 2.151 11.369 8.803 0.519 1.881 0.723 1.762 6.107

15

min 17.448 0 0.637 2.274 3.728 2.806 1.408 3.382
median 25.269 1.274 12.385 3.186 9.151 5.617 3.156 17.325
mean 25.000 1.396 23.789 3.311 10.639 6.248 3.687 18.817
max 32.461 3.018 53.380 4.460 20.560 13.618 8.005 57.909
std 3.840 0.807 22.321 0.605 4.464 3.025 1.503 12.130

16

min 37.808 0.199 5.2E-07 4.993 14.945 4.194 1.878 16.267
median 47.335 1.374 20.635 6.416 35.142 16.225 5.674 24.982
mean 47.233 1.626 35.135 6.549 33.864 16.808 7.541 28.150
max 55.853 3.186 81.701 9.323 51.526 33.009 23.803 78.122
std 4.450 0.889 33.104 1.095 9.050 7.673 4.969 12.278
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17

min 24.497 20.920 29.237 27.239 13.817 21.721 18.211 20.209
median 28.568 30.398 35.520 30.398 20.559 25.862 22.916 28.718
mean 28.468 32.684 35.650 30.532 21.078 25.313 23.226 28.147
max 31.597 51.998 41.569 33.557 27.393 27.175 27.811 34.698
std 1.978 8.097 3.210 1.310 3.177 1.664 2.499 3.940

18

min 55.092 54.477 60.309 57.636 50.114 51.925 46.091 52.587
median 64.854 126.734 94.517 62.089 56.761 57.102 54.738 57.903
mean 64.553 107.265 90.495 62.136 56.653 57.323 54.832 59.166
max 72.476 156.234 116.656 63.955 63.579 61.972 61.251 67.202
std 3.653 38.127 15.928 1.761 3.729 2.392 2.863 4.328

19

min 104.287 81.724 77.044 81.716 84.433 87.715 76.012 85.912
median 120.277 95.646 92.118 84.875 95.491 94.035 88.989 105.300
mean 120.845 153.290 91.115 85.651 94.512 94.278 88.154 104.025
max 137.601 264.754 111.408 90.047 102.123 102.945 93.989 127.015
std 8.426 75.605 7.885 2.583 4.458 3.957 4.213 10.525

20

min 148.185 102.866 111.148 105.221 116.583 121.006 112.764 115.995
median 168.455 320.296 119.584 113.839 140.981 130.682 123.086 148.106
mean 166.773 261.881 119.236 113.669 139.884 131.311 123.438 148.521
max 185.485 377.771 132.276 122.457 154.659 139.613 135.300 183.048
std 10.307 105.028 4.649 4.272 10.055 5.071 5.052 15.519

21

min 0 0 0 0 0 0 0 0
median 6.490 4.090 0 3.552 0 0 0 5.213
mean 6.351 11.857 7.5E-07 3.078 0.893 0.001 1.130 6.553
max 12.826 55.099 2.2E-05 3.552 5.138 0.037 3.762 15.020
std 3.770 14.631 4.1E-06 1.228 1.668 0.007 1.669 4.667

22

min 33.289 0 0 3.552 8.699 3.387 3.552 7.649
median 42.885 14.208 0 3.552 21.159 11.961 13.212 25.586
mean 42.386 48.884 0.474 4.930 20.624 11.510 13.691 25.355
max 50.719 128.454 3.552 8.690 33.462 17.541 23.428 45.074
std 4.791 47.193 1.228 1.818 5.749 3.612 4.751 11.528

23

min 65.592 0 3.552 17.760 27.757 20.753 12.042 26.357
median 94.560 14.378 8.067 18.100 52.652 29.963 33.199 59.561
mean 93.180 51.745 9.269 19.290 51.787 30.153 32.884 58.324
max 105.063 231.198 14.990 23.238 72.605 40.446 42.918 88.369
std 8.714 75.848 4.243 1.974 10.185 4.553 7.000 16.076

24

min 90.555 0 0 22.898 70.394 43.377 31.612 57.931
median 135.687 20.019 14.548 26.450 91.950 59.616 50.779 90.813
mean 133.143 116.119 13.820 27.504 94.698 58.368 51.204 92.303
max 152.926 361.609 22.216 37.065 122.852 68.916 65.893 137.916
std 13.447 142.139 4.671 3.412 12.196 7.376 8.207 24.918

25

min 60.686 0 0.183 0.120 53.576 0 26.523 29.946
median 104.889 0 37.116 0.279 86.615 62.168 76.352 84.601
mean 104.439 13.471 36.067 0.335 86.386 57.876 73.217 85.128
max 125.811 161.451 78.464 0.849 99.178 72.786 91.105 126.704
std 14.153 41.309 20.464 0.208 10.621 17.322 13.625 18.336

26

min 163.671 0 135.256 154.755 233.503 130.362 208.422 207.208
median 314.126 41.748 194.938 195.832 267.512 164.385 242.386 270.424
mean 295.113 74.707 187.533 195.388 265.412 161.362 239.153 268.315
max 331.847 329.923 222.756 237.361 300.395 187.579 261.766 330.771
std 40.180 106.332 27.320 18.559 19.013 12.448 13.686 31.063

27

min 348.402 0 193.006 317.022 374.203 221.197 304.657 341.376
median 509.195 41.849 311.162 386.469 446.116 249.563 368.799 436.817
mean 488.725 54.362 301.460 382.444 441.602 247.384 362.159 436.950
max 528.011 494.286 354.265 413.896 467.535 271.327 391.294 529.460
std 50.179 89.360 43.729 18.832 24.525 13.193 25.341 38.330

28

min 548.602 0 0 506.788 576.439 273.658 473.872 530.989
median 711.098 41.795 279.976 525.713 635.228 334.567 521.129 606.926
mean 692.511 65.597 276.620 528.635 632.042 329.717 518.021 614.407
max 727.464 580.101 527.866 554.467 672.459 364.781 563.720 715.581
std 48.104 108.293 201.979 13.152 21.947 24.451 24.890 43.689

29

min 23.854 17.386 28.283 18.695 16.092 16.002 16.246 23.265
median 34.351 21.897 37.156 39.615 20.530 20.433 19.454 32.242
mean 33.905 25.213 36.893 36.677 20.750 20.953 19.828 32.490
max 42.422 49.843 43.193 51.209 26.747 26.529 22.987 44.599
std 4.011 9.400 3.599 9.305 2.768 2.137 1.618 5.791

30

min 78.816 39.269 104.742 37.788 54.182 52.321 55.594 78.915
median 91.075 98.698 118.756 49.973 68.264 58.426 63.994 98.324
mean 90.372 87.538 115.562 51.413 68.231 58.990 63.439 97.430
max 102.035 123.785 122.909 77.245 83.318 65.581 73.942 114.089
std 6.501 29.765 6.035 8.978 7.479 3.394 3.731 9.774

31

min 144.170 62.598 174.725 68.015 98.105 82.713 90.469 125.414
median 155.725 174.524 200.374 85.331 127.193 99.219 103.677 173.904
mean 156.636 145.368 200.810 84.046 128.558 99.454 104.418 174.087
max 181.204 199.811 219.169 104.426 149.310 111.173 117.778 202.850
std 9.036 51.971 10.301 10.350 12.461 5.827 7.043 17.711

32

min 204.304 80.782 256.491 94.565 171.158 135.534 131.067 214.665
median 242.529 112.234 286.675 114.071 198.139 153.238 161.119 274.342
mean 242.741 170.763 285.455 117.005 197.970 152.829 158.040 268.152
max 275.858 271.524 306.145 138.448 223.666 164.808 177.022 309.456
std 15.207 82.614 11.193 12.941 14.681 6.469 10.930 24.682
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Abstract
The utilization of surrogate models to approximate complex systems has recently gained increased popularity. Because of
their capability to deal with black-box problems and lower computational requirements, surrogates were successfully utilized
by researchers in various engineering and scientific fields. An efficient use of surrogates can bring considerable savings in
computational resources and time. Since literature on surrogate modelling encompasses a large variety of approaches, the
appropriate choice of a surrogate remains a challenging task. This review discusses significant publications where surrogate
modelling for finite element method-based computations was utilized. We familiarize the reader with the subject, explain
the function of surrogate modelling, sampling and model validation procedures, and give a description of the different
surrogate types.We then discuss main categories where surrogate models are used: prediction, sensitivity analysis, uncertainty
quantification, and surrogate-assisted optimization, and give detailed account of recent advances and applications. We review
the most widely used and recently developed software tools that are used to apply the discussed techniques with ease. Based
on a literature review of 180 papers related to surrogate modelling, we discuss major research trends, gaps, and practical
recommendations. As the utilization of surrogate models grows in popularity, this review can function as a guide that makes
surrogate modelling more accessible.

Keywords Surrogate model · Surrogate-assisted optimization · Sensitivity analysis · Uncertainty quantification · Finite
element method

1 Introduction

Themethods of numerical analysis, such as the finite-element
method (FEM), computational fluid dynamics (CFD), or
structural finite-element analysis (FEA), are routinely
employed to perform analysis of complex systems and
structures where obtaining an analytical solution may be
either difficult or impossible. Such analyses are becoming
ubiquitous in evaluating and optimizing design, reliabil-
ity, and maintenance of complex systems and structures
in a broad range of various industrial applications includ-
ing aerospace (Yan et al. 2020), automotive (Berthelson
et al. 2021), architecture (Westermann and Evins 2019),
biomedical engineering (Putra et al. 2018), chemical engi-
neering (Bhosekar and Ierapetritou 2018), and many others.

B Jakub Kudela
Jakub.Kudela@vutbr.cz

1 Institute of Automation and Computer Science, Brno
University of Technology, Technicka 2, Brno 616 00, Czech
Republic

However, these computer simulations tend to be very compu-
tationally demanding because of their intrinsically detailed
description of the studied systems. These engineering prob-
lems based on computer models also require the computation
of thousands of simulations in order to construct a suitable
solution, requiring a large computational budget (Alizadeh
et al. 2020). Additionally, because of their high fidelity, var-
ious issues in performing computer simulations can occur
regardless of how much computer power can be used. Even
the recent advanceof parallel andpooling (Kudela andPopela
2020) computing methods, that carry out many calculations
or executions of processes simultaneously, do not seem to be
very helpful (Grama et al. 2003).

The principle purpose of using surrogate models (or
metamodels) is to approximately emulate the expensive-to-
evaluate high-fidelity models, such as a FEM-based model,
employing computationally less costly statistical models.
These surrogates are constructed based on a relatively low
number of simulation input and output data, that are com-
puted employing the high-fidelity expensive computations.
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After the surrogate is validated to achieve a sufficient level
of approximation of the FEM-based model, its utilization to
predict the outputs of the high-fidelity model can be done
almost instantly.

There are several features of a given problem, including
its linearity/nonlinearity, the required accuracy level, the size
(input dimensions) of the problem, the required amount of
information, the speed of the computations, the number of
samples, and the availability of convenient software tool that
impact the appropriateness of a given surrogate (Alizadeh
et al. 2020). It is possible to divide the use of surrogate mod-
els into three classes of problems. The first class contains
the most fundamental utilization of surrogates—building
and validating surrogate models and using them for pre-
diction. The second class of problems deal with sensitivity
analysis of the resultingmodels and different ways of quanti-
fying the impact of uncertain parameters, that may influence
the behaviour of the modelled systems. The third class is
commonly called surrogate-assisted optimization, in which
the objective function used for optimization is prohibitively
expensive to compute and the information about its derivative
is not available.

The primary motivation of this paper lies in investigat-
ing recent advances and applications of surrogate models
for FEM-based computations. Although the utilization of
surrogate models is growing in popularity, a text summariz-
ing the state-of-the-art and recent developments (especially
for FEM-based computations) was missing. The novelty of
this paper is in encapsulating the state-of-the-art in surro-
gate modelling for FEM-based computations from both the
theoretical and application perspectives. We also expect this
work to function as a guide in the selection of the suitable
approximation models for applications of computationally
expensive high-fidelity FEM-based problems. This review
emphasizes the differences between employing surrogates
for the three above mentioned problem classes and gives a
comprehensive overview of surrogate modelling and corre-
sponding techniques. The main contributions of this paper,
obtained by assessing 180 papers related to surrogate mod-
elling, are the following:

• Analysis of the state-of-the-art in surrogate modelling
techniques.

• Review of the recent advances in using surrogate mod-
els for FEMcomputations—highlighting both theoretical
and application developments in model building and
validation, sensitivity analysis and uncertainty quantifi-
cation, and surrogate-assisted optimization.

• Description of available software tools.
• Identification of trends and research gaps.

The rest of the paper is organized as follows. Section 2 dis-
cusses the basics of surrogate modelling: sampling, model

validation methods, and various model choices for surro-
gates and the underlying mathematical formulas. Section 3
describes the sensitivity analysis and uncertainty quantifica-
tion approaches and their applications in FEM-based com-
putations. In Sect. 4, we give a thorough overview of recent
methodological advances and applications of surrogate-
assisted optimization. Section 5 lists the most widely used
as well as recently developed software tools. Section 6 sum-
marizes the trends, research gaps, and recommendations
extracted from the considered literature. Finally, conclusions
and suggestions for further research are drawn in Sect. 7.

2 Surrogatemodelling

First, we discuss the most frequently utilized approaches for
building and validating the surrogates of the expensive-to-
compute functions. We will deal with a surrogate f̂ (x) of the
function f : Rd → R, where x = (x1, x2, . . . , xd) is the
input vector, d is the number of dimensions of the problem,
and we have a single output y. The upper and lower bounds
on the input (or design) vector are known and are denoted as
xL ≤ x ≤ xU .

2.1 Sampling andmodel validation

After determining the input parameters (or the design space)
of the model, we must select the data points (or designs) to
evaluate for building the surrogate model. This process is
usually called sampling, and sometimes is also referred to
as design of experiments (DOE). The number of samples we
choose to evaluate and their quality has a direct impact on the
precision of the surrogate. As evaluating the data points com-
prises of the computation of the true function (in this case,
running the expensive simulation), sampling is the source of
significant computational costs. Maintaining the quality of
the surrogate model without suffering prohibitive sampling
cost can be achieved by using appropriate sampling strategies
(Bhosekar and Ierapetritou 2018).

Sampling strategies can be divided into stationary sam-
pling and adaptive sampling. The methods of stationary
sampling are based upon geometry or patterns (such as
full/half factorial design, or grid sampling) and approaches
based on the DOE literature (orthogonal sampling, Box–
Behnken design, etc.). Among the most frequently used used
strategies of stationary sampling are the Latin Hypercube
Sampling (LHS) (McKay et al. 1979), the maximin sam-
pling (Johnson et al. 1990), and the sampling techniques of
Morris and Mitchell (1995).

Conversely, adaptive sampling starts from fewer sam-
ples which are usually computed by using one of the
stationary sampling strategies, but new sample points are
determined sequentially. The goal of adaptive strategies is
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to decrease sampling requirements by evaluating samples
that are expected to increase the precision of the resulting
surrogate. Most adaptive sampling approaches use various
criteria for balancing the trade-offs between exploring the
under-explored regions of the design space (exploration) and
refining the regions close to the already evaluated samples
for improved performance (exploitation). A frequent use of
such an approach is within surrogate-assisted optimization
in which exploration is applied to deal with local optima
while exploitation aims at improving on the best design found
so far. In the case of Kriging surrogates, one of the popu-
lar approaches is based on the Expected Improvement (EI)
criterion (Jones et al. 1998), while for Radial Basis Func-
tion (RBF) surrogates, an analogous quantitative measure is
achieved using a so called bumpiness criterion (Gutmann
2001).

In general, the approaches that address this exploration
/exploitation trade-off have been demonstrated to attain bet-
ter surrogate accuracy with a lower number of samples
(Provost et al. 1999). The approaches based on a space-
filling sequential design were also studied in Crombecq et al.
(2011). Here, the authors developed a group of sequential
sampling approaches which exhibit performance competi-
tive with one-shot or stationary experimental designs. It is
possible to reformulate the adaptive sampling problem as
an optimization problem (Cozad et al. 2014), where the
objective function measures the discrepancy between the
expensive-to-compute function f (x) and its surrogate f̂ (x)

max

(
f (x) − f̂ (x)

f (x)

)2

, xL ≤ x ≤ xU .

Other contemporary methods make use of ranking the
exploitation and the exploration and weighing them as
needed. Garud et al. (2017) developed such a method, where
ametric that consisted of two differentmeasures for exploita-
tion and exploration was employed. As the exploitation
metric, they quantified the impact of the new sample point
added near a point that was already sampled by the so called
departure function. As the exploration metric, they used the
sum of squares of the distances between the new sample
and all the previously evaluated samples. By estimating the
prediction variance of a surrogate model by the jackknifing
technique, (Eason and Cremaschi 2014) suggest a differ-
ent adaptive sampling method where the surrogate model is
constructed using ANN and sample points that exhibit high
prediction variance are selected. Such a method of adaptive
sampling has the advantage of not being specific to the selec-
tion of particular surrogate models.

Evaluating the reliability of the constructed surrogate
model constitutes one of the most important concerns—
relying on a flawed surrogate model can result in a misuse
of computational resources, and produce negative effects on
prediction, optimization, or the resulting analyses. Valida-
tion of surrogate models is the procedure of evaluating the
performance of the resulting surrogate models where, apart
frommeasuring their accuracy, validation techniques are fre-
quently utilized in the selection of a suitable surrogate model
from a collection of candidate models and in tuning of its
hyperparameters.

A common approach is to employ resampling techniques,
such as bootstrapping or cross-validation (Forrester and
Keane 2009). In the cross-validation approaches, the train-
ing data for a surrogate model are randomly partitioned into
q subsets of roughly equal size. These subsets are then in
turn removed from the set of the training data while the
fitting of the model is performed on data that remain. After-
wards, the subset that was removed is predicted by the model
that was fitted to the data that remained. Once every subset
has been removed, the calculations of n predictions denoted
by ŷ = (ŷ(1), ŷ(2), . . . , ŷ(n)) of the n observed data points
y = (y(1), y(2), . . . , y(n)) will be performed. The difference
between the observations and the obtained predictions, i.e.,
the prediction error, is quantified by using various validation
metrics. One of the most frequently used metrics for valida-
tion is the Mean Squared Error (MSE), calculated as

MSE = 1

n

n∑
i=1

(y(i) − ŷ(i))2.

Using q = n, one can obtain an error estimate that is
almost unbiased, but its variance is often very large. Hastie
et al. (2001) suggested using a bit larger subsets, that have
q = 5 or 10.

A similar method, but one which allows repeated samples
in the training data is bootstrapping. By enabling the repeti-
tion of the samples in the set that is designated for building
the model, we obtain a training set that has the same size as
the actual data. Generally, for bootstrapping the number cho-
sen of subsets q is larger than in the case of cross-validation.
Apart from the alreadymentionedMSE, there are other com-
monly used validation metrics such as the explained variance
score, themean absolute error, themedian absolute error, and
the R2 score. These metrics, along with the corresponding
mathematical formulations, can be found in Table 1, where
ȳ denotes the mean predicted value. More details on vari-
ous resampling approaches that are used for validation of
surrogate models are discussed by Bischl et al. (2012).
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Table 1 Conventionally used metrics for surrogate validation (Hastie
et al. 2001)

Validation metric Mathematical formula

R2 score 1 −
∑n

i=1(y
(i)−ŷ(i))2∑n

i=1(y
(i)−ȳ)2

Mean absolute error 1
n

∑n
i=1 | y(i) − ŷ(i) |

Median absolute error median(| y(1) − ŷ(1) |, . . . , | y(n) − ŷ(n) |)
Explained variance score 1 − Var(y−ŷ)

Var(y)

2.2 Model choice

2.2.1 Response surfaces and linear regression

The classic polynomial response surface model (RSM) (Box
and Draper 1987) is the original and to this day one of
the most frequently employed types of surrogate models in
engineering design (Forrester and Keane 2009). In the RSM
method, the surrogate is represented as a linear combination
of polynomial functions (mostly linear and quadratic) of the
input variables. A so called first-order RSMhas the following
form:

f̂ (x, a) = a0 + a1x1 + · · · + amxm

where the vector a = (a0, . . . , am)T is obtained by mini-
mizing the sum of squared errors between the value from
the expensive-to-compute function and the value predicted
by the surrogate model. This (least squares) minimization
problem is unconstrained and can be written as

min || Xa − y ||22,

where the matrix X of size n by m + 1 has all elements in its
first column equal to 1 while the remaining columns contain
the input vector. In the case of ordinary least squares, there
is an analytical solution in the form a = (XT X)−1XT y. If
one or more of the input vector components xi are perfectly
correlated, the resulting matrix XT X can become singular
(or can be very badly conditioned), which results in the coef-
ficients a not being uniquely defined. Such an issue is usually
approached by decreasing the number of input variables by
prescreening, or by using regularization methods, such as
ridge regression or lasso (Hastie et al. 2001).

Higher order polynomials are also commonly used, espe-
cially if there is a curvature in the problem. For example, a
second-order model has the following form:

f̂ (x, a, α)=a0+
m∑
i=1

ai xi +
m∑
i=1

αi i x
2
i +

m−1∑
i=1

m∑
j=i+1

αi j xi x j ,

where the coefficients of a and α are again obtained by
solving a least squares problem. Polynomial surrogates
remain generally not well suited for the nonlinear, multi-
dimensional, multi-modal design landscapes one deals with
in engineering unless the ranges of the considered variables
aremade sufficiently small, e.g. in trust-regionmethods (For-
rester and Keane 2009).

Also, in problems that are high-dimensional it may be
impossible to sample enough data required for the estimation
and construction of all except the low order polynomials. On
the other hand, for problems that are not high-dimensional,
display low modality (or unimodality), or where data are
relatively inexpensive to compute, the use of polynomial sur-
rogates may be an attractive (and correct) choice. Moreover,
the individual terms of the polynomial expression computed
by the methods mentioned above can give insight about the
problem itself, e.g. the role of the individual inputs is quite
easily judged by the value of the corresponding coefficient.

2.2.2 Kriging

Kriging refers to a surrogate model that is based on Gaussian
process modelling (and is sometimes called Gaussian pro-
cess regression Rasmussen andWilliams 2006). The method
first originated in geostatistics in a paper by Krige (1951)
and became popular after its use for analysis and of various
computer experiments (Sacks et al. 1989). Nowadays, it is
among the most widely used methods for building surrogate
models.

A Kriging surrogate model can be formulated as follows:

f̂ (x) =
m∑
i=1

a j g j (x) + ε(x), (1)

where g j (x) denotes the m independent (and known) basis
functions which describe the trend of prediction of the mean
at the point x , a j denotes the unknown parameters, and ε(x)
denotes the random error at the point x which follows a nor-
mal distribution with a zero mean. The Kriging predictor can
be then formulated in the following way

f̂ (x) = g(x)T a∗ + r(x)Tα∗,

where g(x) = [g1(x), . . . , gm(x)]T , a∗ denotes the vector of
the generalized least-square estimates of a = [a1, . . . , am]T ,
r(x) denotes the correlation vector of size n×1 between ε(x)
and ε(xi ), and a∗ and α∗ are computed as

a∗ = (GT R−1G)−1GT R−1y,

α∗ = R−1(y − Ga∗),

where R denotes the n×n covariancematrixwhose (i, j) ele-
ment describes the correlation between ε(x (i)) and ε(x ( j)),
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G = [g(x (1)), . . . , g(x (n))]T is n ×m matrix, and y denotes
the observations at the available points. The variance of the
process, denoted by σ 2, can be computed as

σ 2 = 1

n
(y − GT a∗)T R−1(y − GT a∗).

In the Kriging surrogate model, we assume that the random
variables ε(x) are correlated in accordance to the correla-
tion model R(·, ·), which is parameterized by a collection
of hyperparameters θ . These hyperparameters are usually
computed by using maximum likelihood estimation (MLE)
methods. One can find a comprehensive treatment of MLE
in the context of Kriging in Kaymaz (2005).

Depending on the particular selection of the model for
mean prediction g(x)T a in (1), there exist different modi-
fications of Kriging: universal Kriging (also called Kriging
with trend), ordinary Kriging, and simple Kriging. In simple
Kriging we assume that the term g(x)T a is a known con-
stant while in ordinary Kriging we assume it is an unknown
constant. In universal Kriging we assume that g(x) is any
other (prespecified) function of x . Frequently, g(x) has the
form of a polynomial regression (of a lower order). Conven-
tionally, the selection of the order of the polynomial is done
empirically. On the other hand, this kind of a non-adaptive
framework can make the modelling rather ineffective. To
bypass this issue, blind Kriging (Joseph et al. 2008; Hung
2011) and similar methods (Kamiński 2015) are used.

Another important feature of Kriging is the selection of a
suitable covariance function (Lirio et al. 2014). Usually, the
covariance functions employed with Kriging surrogates are
stationary ones which can be formulated as

R(x, x ′) =
∏
j

ψ j (θ,m j ), m j = x j − x ′
j .

A correlation function expressed in this way enjoys two
attractive properties. The first one is that it is possible to
express the correlation function for multivariate functions
by a product of several one-dimensional correlations. The
second one is that the correlation is stationary, depending
only on the distance m j between the two points x and x ′.

Frequently employed correlation models can be found in
Table 2, where � is the Gamma function, Kv j the modified
Bessel function of order v j , and the parameter v j > 0 con-
trols the differentiability of the Matern correlation model.
Chen et al. (2016) compared several of the mentioned corre-
lation models, showing a worse performance of the squared
exponential correlation model in comparison to the expo-
nential correlation one. On the other hand, an important
note is that the generalized exponential correlation model
needs twice as many hyper-parameters (2d) when compared
to squared exponential correlation one. The authors also sug-

gested using the Matern model (see Table 2) as a better
alternative to the exponential correlation one.

2.2.3 Radial basis functions

RBFs (Broomhead and Lowe 1988) compute a weighted
sum of prespecified simple functions to approximate com-
plex design landscape. Sobester (2003) used an analogy of
mimicking the characteristic timbre of a musical instrument
by a synthesizer that uses aweighted combination of different
tones. Given n different sample points, the RBF surrogates
are written as

f̂ (x) =
n∑

i=1

wiψ(|| x − x (i) ||2),

where wi denotes the weight which is computed using the
method of least-squares, and ψ is the chosen basis function.
There are several (symmetric) radial functions that can serve
as a basis function, with the most widely ones summarized
in Table 3.

An important note is that unlike response surfacemethods,
RBF does not belong to the regression techniques. Con-
versely, RBF is broadly considered to be an interpolation
method. This means that RBFs, in contrast with regression
techniques, give exact result at the points that were already
sampled. There is still no firm conclusion in the literature
that would decisively show whether some of the mentioned
basis functions are better than the others.

2.2.4 Support vector regression

SVR is based on the theory of support vector machines
(SVM), that originated at AT&T Bell Laboratories (Vap-
nik 1995). In our context of surrogate-assisted engineering
design, it is arguably more fitting to view SVR as the exten-
sionof theRBF techniques rather thanof theSVMs (Forrester
and Keane 2009).

One of the main attributes of the SVRmethods is that they
give us the possibility to prescribe a margin (δ) within which
one can accept errors present in the sampled data without
having negative effect on the prediction capabilities of the
resulting surrogate models. This might be helpful in situa-
tions when the sample data contain random errors because
of, for instance, a finite size of the mesh, because by per-
forming an analysis of mesh sensitivity we can determine an
appropriate value of δ.

The basic shape of an SVR prediction has the familiar
form of a weighted sum of prescribed basis functions ψ ,
which have weights w, and are added to the “base” term
μ. These are calculated in a different way to their Kriging
and RBF counterparts, yet they contribute to the surrogate
prediction in the exact same manner:
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Table 2 Frequently employed
correlation models for Kriging
surrogates (Kleijnen 2017)

Name Correlation model

Exponential ψ j (θ,m j ) = exp(−θ j | m j |)
Generalized exponential ψ j (θ,m j ) = exp(−θ j | m j |θn+1 ), 0 ≤ θn+1 ≤ 2

Gaussian ψ j (θ,m j ) = exp(−θ jm2
j )

Linear ψ j (θ,m j ) = max{0, 1 − θ j | m j |}
Spherical ψ j (θ,m j ) = 1 − 1.5ξ j + 0.5ξ2j , ξ j = min{1, θ j | m j |}
Cubic ψ j (θ,m j ) = 1 − 3ξ2j + 2ξ3j , ξ j = min{1, θ j | m j |}

Spline ψ j (θ,m j ) =

⎧⎪⎨
⎪⎩
1 − 5ξ2j + 30ξ3j , 0 ≤ ξ < j ≤ 0.2

1.25(1 − ξ3j ), 0.2 < ξ j ≤ 1

0, ξ j > 1

, ξ j = θ j | m j |

Matern ψ j (θ,m j ) = 1
�(v j )2(v j−1)

(θ j |m j |)v j Kv j (θ j | m j |)

Table 3 Commonly used radial basis functions (Bhosekar and Ier-
apetritou 2018)

Name Radial basis function

Linear ψ(r) = r

Cubic ψ(r) = r3

Multi-quadric ψ(r) = √
r2 + γ 2, γ > 0

Inverse multi-quadric ψ(r) = 1√
r2+γ 2

, γ > 0

Thin plate spline ψ(r) = r2 ln(r)

Gaussian ψ(r) = exp(− r2
γ

), γ > 0

f̂ (x) = μ +
n∑

i=1

wiψ(x, x (i)).

For a linear mapping, this can be rewritten using an inner
product 〈·, ·〉 as

f̂ (x) = μ + 〈w, x〉. (2)

Finding the weights that minimize the margin δ corresponds
to solving the following convex optimization problem

min
1

2
|| w ||22

subject to y(i) − 〈w, x (i)〉 − μ ≤ δ, i = 1, . . . , n,

〈w, x (i)〉 + μ − y(i) ≤ δ, i = 1, . . . , n.

As there might not be a feasible solution to the optimization
problem above, an extension using slack variables ξ+ and
ξ− is used in practice

min
1

2
|| w ||22 +γ

n∑
i=1

(ξ+
i + ξ−

i )

subject to y(i) − 〈w, x (i)〉 − μ ≤ δ + ξ+
i , i = 1, . . . , n,

〈w, x (i)〉 + μ − y(i) ≤ δ + ξ−
i , i = 1, . . . , n,

ξ+
i , ξ−

i ≥ 0, i = 1, . . . , n,

whereγ is a regularization parameter that controls the desired
trade-offs between the complexity of the model and a level
for which errors larger than δ are allowed. Using Lagrangian
duality theory, a dual optimization model can be constructed

max − 1

2

n∑
i, j=1

(α+
i − α−

i )(α+
j − α−

j )〈x (i), x ( j)〉

− δ

n∑
i=1

(α+
i + α−

i ) +
n∑

i=1

y(i)(α+
i − α−

i ) (3)

subject to
n∑

i=1

(α+
i − α−

i ) = 0

α+
i , α−

i ∈ [0, γ ], i = 1, . . . , n,

where the resulting weights are computed as

w =
n∑

i=1

(α+
i − α−

i )x (i),

and, to compute μ the Karush–Kuhn–Tucker (KKT) condi-
tions have to be used. Substituting into (2), we get

f̂ (x) = μ +
n∑

i=1

(α+
i − α−

i )〈x (i), x〉.

The advantage of the Lagrangian formulation is that we
can extend the above mentioned model beyond the usual lin-
ear regression to different basis functions (which are known
in the support vector literature as kernels), that are able
to approximate more complex landscapes, by the so-called
kernel trick. The procedure amounts to replacing the inner
product 〈·, ·〉with a kernel functionψ , which needs to satisfy
the conditions for aMercer kernel. The most popular choices
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Table 4 Commonly used kernel functions (Hastie et al. 2001)

Name Mercer kernel function

Gaussian ψ(x (i), x ( j)) = exp(−||x (i)−x ( j)||2
σ 2 ), σ > 0

Linear ψ(x (i), x ( j)) = 〈x (i), x ( j)〉
d degree homogeneous
polynomial

ψ(x (i), x ( j)) = (〈x (i), x ( j)〉)d

d degree
inhomogeneous
polynomial

ψ(x (i), x ( j)) = (〈x (i), x ( j)〉 + c)d

for ψ are shown in Table 4. Whichever form of the kernel
function is selected, the method for computing support vec-
tors stays the same—as the properties of the Mercer kernel
guarantee the optimization problem (3) is a convex quadratic
one it can be readily solved by employing quadratic program-
ming solvers.

2.2.5 Artificial neural networks

Artificial neural networks (ANNs) form a group of surrogate
models that take inspiration from the biological functions
found in the brain and in the nervous system. The structure
of an ANN is usually represented by a system of mutually
interconnected “neurons”. These neurons in an ANN contain
various primitive functions, and the connections between the
neurons have numeric weights that are computed accord-
ing to the input data. There are three elements that guide
the construction of an ANN: a network topology (single or
multiple layers), primitive functions related to the neurons,
and a learning algorithm used to compute the corresponding
weights.Most widely used paradigm of anANN consists of a
so-called multilayer perceptron (MLP) that is based on feed-
forward (supervised) learning, and on the back-propagation
algorithm (Sun and Wang 2019).

Among the various ANNs architectures, multilayer feed-
forward neural network (MFFNN) are among the most
frequently used ones (Chatterjee et al. 2019). In the MFFNN
the neurons are organized into three layers: the input layer,
the hidden layer, and the output layer. Note that the number
of layers in MFFNN can be larger than just one and usually a
convergence study is needed to find the right number of hid-
den layers. Similarly, the number of neurons in the hidden
layers needs to be chosen based on a suitable convergence
criterion.

The learning capabilities of an MLP architecture can be
improved by using more hidden layers, and/or neurons in
the hidden layers. On the other hand, there are trade-offs
between the learning/prediction capabilities the network and
its size. To address these issues, the approaches of “deep
learning” have recently gained increased attention, although
deep learning is only a subconcept under the ANNs. When

compared to its conventional MLP counterparts, the deep
learning approaches utilize more training layers and charac-
terized layers (e.g. pooling and convolutional layers).

2.2.6 Polynomial chaos expansion

The polynomial chaos expansion (PCE) is a method for
producing responses of stochastic systems which was devel-
oped byWiener (1938). Afterwards, generalized results were
introduced by Xiu and Karniadakis (2002) for different
discrete and continuous system from the so-called Askey
scheme.

Let i = (i1, . . . , in) be a vector of nonnegative integers
(called a multi-index), with | i |= i1 + · · · + in , and let N be
a nonnegative integer. Them the N th order PCE of f (x) can
be stated in the following way

f̂ (x) =
N∑

|i|=0

ai�i(x),

where ai denotes the unknown coefficients to be determined
and �i are n dimensional orthogonal polynomials that have
the maximum order N and satisfy the following relation∫
x∈�

�i(x)�j(x)d�(x) = δi j , 0 ≤| i |, | j |≤ N ,

where δi j is the Kronecker delta , � is the support, and �

is the chosen measure. Based on the selection of � and �,
different orthogonal polynomials can be obtained (such as
Hermite, Laguerre, Meixner, etc.). A review and a compari-
son of different sampling strategies for PCE was performed
in Hadigol and Doostan (2018).

2.2.7 Boosted trees and random forests

Boosted trees (BTs), also known as gradient boosting
machines, were introduced by Friedman (2001) as a super-
vised learning method. BTs are employed in problems of
supervised learning where there are several features x (i) that
are available in the training set and are used to estimate an
output variable y(i) and to construct a prediction model that
has a form of a collection of weaker prediction models which
are usually decision trees (De’ath 2007).

Random forests (RFs) represent ensemble learning meth-
ods for classification, regression, and similar tasks. They are
constructed by developing an aggregate of different decision
trees from the training stage and producing as output the
group which is corresponds to mode of the different groups
(in classification) or to mean estimation (in regression) of
individual trees (Ho 1998). RFs are used to correct the deci-
sion trees’ issue of overfitting to the training dataset (Hastie
et al. 2001).
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2.2.8 Other approaches

There are also other approaches that are less common but
still deserve to be mentioned:

• Adaptive learning/active learning—a semi-supervised
machine learning method in which the algorithm refers
to its information sources interactively to reach the
favourable outcomes for the newly generated dataset
(Gorissen et al. 2010).

• Lipschitz-based surrogates—the use of Lipschitz sup-
porting hyperplanes for function approximation in the
context of surrogate assisted optimization was proposed
in Zhou et al. (2016) for the purpose of enhancing
the exploitation capabilities of the optimization method,
while in Kudela and Matousek (2022) the Lipschitz sur-
rogate was used to enhance the exploration abilities of
the proposed algorithm.

• Non-Uniform Rational B-splines (NURBs) based
models—are characterized by a collection of control
points (known as the NURBs orders and knot vectors),
that result in a highly flexible and robust curve definition.
They can be utilized to construct sequential sampling
methods that are adaptive, and give the designer the pos-
sibility to efficiently search the interesting regions of the
design space (Steuben and Turner 2014).

• Genetic Programming (GP) and Symbolic Regression
(SR)—GP is a method of evolutionary computation that
enables computers to solve problems automatically. GP
is based on an automated learning of computer programs
which is founded on the Darwinian principle of survival
of the fittest (Koza 1992). In SR, GP is used to construct
an empirical mathematical model of the available data.
The key point of SR, unlike in the regression techniques
discussed above, is not to compute the weights or coef-
ficients in order to best fit a function, but instead to find
the shape of the approximate model that is constructed
by the evolutionary processes.

2.3 Ensembles of surrogates andmultifidelity
models

Quite often there is no single class of surrogates that performs
better than the other classes for various problems and the
issue of selecting the best class of surrogates for the given
engineering problem can itself be a challenging problem.
Also, there are situations when it is impossible to experiment
with multiple classes of surrogate models and select the one
which has the best performance.

Ensemble of surrogates (EoS) are being used to mitigate
the drawbacks of using a single surrogate model (Acar 2015;
Babaei and Pan 2016). For example, adaptive samplingmeth-
ods which evaluate only a single design per cycle can be

used. However, this addition of a single design at a time
can become inefficient if it is possible to run the simulations
in parallel (Kudela 2019). This issue was addressed in Viana
et al. (2010)where the authors developed amethod for adding
numerous designs per one optimization cycle that is based on
a concurrent utilization of EoS. The beneficiality of EoS was
analyzed in Song et al. (2018), where the authors provided
robustness, efficiency, and accuracy requirements for various
specific problems.

A related approach is to employ a mixture (or a weighted
combination) of several different surrogate models. Various
approaches to compute theweights can be found in the related
literature—variance of individual surrogates (Zerpa et al.
2005), a global cross-validationmetric (Goel et al. 2007), and
error metrics (Müller and Piché 2011) are among the most
prevalent. Generally, using multiple surrogates can provide
us with the possibility to put more emphasis on the good sur-
rogates while putting less priority on the bad ones as needed.

Multi-fidelity (MF) surrogate models are constructed by
a combination of different fidelity models which depend on
the specifics of a given problem, with the goal of reduc-
ing the high computing cost while giving accurate solutions
(Yoo et al. 2020). Multi-fidelity models usually utilize High-
fidelity Models (HFMs) as well as Low-fidelity Models
(LFMs) to give results of comparable accuracy to surrogates
which are based only on HFMs whilst providing a notable
reduction in the computation related costs.

In the uncertainty propagation methods, the input of the
model is characterized by some random variable. Our inter-
ests then lie in the statistics of the output of the model. The
use of Monte Carlo simulations for the estimation of these
statistics frequently requires numerous evaluations to pro-
duce approximations that have sufficient levels of accuracy.
The use of a MF model which integrates outputs from the
computationally cheap LFMs with outputs from HFMs can
result in significant reductions in the runtime and give unbi-
ased estimates of the statistics of the HFM outputs. Similar
improvements in computational costs by utilizing MF mod-
els can be achieved in optimization process by using LFMs to
accelerate searching or using the LFMs in combination with
various adaptive correction and trust-region model manage-
ment schemes (Alizadeh et al. 2020).

2.4 Overview recent advances and applications in
surrogate modelling for FEM-basedmodels

The process of constructing surrogate models often becomes
intractable in problemswhere the input space has highdimen-
sion, due to the numerous model responses that are needed to
accurately estimate the parameters of the model. To alleviate
this issue (Zhou and Lu 2020) developed a novel Kriging
modeling method that was fused with a dimension reduc-
tion technique. To inspect the utility of the new method, the
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authors used the pertinent to low cycle fatigue life of a aero-
engine compressor disc, where the proposed Kriging-based
methodwas shown to performbetter than severalwell-known
surrogate models (such as PCE and ordinary Kriging) when
small sample sizes were used.

Sanchez et al. (2017) developed a new methodology for
constructing surrogate models from FEM simulations, the
so-called Variable Power Law meta-model. The methodol-
ogy was based upon the response surface method and on a
dimensional analysis, and was utilized to compute thermal
models suitable for constructing preliminary designs ofMul-
tiphysics systems. Compared to traditional surrogatemodels,
it showed an advantage by producing light, compact forms
that had sufficient accuracy of prediction over a broad range
of input variables (and over several orders of magnitude).
Its efficiency was demonstrated on various classes of heat
transfer problems, for which it gave an accurate and simple
surrogate model every time, and on a aileron actuator appli-
cation.

Gogu and Passieux (2013) proposed an approach for con-
structing efficient surrogates for high dimensional outputs
combining a novel reduced basis model and a RSM. The
goal of the proposed reduced basis modeling is to solve
the computationally demanding problem by projecting it
onto a reduced-dimensional basis which is build sequentially
according to a DOE. Although this kind of a method of an
order reduction may be employed as a surrogate by itself,
they showed that faster response evaluations were obtained
by combining this method with the RSM. The developed
method constructs surrogate models based on coefficients
which need only a lower number of expensive function eval-
uations which was enabled by the key points approach: the
expensive problem (full scale) was evaluated only at a low
number of important DOE points, whilst the reduced order
model was employed at the other points. The strengths of the
approach are illustrated on the identification problem consid-
ering orthotropic elastic constants which was based upon full
field displacements and on an example of a surrogate model
of a thermal field. Compared to standard surrogate models
the proposed method had comparable accuracy while there
was a decrease in the resolution time of the system in the
DOE by almost an order of magnitude.

Jin and Jung (2016) developed a novel technique for flex-
ible and robust surrogate modeling for finite element model
updating (FEMU). They proposed a sequentially updated
surrogate model that was based upon a statistical interpre-
tation of a Kriging model. To evaluate the effectiveness of
the proposedmethodwhen applied to FEMU, they performed
experimental and numerical study by employing a five-story
shear model of a building. They then showed both experi-
mentally and numerically that a Kriging model utilizing the
developed method could serve as a favourable substitute for
the iterative FEA.

A new framework for solving high dimensional ran-
dom partial differential equations (PDE) was proposed in
Nabian and Meidani (2019). The considered random PDE
was approximated by an ANN (deep, feed-forward, fully-
connected), with either weak or strong enforcement of
boundary and initial constraints. The proposed framework
was mesh-free and could also deal with irregular computa-
tional domains. The correctness of the proposed method was
shown on several heat conduction and diffusion problems for
which numerical results were compared to the results com-
puted by the Monte Carlo and FEM solutions. Schulz et al.
(2019) introduced a numerical method for simulating Brow-
nian polymer dynamics in a FEM framework, in which the
Brownian polymer dynamics were described by stochastic
PDEs driven by a white noise. To greatly improve the speed
of the fitting process of the proposed method a Kriging sur-
rogate model was used.

Nyshadham et al. (2019) compared several different sur-
rogate models (ANNs, Kriging, response surfaces, etc.) for
predicting the properties of different materials. They tested
surrogate models which interpolates energies of various
materials simultaneously on a data set of ten binary alloys
and found that all the surrogate models agree (qualitatively)
on prediction errors for the formation enthalpy, exhibiting
relative errors of less than 2.5% for the considered systems.
Another comparison of different surrogate models was car-
ried out in Pavlíček et al. (2019). Kriging, ANN, and RF
models were investigated on a problem of induction-assisted
laser welding, which represented a rather complicated 3D
problem. They also found that, if the models have properly
tuned parameters, each of them can be successfully used as
a surrogate for the FEM computations. Cernuda et al. (2020)
presented a critical investigation of the appropriateness of
different surrogate models for FEM application in the design
of a suspension bushing. They compared linear SVR, RBF
kernel SVR, nu SVR, generalized linear model with an elas-
tic net, and RF surrogate models and found that RF is the
most suitable among the compared surrogate models. Wang
et al. (2021) devised a convolutional ANN surrogate model
for accelerating screening materials and performance pre-
diction. They showed that the proposed approach can predict
the mechanical properties of a chosen collision problemwith
98.63% accuracy, outperforming other techniques for surro-
gate modelling (SVM, RF, response surface, and ANN).

A computational method for simulations and monitoring-
supported steering of tunnel boringmachines in real timewas
introduced in Ninic et al. (2017). This strategy is combined
a process-oriented 3D FEMwith accompanying RNN surro-
gate model to recompute the parameters of the model based
on the monitoring data and to give steering parameters that
were continuously optimized. This hybrid FEM and surro-
gate model approach was compared with a strategy that was
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entirely based on different surrogate models, and the hybrid
method proved to be superior.

Bunnell et al. (2018) studiedmodelingdifferent points on a
FEM for compressor bladeswith unique surrogates andmesh
morphing. Their results showed that mesh morphing gave
good performance on various tested compressor blades—the
surrogate model achieved error rates lower than 5%, while
providing a 96% decrease in time needed for the structural
iteration of the compressor blade.

An ANN-based technique for surrogate modeling suited
for a nonlinear analysis of carbon-based nanotubes was pre-
sented in Papadopoulos et al. (2018). They proposed an
ANN-based equivalent beam element which was able to
accurately predict high order events that were the result
of size-effects that outline the properties of carbon nan-
otubes at the nanoscale and could be estimated only by a
micro-mechanical model. They conducted various numerical
experiments for wavy and straight carbon nanotubes under
compression and bending, and showed that the presented
methodology was able to efficiently estimate the nonlinear
responses of large-scale carbon nanotube structures needing
only a fraction of time for the computation when compared
to a full-scale problem.

Torkzadeh et al. (2016) used a cascade ANN (feed-
forward) as the surrogate model for damage detection of
plate-like structures. They developed a two-stage method-
ology. In stage one, location of the damages in plates were
analyzed by the use of the concepts of curvature-moment
and curvature-moment derivative. In stage two, in order to
decrease the high computational cost of updating the FEM
based model while detecting damage severity, multiple dam-
age location criterion indexes that were grounded on the
structural frequency change vector were computed by the
ANN, whose structure was optimized using binary version
of the bat algorithm.

In amedical applications, Liang et al. (2018) used anANN
(feed-forward, fully connected) with four hidden layers to
construct a surrogate model of the zero-pressure geometry
of human thoracic aortas. The surrogate model was vali-
dated by a cross-validation scheme on a data set of aorta
shapes from 3125 virtual patients. They have found that the
computed zero-pressure geometries gave good fit with the
ones generated by the method based on FEA. While the
FEA-based inverse method needed hours to days to finish
the computations, the surrogate model was able to output
the high precision zero-pressure geometry in a second. In a
similar study, Liang et al. (2018) showed the ability of sur-
rogates based on deep neural networks to predict the aortic
wall stress distributions. The surrogate model was able to
predict the stress distributions fairly accurately, exhibiting
average errors of only 0.49 and 0.89% in the distribution
of the Von Mises stress and the peak Von Mises stress, for
a fraction of the computing costs of the full FEA. Vega and

Todd (2020) applied aBayesianANNfor cost-informeddeci-
sion making and structural health monitoring in miter gates.
They showed that a continuous monitoring via the proposed
surrogate-assisted system could result in more economical
decisions with respect to maintenance policies than using
only the data from visual inspections. Yet another medical
application of a Kriging-based surrogate model, this time for
resonance frequency analyses of dental implants, was devel-
oped in Chu et al. (2019).

Berthelson et al. (2021) usedKriging and response surface
surrogate models for investigating relative injury tendencies
across various conditions of a vehicular impact. The sur-
rogate modeling approach for injury analysis demonstrated
great promise, requiring only 97 high fidelity FEM simu-
lations to evaluate a wide range of motor vehicle collision
scenarios exhibiting only a nominal prediction error, which
saved substantial computational time and related costs,whilst
enabling a thorough analyses of the influences of various col-
lision conditions.

In the field of biomechanical engineering, Wee et al.
(2016) developed response surface-based surrogate model of
the biomechanics of a bone fracture fixation that was based
on high numbers of FEM simulations. The developed surro-
gate models displayed a good fit with the results from FEA
with R2 score that ranged from 0.62 to 0.97.

The reviewed papers on surrogate modelling are summa-
rized in Table 5, highlighting their choice of surrogates, and
theoretical and application advancements.

3 Sensitivity analysis and uncertainty
quantification

Sensitivity analysis (SA) is employed to determine the effect
of the input parameters on a given outcome variable (Yang
et al. 2016). It is often used as the preliminary step before
an early design, analysis of uncertainty, or optimization to
reduce problem complexity. Testing model sensitivity is an
integral part of building anymathematical or simulationmod-
els. Different values of the parameters of a model as well as
the initial (input) values of variables can be subject to various
sources of uncertainties. Good comprehension of the sensi-
tivity of the outputs of the model to various uncertainties in
the values of the parameters and input variables is impor-
tant for strengthening our confidence in our model and the
resulting predictions (Alizadeh et al. 2020).

There are currently two complementary approaches for
SA—local methods, and global methods. Local methods
work by perturbing the inputs of one particular design in
order to approximate its partial derivatives, which give sen-
sitivities of inputs around the chosen design. Global methods
aim to determine the effect of the parameters over the entirety
of the design space. With the exception of methods for fast
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Table 5 Considered literature on surrogate modelling, and properties of the models

References Surrogates Theoretical advancement Application

RSM RBF Kriging ANN SVR Other

Gogu and Passieux (2013) × Reduced basis model Structural problems

Zhang and Au (2014) × N/A Cable-stayed bridge

Jin and Jung (2016) × Finite element model
updating

Structural problems

Torkzadeh et al. (2016) × N/A Damage detection

Wee et al. (2016) × N/A Bone fracture fixation

Ninic et al. (2017) × Hybrid FEM and
surrogate model

Steering of tunnel
boring machines

Sanchez et al. (2017) × Variable Power Law
meta-model

Heat transfer problems

Bunnell et al. (2018) × × N/A Compressor blades

Liang et al. (2018) × N/A Aortic wall stress
distribution

Liang et al. (2018) × N/A Human thoracic aortas

Papadopoulos et al. (2018) × N/A Carbon nanotubes

Chu et al. (2019) × N/A Analysis of dental
implants

Ghorbel et al. (2019) × Adaptive run
parameterization

Fluid dynamics

Nabian and Meidani (2019) × Mesh-free framework
for solving PDEs

Heat conduction and
diffusion problems

Schulz et al. (2019) × Novel numerical method Brownian polymer
dynamics

Nyshadham et al. (2019) × × × Benchmarking Binary alloys

Pavlíček et al. (2019) × × × Benchmarking Induction-assisted laser
welding

Al Kajbaf and Bensi (2020) × × × Benchmarking Estimation of storm
surge

Cernuda et al. (2020) × × × Benchmarking Suspension bushing

Lai et al. (2020) × Orthogonal
decomposition

Parameter estimation

Vega and Todd (2020) × N/A Structural health
monitoring

Zhou and Lu (2020) × Dimension reduction
technique

Cycle fatigue of
compressor disc

Asteris et al. (2021) × N/A Cement mortar materials

Brown et al. (2021) × N/A Fluid dynamics

Berthelson et al. (2021) × × N/A Relative injury
tendencies

Jin (2021) × Accelerated surrogate
modeling

N/A

Wang et al. (2021) × × × × Benchmarking Material performance

Wang et al. (2022) × Annealing combinable
Gaussian process

N/A

parameter prescreening, the methods of global analysis are
generally more computationally demanding than the local
methods. As both global and local methods are based upon
simulating samples, faster evaluations of surrogate models
can be used to speed up the process of sample generation,

which is especially useful for variance-based techniques that
require numerous samples.

On the other hand, SA also plays an important part in
constructing surrogate models. By employing SA, promis-
ing inputs for the surrogate model can be found, which can
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reduce the complexity of the model (Alizadeh et al. 2020).
In problems where there is a rather complex surrogate model
(such as a black-box FEM model), we can utilize SA along-
side a surrogate model to get better knowledge about the
behaviour of the model.

Whilst the goal of SA is the quantification of the effect of
changing one input on the output, uncertainty quantification
(UQ) (also called uncertainty analysis, uncertainty propa-
gation, or reliability analysis) is used for investigating the
likeliness of a change in the outputs that is induced by some
uncertain inputs (Lee andChen 2008). There has been a lot of
work made to come up with methods of uncertainty quantifi-
cation (UQ) in diverse fields such as stochastic mechanics,
structural reliability, quality engineering, etc., and there is
now a considerable number of techniques available.

The techniques forUQcanbe categorized intofive classes.
The first class consists of the simulation-based techniques
likeMonteCarlomethods, and importance and adaptive sam-
pling. The second class consists of the local expansion-based
techniques such as the Taylor series expansion or perturba-
tion techniques, which are generally weak when there is a
large variability in the inputs and nonlinearities in the per-
formance function (Lee andChen 2008). The third class is the
most probable point (MPP)-based techniques, which contain
the first-order reliability methods and the second-order reli-
ability methods. The fourth class comprises of techniques
that are based on functional expansion. The PCE as well
as the Neumann expansion method are found in this class.
The PCE method has recently gained increased attention in
stochastic mechanics, uncertainty representations, solution
of stochastic differential equations, etc. The last class con-
tains techniques that are based on numerical integration. One
of the techniques in this classes is the dimension reduction
technique (Rahman and Xu 2004), which works by approx-
imating the (multidimensional) moment integrals by several
(reduced-dimensional) integrals that are based upon additive
decompositions of a performance function.

3.1 Overview of recent advances and applications in
SA and UQ for FEM-basedmodels

Eigel and Gruhlke (2021) developed an approach based on
a domain decomposition scheme for high dimensional ran-
dom PDEs which exploits the localization of the random
parameters. The method uses hybrid local surrogates based
on multielement generalized polynomial chaos expansion
with the possibility to speed up the generation of samples
by bypassing the assembly of operators and algebraic oper-
ations. They investigated the efficiency of the developed
method on computational benchmark problems that illus-
trate the identification of nontrusted regions for sampling
and trusted regions of the surrogate.

Gaspar et al. (2014) assessed the effectiveness of Kriging
surrogates for problems in structural reliabilitywhich involve
time-consuming nonlinear FEA models. The efficiency was
investigates by systematically comparing the accuracy of the
predictions of failure probability that were based on the first-
order reliability methods that utilized the commonly used
first-order and second-order polynomial RSM as well as
Kriging models as the surrogates for the true expensive-
to-compute limit state functions. They showed on a marine
structures application that for structural reliability problems
the Kriging models were efficient as surrogate models and,
compared with the commonly used polynomial RSM, Krig-
ing could provide substantially more accurate predictions of
failure probability. This approach was further improved in
Gaspar et al. (2017) by using a two-stage approach utilizing
a trust region method.

In structural healthmonitoring, a technique for probabilis-
tic prediction of the growth of a fatigue crack was developed
in Leser et al. (2017). Prohibitive, time-consuming stress
intensity factor computationswere supplemented by efficient
Kriging surrogate model that was trained on high-fidelity
FEM simulations. Noisy visual assessments of the location
history of the crack tip were utilized for the UQ of the model
parameters. By utilizing the proposed surrogate modeling
technique, they were able to reduce the simulation times by
several orders ofmagnitudewhilstmaintaining high accuracy
levels. Similar application ofKriging surrogates can be found
in Su et al. (2017), where the authors developed a Monte
Carlo method-based Dynamic Gaussian Process Regression
surrogate for performing reliability analyses of complicated
engineering structures.

Huang et al. (2016) applied a probabilistic method based
on a surrogate model in the analyses of the effect of uncer-
tainties in the process of deep drawing. They compared two
types of surrogate models, quadratic response surface and
Kriging, and found that Kriging models were more appro-
priate and accurate in modeling deep drawing processes.

The use of surrogate models has found numerous applica-
tions in the assessing the properties of composite structures.
Omairey et al. (2019) developed a response surface-based
multiscale surrogate model for efficient estimation of the
stiffness properties of composite laminas, and also taking
into account geometric and material uncertainty at laminate,
meso, and micro-scale. Haeri and Fadaee (2016) proposed
an advanced Kriging surrogate model for reliability analyses
of laminated composites, employing a probabilistic clas-
sification function along with a metric for the refinement
of the model. They demonstrated that the approach is sig-
nificantly faster than using ANN-based surrogates, without
sacrificing any predictive capabilities. Mukhopadhyay et al.
(2016) presented the impact of noise on stochastic natural
frequency analyses based on surrogate models of compos-
ite laminates. They developed an algorithm for exploring the
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Table 6 Considered literature on sensitivity analysis and uncertainty quantification, and properties of the models

References Surrogates Theoretical advancement Application

RSM RBF Kriging ANN SVR Other

Gaspar et al. (2014) × × Benchmarking Structural reliability

Kersaudy et al. (2015) × × Hybrid surrogate for UQ Numerical dosimetry

Nobari et al. (2015) × N/A Squeal noise of a real
disc brake

Haeri and Fadaee (2016) × × Benchmarking Laminated composites

Huang et al. (2016) × × Benchmarking Deep drawing

Mukhopadhyay et al. (2016) × N/A Composite laminate

Gaspar et al. (2017) × × Two-stage approach Structural reliability

Leser et al. (2017) × N/A Structural health
monitoring

Owen et al. (2017) × × Benchmarking N/A

Su et al. (2017) × × Dynamic Gaussian
process

Structural health
monitoring

Tripathy and Bilionis (2018) × High dimensional UQ Stochastic PDEs

Deng et al. (2020) × Drifted Wiener
processes

Remaining useful
lifetime prediction

Omairey et al. (2019) × Multiscale surrogate
model

Composite laminas

Shi et al. (2019) × N/A Vibration analysis

Slot et al. (2020) × × N/A Wind turbine reliability

Eigel and Gruhlke (2021) × Domain decomposition N/A

Rocas et al. (2021) × Nonintrusive
uncertainty
quantification

Automotive crash
problems

Wang et al. (2021) × Theory-guided neural
network

N/A

Rocas et al. (2022) × Adaptive sampling
methodology

Crashworthiness models

Ye et al. (2022) × N/A In-stent restenosis

impact of noise in surrogate-based UQ methods and verified
the approach for stochastic frequency analyses of spherical
shallow shells using a surrogate model based on Kriging.

An application of Kriging-based surrogate models in
vibration analyses of graphene sheets was proposed in Shi
et al. (2019), conducting UQ for both Armchair and Zigzag
graphene sheets. The LHS method was used to effectively
propagate the uncertainty in material and geometrical fea-
tures of the FEM-based model and the convergence and
accuracy of the Kriging-based model were verified by com-
paring them with available references.

The reviewed papers on sensitivity analysis and uncer-
tainty quantification are summarized in Table 6, highlighting
their choice of surrogates, and theoretical and application
advancements.

4 Surrogate-assisted optimization

The state-of-the-art in solving costly and complex problems
that arise in real-world applications involves the utilization
of surrogate models during optimization (Stork et al. 2020),
i.e. in the search of the configuration of the design variables
that produces the most desirable (optimal) outcome that is
measured by a so-called objective function. The FEM-based
models belong to a category of so-called black-box problems,
in which the problem information that is available, such as
mathematical equations and/or other exploitable knowledge
of the problem is very limited, and the onlymethod of extract-
ing any information is the costly evaluation of the candidate
designs.
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The main goal of surrogate-assisted optimization (SAO)
lies in the reduction of the resources, time, and the related
costs by exploiting all information that is available efficiently
to lower the number of objective function evaluations that
are needed. Often, this is achieved by using only a few of the
expensive true function evaluations to construct a “rough”
surrogate model and running an optimization algorithm on
this surrogate. The optimal solution from this computation
is then used as a next point for another expensive true func-
tion evaluation and the refinement of the surrogate model.
This process is then repeated until a stopping criterion (such
as number of iteration, computational time, “good enough
solution”, precision of the surrogate, etc.) is met.

The optimization problems where the information about
the derivative of the function is not symbolically nor numer-
ically available are commonly categorized as derivative-free
optimization (DFO) problems (Rios and Sahinidis 2013).
Algorithms for DFO problems can be categorized into local
search and global search methods. Local search algorithms
are used to refine a solution or to reach a local optimum from
an initial point. On the other hand, global search methods
employ a mechanism that allows them to escape from local
minima.

In the category of the local search methods are the direct
search optimization algorithms that sequentially evaluate
candidate points that are generated by a particular strat-
egy (which often utilize geometric patterns), such as the
Hooke and Jeeve’s algorithm (Hooke and Jeeves 1961) and
the Nelder-Mead (NM) method (Nelder and Mead 1965).
Trust-region methods are also in the category of local search
methods which use a surrogate model in a close neigh-
bourhood of a given sample location. Another local search
method is sequential quadratic programming (SQP), which
at each iteration constructs a quadratic approximation of the
optimization problem and finds the corresponding solution
(Nocedal and Wright 2006).

In global search methods, we can find the partitioning
methods such as the DIRECT algorithm (Jones et al. 1993),
and stochastic algorithms. The stochastic algorithms have
become especially popular for SAO in recent years (Jin
et al. 2019), with methods such as simulated annealing (SiA)
(Kirkpatrick et al. 1983), and evolutionary algorithms (EA)
(Baeck et al. 1997) such as genetic algorithms (GA) (Gold-
berg and Holland 1988), particle swarm optimization (PSO)
(Poli et al. 2007), differential evolution (DE) Storn and Price
(1997) and many others (Matousek et al. 2022). One of the
drawbacks of using stochastic algorithms is the need for
proper tuning of their respective hyperparameters (Kazikova
et al. 2020).

Highly challenging optimization problems are in many
cases concerned with more than a single objective function.
Themultiple objectives (MO) are commonly aggregated into
a single objective function by a weighted sum (or similar

aggregation function) which makes it approachable by using
ordinary (single objective) optimizationmethods. A different
approach is to take all objectives into consideration in par-
allel which is particularly important if these objectives are
conflicting, such as price and quality in production or drag
and lift in airfoil design (Stork et al. 2020).

Although several algorithms formulti-objectiveSAOhave
already been developed, the field still lacks a repository
where the different approaches could be collected and com-
pared, because the development of these methods tends to be
application-oriented and thesemethods have commonly been
used to solve a particular real-word or industrial optimization
task. Of the algorithm that are more widely used are the mul-
tiobjective genetic algorithm NSGA-II (Deb et al. 2002), the
ParEGO algorithm (Knowles 2006), and the RASM method
(Loshchilov et al. 2010).

As uncertainty plays a significant role in design, incorpo-
rating ways of dealing with uncertainty into the optimization
process is often an important step that guarantees that
the resulting optimal design can handle variations in input
parameters. One possibility is to apply SA to the result
obtained by the optimization process, and, if found inad-
equate, modifying the objective function or the constraints.
Another possibility is to use robust optimization (RO), which
gives a mathematical framework for optimization which is
designed to minimize the propagation of the input uncertain-
ties to the output responses (Chatterjee et al. 2019).

4.1 Overview of recent advances and applications in
SAO for FEM-basedmodels

In this subsection, we review the recent application of SAO.
Table 7 gives a summary of the publications including surro-
gate model type, optimization methodology, and application.

4.1.1 Surrogate model types

The most ubiquitous choice of the surrogate model in appli-
cations that use surrogate-assisted optimization is Kriging,
followed by RSM and ANN. Especially in the last few year,
deep ANN are gaining increased popularity (Abueidda et al.
2020). Both kernel-basedmethods, RBF and SVR,were used
only in a few applications, and PCE and RF were not used at
all. GP was used by Mendes et al. (2013) and Easum et al.
(2017) to build the surrogate, and in both instances the opti-
mizationwas carried out by aGA.Li et al. (2019) developed a
novel adaptive SingularValueDecomposition (SVD)-Krylov
reduced order model as a surrogate for solving problems in
structural optimization. Utilizing the SVD, they show that
for a structural optimization problem the solution space of
can be partitioned into a design subspace and a geometry
subspace, which can be effectively approximated by a col-
lection of different surrogate models. They show on a set of
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numerical examples that the proposed methodology exhibits
performance gains when compared to most already existing
heuristic techniques.

The use of EoS and MF models is also not as wide-spread
as one would expect, given their advantageous properties.
EoS were used in conjunction withMO problems in Bramer-
dorfer and Zăvoianu (2017), where the authors used different
global and local surrogate models for optimizing electric
machine design, in Easum et al. (2017), where the EoS based
method performed better than the traditional NSGA-II on a
optimization of a patch antenna design, and in the design of
dental implants in Shi et al. (2017). Bayesian optimization
was used inmaximizing theEI ofMF surrogates for a realistic
large-scale hydrostructural optimization of 3D supercavitat-
ing hydrofoils in Bonfiglio et al. (2018). MF surrogates were
also used for solving realistic design problems concerning
whole gas turbine engines Yong et al. (2019) and reliability-
based optimization of various composite structures (Yoo et al.
2020).

4.1.2 Optimization models and algorithms

The consideration of multiple objective in FEM-based opti-
mization problems is relatively widespread, appearing in
around a third of the considered publications. The multi-
ple objective have various forms depending on the particular
application and are frequently connected to buckling load and
structural mass in structural design applications (Yoo et al.
2020), response reduction ratio and value of a damping force
in damper systems (Zhao et al. 2019), wall shear stress and
initial average stress in stent geometry optimization (Putra
et al. 2018), gain, front-to-back ratio, and ground plane area
for patch antenna design (Easum et al. 2017), etc.

Almost a half of the considered publications included
some form of dealing with uncertainty in the optimization
model. UQ was frequently used together with the Kriging
surrogate in Bonfiglio et al. (2018), Liu et al. (2018), and
Wang et al. (2018). Applications utilizing SA frequently
used ANN (Bramerdorfer and Zăvoianu 2017; Kaya and
Hajimirza 2018; Abueidda et al. 2020) or Kriging (Hassan
et al. 2018; Qin et al. 2018; Yong et al. 2019; Fatahi 2021)
surrogates.

Stochastic optimization methods, be it SiA or evolution-
ary approaches (EA, GA, PSO), were the algorithm of choice
for more than a half of the considered publications, which
might be attributed to their relatively low implementation
complexity and satisfactory performance.More interestingly,
a growing number of authors used a specialized algorithm
in their applications. Wu et al. (2017) used the surrogate
management framework algorithm Booker et al. (1998), a
mesh-based method that contains two strategies: a surrogate
model as a tool for prediction to facilitate global exploration
and to identify promising regions, and the use a local grid

search or similar pattern-search techniques to guarantee con-
vergence at least to local minima. Park et al. (2018) proposed
a robust optimizationmethod that uses a sub-domain Kriging
to decrease the memory allocations during the optimization
and a gradient-free sensitivity index, that measures the sensi-
tivity of the fitness function value to the input variables.Meng
et al. (2019) used collaborative optimization method based
on uncertainties, which is a bi-level multidiscipline design
optimization method, to approach the turbine blades design
problem and to improve its aerodynamic performance.

4.1.3 Application areas

The employment SAO has permeated into a wide range of
applied areas. In electrical engineering, thesemodels are now
quite routinely used to aid the design of IPM (Interior Per-
manent Magnet) motors (Lim et al. 2015; Park et al. 2018;
Rafiee and Faiz 2019) and axial flux machines (Taran et al.
2018), induction generators (Tan et al. 2015), composite bat-
tery boxes (Liu et al. 2018), all-electric GEO satellites (Shi
et al. 2017), or antennas (Easum et al. 2017; Hassan et al.
2018). Also ubiquitous are mechanical engineering appli-
cations, which include the design of wind turbine blades
(Meng et al. 2019; Xu et al. 2019), aero-engine turbines (Yan
et al. 2020), viscous damper systems (Zhao et al. 2019),
welded plates (Fatahi 2021), ring tensile specimens (Ktari
et al. 2021), or whole engine models (Yong et al. 2019), and
civil engineering applications of topology optimization (Qin
et al. 2018; White et al. 2019; Fan et al. 2019; Li et al. 2019;
Abueidda et al. 2020).

Recently, SAO has been used in maritime applications.
Leifsson et al. (2015) performed shape optimization ofmulti-
element trawl-doors, which are for many fishing vessels the
major contributors to their fuel expenditure, as they may be
responsible for approximately 10–30% of the total drag of
the vessel. Lin et al. (2019) presented a scantling optimiza-
tion of a common internal turret area for mooring system of
floating production storage and offloading units, which con-
stitute some of the most widely used production platforms in
offshore oil production. They report on achieving a weight
reduction of 10.2%, computed by a SAO utilizing the RBF
surrogatemodel and anEA.Lal andDatta (2017) investigated
the viability and efficiency of utilizing artificial freshwater
recharge in order to increase the pumping of fresh ground-
water from wells. They used a SVR as a surrogate for the
expensive simulations and a multi-objective GA for finding
optimal solutions for recharge and integrated pumping, and
for maintaining the levels of saltwater intrusion in the coastal
aquifer within acceptable limits. Similar problem was inves-
tigated in Christelis et al. (2017), where the authors used the
RBF surrogate and a single objective formulation solved by
anEA instead. Their results demonstrated an outperformance
of the SAO methods against the direct optimization, as their
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method located the best solutions and demonstrated a robust
performance for all optimization problems of coastal aquifer
management.

Shi et al. (2017) developed a geometricmodel of a ceramic
microchannel heat exchanger which included the heat trans-
fer channel, the inlet part, and outlet part and conducted a
numerical study to enhance the uniformity of the fluid flow.
Then the authors constructed a radial basis neural network
surrogate model and optimized the heat exchanger design
using a GA. At the optimal design point, they report that
the nonuniformity of the fluid flow was decreased by 68.2%
and pressure drop has increased by 6.6%, which results in a
significant improvement in the uniformity of the fluid flow
in the heat exchanger with just a little cost of pressure drop.
Another thermal engineering application can be found in Tan
et al. (2019), where the authors used the Kriging surrogate
and the DE algorithm to compute more accurate convective
heat transfer coefficients in thermal analysis of spindle. They
compared the results of the simulation temperatures using
the optimized convective heat transfer coefficients with the
experimental temperatures and found that they agreed well
exhibiting the absolute error of the simulation not exceeding
0.5 ◦C and the relative error of the simulation not exceeding
2.34%.

Simple UQ method for evaluating numerical uncertainty
as well as surrogate uncertainty in a crashworthiness opti-
mization process was proposed in Qiu et al. (2018). They
showed that the conventionally used 95% confidence inter-
val was insufficient for obtaining robust results especially
when encountering high levels of noise in the simulations
because the commonly used number of samples for building
surrogates is too small for reaching accurate estimates of the
noise level.

Kaya and Hajimirza (2018) demonstrated that surrogates
can be utilized for accurate predictions of the optical prop-
erties of thin solar cells and even for the optimization their
structures. Instead of the time-consuming finite difference
time domain methods for computing optical properties of
arrangements at small sub-wavelength scales, they designed
a two-layer ANN surrogate model for estimating the opti-
cal absorptivity of the cell. They then used a combination
of steepest descend and SiA for the optimization of the
cell parameters. The solutions found by SAO demonstrated
enhancement factors that were higher than 270% for the opti-
cal absorptivity.

The use of SAO is also becoming more common in medi-
cal applications.Design optimization of stents and its dilation
balloons, which are used in treating cardiovascular diseases,
has investigated in Li et al. (2017). By using a Kriging sur-
rogate and SAO, they were able to refine the fatigue life
and expansion performance of both diamond-shaped and sv-
shaped stents. Stent geometry was also the focus of Putra
et al. (2018). SAO with expected hypervolume improvement

and Kriging method were used to construct the surrogate
model and to find the best configuration of parameters to
the intravascular hemodynamics of the stent. In Shi et al.
(2017) the authors used EoS and SAO in a dental application
to reduce stress at the implant-bone interface to improve the
implantation success rate by using the structure optimization
of dental implant with other characteristics of dental implant
only slightly deteriorating or optimizing simultaneously.

SAO also found recent applications in identifying inter-
phase properties the properties in polymer nanocomposites
(Wang et al. 2018), optimizing elastic metamaterial struc-
tures (Dong et al. 2020), optimizing manufacturing process
parameters using deep ANN (Pfrommer et al. 2018), or max-
imizing the impact-resistance of patch repaired carbon fiber
reinforced polymer laminates (Tie et al. 2020).

5 Software tools

As the employment of surrogates for analyzing and optimiz-
ing computationally expensive problems have become more
prevalent, new software tools that provide an easy access to
the needed technologies emerged. Few of the most used and
recently developed software tools are listed below in alpha-
betical order:

• ALAMO (Cozad et al. 2014):ALAMO(Automated learn-
ing of algebraic models for optimization) is a methodol-
ogy for classification and regression that aims to build
accurate and simple surrogates based on a minimal col-
lection of datapoints. It uses a technique based on integer
programming to select from a high number of input vari-
ables and their possible transformations.

• ARGONAUT (Boukouvala and Floudas 2017): ARG-
ONAUT is a framework designed to deal with DFO
problems with either a total or a partial lack of closed
form or analytical expressions for objective function or
constraints. Pivotal feature of this framework is also sur-
rogate model selection in which the surrogate models
are selected from a library of regression models (includ-
ing linear, quadratic and polynomial RSM) which are
straightforward to optimize and various interpolation
models (includingRBF andKriging) that have better data
prediction accuracy.

• Agros Suite and Ārtap (Karban et al. 2021): Agros Suite
is an environment for numerically solving second order
PDEs by a higher-order FEM with a variety of other
advanced features, including various optimization tech-
niques and full adaptivity. Ārtap, a Python toolbox for
robust design optimization provides an efficient and
simple programming environment that encompases a
broad-range of integrated aswell as external PDE solvers,
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optimization methods and well-known machine learning
techniques for building surrogate models.

• Eureqa (Schmidt and Lipson 2009): Eureqa is a software
(commercially available) for building surrogate models.
Its procedures start with the initial data set and follow by
computing symbolic regressions in which the search is
not only bounded to the coefficients but also to regression
model forms as well (similar to GP). It then constructs
a collection of candidate regression models, where the
precision of the models is evaluated by computing sym-
bolic differentiation of themodels and by comparing their
derivatives with the initial dataset. On the basis of these
computations, the models are sequentially recomputed
until a convergence criterion is met.

• FReET (Novak andNovak 2018): FReET (Feasible Reli-
ability Engineering Tool) is a multipurpose probabilistic
software for reliability and sensitivity analysis of var-
ious problems in engineering, with incorporated PCE
surrogate modelling enabling sensitivity and reliability
analysis.

• MATLAB toolboxes: MATLAB has a dedicated Statis-
tics and machine learning toolbox which supports subset
selection employing goodness-of-fitmeasures, linear and
nonlinear regression, regularization, andSVR.Validation
metrics for studying the performance of classification
algorithms, non-parametric regression algorithms and
surrogates, are also included.

• MATSuMoTo (Mueller 2014): MATSuMoTo is the MAT-
LAB Surrogate Model Toolbox for black-box, computa-
tionally expensive, global optimization problems, which
offers various choices for initial experimental design
strategies, sampling strategies, surrogate models and sur-
rogate model mixtures. MATSuMoTo can also compute
several function evaluations in parallel by utilizing the
Parallel Computing Toolbox available in MATLAB.

• Python toolboxes: One of the options in Python is the
SMT toolbox (Bouhlel et al. 2019), which contains sev-
eral surrogatemodellingmethods, PyDOE toolbox offers
a collection of different static sampling methods, and the
well-known ScikitLearn (Pedregosa et al. 2011), Tensor-
flow (Abadi et al. 2016) and PyTorch (Paszke et al. 2017)
all contain different model validation schemes and sur-
rogate model types.

• RBFOpt (Costa andNannicini 2018):RBFOpt is anopen-
source library for optimizing a black-box function over
a mixed-integer box-constrained set. The algorithm is
based on theRBF surrogate and performs a fast procedure
for automatic model selection.

• Surrogate Modeling (SUMO) Toolbox (Gorissen et al.
2010): SUMO is a MATLAB toolbox for adaptive
sampling and surrogate modeling which offers several
surrogate model choices (Kriging, SVM, ANN, etc.),
model selection algorithms, DOE methods, sample eval-

uation methods, and optimization algorithms (PSO, EI,
SiA, GA, etc.).

• Surrogates Toolbox (Viana andGoel 2010): Another gen-
eral purpose MATLAB toolbox for building surrogate
models which contains several third-party software pack-
ages and has four primary capabilities: DOE, surrogate
model construction (Kriging, RBF, etc.), model valida-
tion, and optimization along with sensitivity analysis.

• SurroOpt (Han 2016): SurroOpt is a research code devel-
oped for engineering designs and academic research
guided by expensive numerical simulations. A notable
feature is that constructing the surrogate and solving opti-
mization problems that correspond to the infill-sampling
criteria are looked at as new optimization mechanisms,
the role of which is the same as any of the nor-
mal gradient-based techniques or stochastic optimization
algorithms.

6 Trends, research gaps, and practical
recommendations

The presented review affirms that surrogate modelling is a
well grounded methodology in current research of FEM-
based analysis and optimization of various systems. Perfor-
mance and sensitivity analysis, uncertainty quantification,
and also surrogate assisted design optimization becomemore
accessible, mainly because of the huge reductions in compu-
tational costs. In the following text, we discuss the practical
aspects and application trends that were extracted from the
considered literature.

• The usefulness of surrogate models is mainly connected
to the reduction in computational resources and time
needed for certain analyses whilst keeping high accuracy
levels. Even though there exist many examples showing
advantageous use of surrogate models for UQ and SA,
there still remains a gap in the knowledge on the extent
of achievable time savings. The time savings were thor-
oughly analysed primarily in papers dealing with SAO.

• Researchers have been searching for more generalized
surrogates that could be applied to various dissimilar
problems. Multiple publications investigated the maxi-
mum capabilities of single surrogates, while the focus
on the automation of the process of deriving surrogates
(such as in ALAMO), and the employment of EoS orMF
models is still underutilized.

• Most types of surrogate models have low interpretability
of the underlying mathematical structures and, as such,
are ill suited for answering any analytical questions.

• A common issue is the restricted number of design
variables that surrogate models can deal with without
suffering prohibitive computational cost. To this end, it
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became popular to incorporate sensitivity analysis to the
process of the derivation of the surrogate model to find
the parameters that aremost important.Dimension reduc-
tion techniques are also becoming popular for reducing
the number of considered inputs.

• The proper choice of the initial sampling scheme is also
uncertain. Most of the reviewed papers used LHS.

• In the cases where the size of the problem is higher, the
required accuracy levels are lower, while the time for
computations remains unchanged, RBF and RSM seem
to be the appropriate choice of surrogates. Kriging is a
method that displays in high accuracy levels and rela-
tively good performance for larger problem sizes, but is
not well suited for problems that have more than roughly
50 variables. For high-dimensional problems, SVM per-
forms well even with high levels of nonlinearity.

• For SAandUQ, themostwidely used surrogates in recent
applications were Kriging and PCE.

• Using off-the-shelf optimization algorithms, such as
NSGA-II, for finding the optimal surrogate-based design
is a common practice, but building an application-
oriented method can bring significant improvements.

• There now exists a wide range of readily available soft-
ware tools for both building and validating surrogate
models, and for SAO.

7 Conclusion

Surrogate models are becoming increasingly more and more
utilized in multiple scientific and engineering disciplines and
found applications in various fields. On the other hand, the
selection of the appropriate surrogate for the given problem
is not straightforward due to various trade-offs that are asso-
ciated with using the different surrogates. This choice is a
bit clearer if the given problem can be classified as model
building/prediction, sensitivity analysis or uncertainty quan-
tification, or optimization. The differences in the various
techniques for every one of these categories from point of
view of surrogate modeling were reviewed and relevant cur-
rent advances and new applications in the different categories
were investigated with the focus on surrogates. There now
exist several software tools that give the user an easy entry
to the techniques that were investigated in this paper. These
toolswerementionedwith a short explanation of their respec-
tive aims and capabilities.

We anticipate, that future research in surrogate models
for FEM-based computations will focus more on developing
automated tools for selection and construction of surrogates,
as well as an efficient use of EoS and MF models, based
on where in the three classes the particular application is
located.We also expect future analyses to concentrate further

on decreasing computational cost related to deriving surro-
gate models and on improving their interpretability.
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a b s t r a c t

Standard evolutionary optimization algorithms assume that the evaluation of the objective
and constraint functions is straightforward and computationally cheap. However, in many
real-world optimization problems, these evaluations involve computationally expensive
numerical simulations or physical experiments. Surrogate-assisted evolutionary algo-
rithms (SAEAs) have recently gained increased attention for their performance in solving
these types of problems. The main idea of SAEAs is the integration of an evolutionary algo-
rithm with a selected surrogate model that approximates the computationally expensive
function. In this paper, we propose a surrogate model based on a Lipschitz underestimation
and use it to develop a differential evolution-based algorithm. The algorithm, called
Lipschitz Surrogate-assisted Differential Evolution (LSADE), utilizes the Lipschitz-based
surrogate model, along with a standard radial basis function surrogate model and a local
search procedure. The experimental results on seven benchmark functions of dimensions
30, 50, 100, and 200 show that the proposed LSADE algorithm is competitive compared
with the state-of-the-art algorithms under a limited computational budget, being espe-
cially effective for the very complicated benchmark functions in high dimensions.

� 2022 Elsevier Inc. All rights reserved.

1. Introduction

Many real-world optimization problems involve expensive computations, such as computational fluid dynamics and
finite element analysis, or executions of physical experiments. In such situations, the evaluation of objective functions or
constraints can take an excessively long time, prohibiting the use of conventional optimization methods [1]. To mitigate
the computational costs, surrogate models (sometimes called metamodels [2]) have been widely used in combination with
evolutionary algorithms (EAs), which are known as surrogate-assisted EAs (SAEAs) [3].

SAEAs execute only a limited number of real objective function (or constraint) evaluations and use these evaluations to
train surrogate models. The surrogate models then serve as approximations of the real functions [4], and their evaluation
should have negligible computational costs compared to evaluating the real functions. Many standard machine learning
models, such as polynomial response surface [5], Kriging (or Gaussian processes) [6], artificial neural networks [7], radial
basis functions (RBFs) [8] or support vector regression [9] have been employed in SAEAs. The performance of different sur-
rogate models under multiple criteria was investigated in [10].
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0020-0255/� 2022 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: Jakub.Kudela@vutbr.cz (J. Kůdela).
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EAs are effective metaheuristics used for global optimization, which are inspired by the processes of biological evolution,
such as reproduction, mutation, and natural selection. The most widely known examples of these techniques are genetic
algorithms (GA), differential evolution (DE), evolutionary strategy (ES), or particle swarm optimization (PSO). These methods
were successfully used in the optimization of various complex problems such as the hyperparameter optimization in deep
learning [11], difficult assignment problems [12], design of quantum operators [13], dynamical systems prediction [14], or
solving boundary value problems [15].

Surrogate models are being employed in a variety of real-world problems, including protein structure prediction [16],
elastic actuator design [17], structural optimization design of truss topology [18] or robust optimization of large scale net-
works [19]. A review of recent advances and applications of surrogate models for finite element method computations can be
found in [20].

Based on the current surrogate model, the SAEAs typically choose two types of solutions for real function evaluation:
promising samples around the optimum of the surrogate model, and uncertain samples with a large expected approximation
error. For example, in [21] the authors designed multiple trial positions for each particle and then used an RBF model to
select a position with the minimum predicted fitness value. A global and a local surrogate-assisted PSO algorithm for com-
putationally expensive problems was developed in [22]. Here, the particle with a smaller predicted fitness value than its per-
sonal historical best was exactly evaluated. The uncertain samples were used to guide the search into some sparse and not
yet well-explored areas, while the promising samples were used to guide a local search in the most promising areas. Many
combinations of the two types are used to keep a good balance of global exploration and local exploitation. For instance, [23]
developed a dimension reduction method to construct a Kriging surrogate model in a lower-dimensional space and chose the
offspring with better lower confidence bound (LCB) values for real function evaluation. The LBC values were also used in [24],
where the authors employed two different surrogate models. Here, the weight coefficient of the two models was changed to
control the evolutionary progress. Another approach utilizing a trust region method for the interleaved use of exact models
with computationally inexpensive RBF surrogates during a local search was developed in [25].

Surrogate models can guide the search of EAs to promising directions by using optima of these models, as was demon-
strated in [21,26], and many others. It has also been shown that evaluating the uncertain samples can strengthen the explo-
ration capabilities of SAEAs and effectively improve the approximation accuracy of the surrogate [2,4], and different methods
for estimating the degree of uncertainty in function prediction have been proposed [27].

In recent years, there has been a multitude of SAEAs proposed in the literature. These algorithms usually employ a meta-
heuristic algorithm to be the primary optimization framework and use the surrogates as additional tools to accelerate the
convergence of the underlying metaheuristic algorithm. In general, it is difficult for EAs to search for global optima in
high-dimensional spaces because of the curse of dimensionality. SAEAs also encounter the same challenge when the dimen-
sion of a problem is high. Although current SAEAs can handle high-dimensional expensive problems relatively well, most of
these algorithms still need many function evaluations (usually more than several thousands) to obtain good optimization
results. Also, these algorithms are developed for optimizing problems whose dimensions are usually less than 30. For
instance, the generalized surrogate single-objective memetic algorithm proposed in [28] needs 8000 function evaluations
for 30D problems. The surrogate-assisted DE algorithm introduced [29] needs more than 10000 function evaluations for
30D problems. A similarly high number of required function evaluations were utilized by Lipschitz-based algorithm in
[30]. A framework combining particle swarm optimization and RBF global surrogate was developed in [21], where the pro-
posed method first generates multiple candidate solutions for each particle in each generation, and then the surrogate is
employed to select the promising positions to form the new population. The Gaussian process model was utilized in [23]
with the lower confidence bound to prescreen solutions in a differential evolution (DE) algorithm and a dimensional reduc-
tion technique was used to enhance the accuracy of the model. The maximum dimension of the test problems used in [23]
was 50 and the dimension was reduced to 4 before the surrogate was constructed. An alternative approach for this issue is
the use of multiple swarms, that can enhance population diversity, explore different search spaces simultaneously to effi-
ciently find promising areas, and combine the advantage of different swarms if heterogeneous swarms are used. For com-
putationally expensive problems, multiple swarms were used in the surrogate-assisted multiswarm optimization
(SAMSO) algorithm [31]. The SAMSO algorithm takes advantage of the good global searchability of the teaching learning-
based optimization algorithm and the fast convergence ability of the PSO algorithm.

Multiple surrogates have been shown to perform better than single ones in assisting EAs, typically utilizing a global sur-
rogate model to smooth out the local optima, and local surrogate models to capture the local details of the fitness function
around the neighborhood of the current best individuals. In [32] an ensemble surrogate-based model management method
for surrogate-assisted PSO was proposed. This method searches for the promising and most uncertain candidate solutions to
be evaluated using the expensive fitness function. Their results were outstanding on medium-scale test functions with a lim-
ited number of function evaluations. Surrogate-assisted cooperative swarm optimization (SA-COSO) for high-dimensional
expensive problems, developed in [26], combined two PSO methods to solve problems with dimension up to 200. Another
algorithm for high dimensional expensive problems, called evolutionary sampling assisted optimization (ESAO), which uti-
lized a global RBF model and a local optimizer, was developed in [33].

A generalized surrogate-assisted evolutionary algorithm (GSGA) based on the optimization framework of the genetic
algorithm was proposed in [34]. This algorithm uses a surrogate-based trust region local search method, a surrogate-
guided GA updating mechanismwith a neighbor region partition strategy, and a prescreening strategy based on the expected
improvement infilling criterion of a simplified Kriging in the optimization process. A multi-objective infill criterion for a
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Gaussian process assisted social learning particle swarm optimization (MGP-SLPSO) algorithm was proposed in [35]. The
multi-objective infill criterion considers the approximated fitness and the approximation uncertainty as two objectives
and uses non-dominated sorting for model management. Surrogate-assisted grey wolf optimization (SAGWO) algorithm
was introduced in [36], where RBF is employed as the surrogate model. SAGWO conducts the search in three phases, initial
exploration, RBF-assisted meta-heuristic exploration, and knowledge mining on RBF.

In this paper, we propose a novel Lipschitz-based surrogate model, that is designed to increase the exploration capabil-
ities of SAEAs. We also develop a new Lipschitz surrogate-assisted differential evolution (LSADE) algorithm that uses the
Lipschitz-based surrogate in combination with a standard RBF surrogate and a local optimization procedure. The rest of this
paper is organized as follows. Section 2 briefly introduces the related techniques, including surrogate models, Lipschitz-
based underestimation, and DE. Section 3 describes the proposed LSADE algorithm in detail. In Section 4, we provide a com-
putational analysis of the individual components of the LSADE algorithm, the frequency of the utilization of said compo-
nents, the choice of an RBF, and a comparison with other state-of-the-art SAEAs, namely with SA-COSO, ESAO, SAMSO,
GSGA, MGP-SLPSO, and SAGWO. The conclusions and future research directions are described in Section 5.

2. Related Techniques

2.1. Surrogate Models

Kriging models and RBFs are the most widely applied methods for generating surrogate models [37]. It has been shown
that the Kriging model outperforms other surrogate models in solving low-dimensional optimization problems, and RBF is
the most efficient method among surrogates for solving high-dimensional optimization problems [38]. A disadvantage of
Kriging is that the training of the model is time-consuming when the number of samples is large. Since this paper focuses
on high-dimensional problems, we will adopt the RBF methodology for building the surrogate model, which has been suc-
cessfully used in several other SAEAs [26].

RBFs compute a weighted sum of prespecified simple functions to approximate complex design landscape. Given t differ-
ent sample points X1; . . . ;Xt , the RBF surrogates are written as [20]

f RBF xð Þ ¼
Xt

i¼1

wiw jjx� Xijj2ð Þ;

where wi denotes the weight which is computed using the method of least squares, and w is the chosen basis function. There
are several (symmetric) radial functions that can serve as a basis function, such as Gaussian function, thin-plate splines, lin-
ear splines, cubic splines, and multiquadrics splines [20].

2.2. Lipschitz-based Underestimation

The use of a Lipschitz constant in optimization was first proposed in [39,40] and initiated a line of research within global
optimization that is active to this day [41]. We assume that the unknown or expensive to compute objective function f has a
finite Lipschitz constant k, i.e.

9k P 0 s:t: jf xð Þ � f x0ð Þj 6 kjjx� x0jj2 8 x; x0ð Þ 2 X2;

which is among the weakest regularity assumptions we can ask for. Based on a sample of t evaluations of the function f at
points X1; . . . ;Xt , we can construct a global underestimator f L of f by using the following expression [41]

f L xð Þ ¼ max
i¼1;...;t

f Xið Þ � kjjx� Xijj2: ð1Þ

A visual representation of this Lipschitz-based surrogate function in 1D is depicted in Fig. 1, where each already evaluated
point has two lines (one to the left and the other to the right) emanating from it under an angle that depends on the Lipschitz
constant k. Then the surrogate is constructed as the pointwise maximum of the individual lines. A 2D visualization is shown
in Fig. 2. This surrogate has two important properties – it assigns low values to points that are far from previously evaluated
points and combines it with the information (objective value and ‘‘global” Lipschitz constant) from the closest evaluated
point. Therefore, it can serve as a good ‘‘uncertainty measure” of prospective points for evaluation, as points with low values
of f L are either far from any other evaluated solution, or relatively close to a good one.

Naturally, since we do not know the objective function f itself, we can hardly expect to know the Lipschitz constant k. We
will approach this issue by estimating k from the previously evaluated points. We will use the approach described in [41],

which utilizes a nondecreasing sequence of Lipschitz constants ki2Z that defines a meshgrid on Rþ. The estimate k̂t of the Lip-
schitz constant is then computed as

k̂t ¼ inf ki2Z : max
l–j

jf Xj
� �� f Xlð Þj
jjXj � Xljj2

6 ki

� �
: ð2Þ
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Sequences of different shapes could be considered – we utilize a sequence ki ¼ 1þ að Þi that uses a parameter a > 0. For this

sequence, the computation (2) of the estimate is simplifies into k̂t ¼ 1þ að Þit , where

it ¼ ln max
l–j

jf Xj
� �� f Xlð Þj
jjXj � Xljj2

� �
= ln 1þ að Þ

� 	
: ð3Þ

2.3. Differential Evolution

EAs are powerful methods for solving complex engineering optimization problems, that are difficult to approach with
standard optimization methods. In this work, DE is employed as the optimization solver due to its straightforward structure
and its global optimization capabilities. Several variants of DE have been developed to improve its performance [42]. In gen-
eral, there are four stages of DE: initialization, mutation, crossover, and selection. We assume we have a population at the
current generation, x ¼ x1; . . . ; xt½ �, where each individual has dimension D; xi ¼ x1i ; . . . ; x

D
i

� �
. In this work, we utilize the DE/

best/1 strategy for the mutation process of DE which, can be expressed as

v i ¼ xb þ F � xi1 � xi2
� �

; ð4Þ
where xb is the current best solution, xi1 and xi2 are different randomly selected individuals from the population, and F is a
scalar number typically within the interval [0.4, 1] [42]. The crossover stage of DE is conducted after mutation and has the
following form:

uj
i ¼

v j
i; if Uj 0;1ð Þ 6 Cr j j ¼ jrand

� �
;

xji; otherwise;

(
ð5Þ

where uj
i the jth component of ith offspring, xij and v i

j are the jth component of ith parent individual and the mutated indi-
vidual, respectively. The crossover constant Cr is between 0 and 1, Uj 0;1ð Þ indicates a uniformly distributed random number,
and jrand 2 1; . . . ;D½ � is a randomly chosen index that ensures ui has at least one component of v i. The interested reader can
find more information about the intricacies of DE in [42].

3. Proposed LSADE Method

The proposed LSADE method has four distinct parts: 1) the DE-based generation of prospective points, 2) the global RBF
evaluation of the prospective points, 3) the Lipschitz surrogate evaluation of the prospective points, and 4) the local opti-
mization within a close range of the best solution found so far. The execution of parts 2) – 4) of the algorithm can be con-

Fig. 2. Visual representation of the Lipschitz-based surrogate on the Rosenbrock function in 2D. Sampled points are highlighted in red and the Lipschitz-
based surrogate in light blue.

Fig. 1. Visual representation of the Lipschitz-based surrogate in 1D.
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trolled based on chosen conditions, i.e., we may sometimes skip RBF surrogate evaluation, Lipschitz surrogate evaluation, or
local optimization, if deemed advantageous.

At the beginning of the process, Latin hypercube sampling [37] is used to generate the initial population of t individuals,
whose objective function is evaluated [43]. The best individual is found, a parent population of size p is randomly selected
from the evaluated points and a new population is constructed based on the DE rules (4) and (5). If the RBF evaluation con-
dition is true, the new population is evaluated based on the RBF surrogate model. Then the best individual based on the RBF
model has its objective function evaluated and is added to the whole population. This step constitutes a global search
strategy.

Algorithm1: Pseudocode of the LSADE.

1: Generate an initial population of t points X1; . . . ;Xt and evaluate their objective function values. Denode the best
solution as Xb.

2: Set iter ¼ 0 (iteration counter), NFE = t (number of function evaluations).
3: Use the evaluated points so far to estimate k by (3) and to construct the RBF surrogate.
4: Sample p points from the population as parents for DE.
5: Based on the DE rules (4) and (5), generate children.
6: Increase iter by 1.
7: if RBF condition then
8: Evaluate the children on the RBF surrogate.
9: Find the child with the minimum RFB surrogate value, and add it to the population and evaluate its objective

function value. Increase NFE by 1.
10: if Lipschitz condition then
11: Evaluate the children on the Lipschitz surrogate (1).
12: Find the child with the minimum Lipschitz surrogate value, and add it to the population and evaluate its objective

function value. Increase NFE by 1.
13: ifLocal Optimization condition then
14: Construct a RBF local surrogate model using the best c solutions found so far.
15: Find the bounds in each dimension for the local optimization (6).

16: Minimize the local RBF surrogate model within the bounds. Denote the minimum as bXm and, if it is not already in
the population, add it to the population and evaluate its objective function value. Increase NFE by 1.

17: Find the best solution so far and denote it as Xb.
18: if NFE < NFEmax then
19: goto 3.
20: else
21: terminate.

If the Lipschitz evaluation condition is true, the Lipschitz constant k is estimated based on (3) and the new population is
evaluated on the Lipschitz surrogate model (1). The best individual based on the Lipschitz surrogate model has its objective
function evaluated and is added to the whole population.

If the Local optimization condition is true, we construct a local RBF surrogate model using the best c solutions found so far,

which we denote by bX1; . . . ; bXc. Additionally, we find the bounds for the local optimization procedure within those c points:

lb ið Þ ¼ min
j¼1;...;c

bXj ið Þ; i ¼ 1; . . . ;D;

ub ið Þ ¼ max
j¼1;...;c

bXj ið Þ; i ¼ 1; . . . ;D;
ð6Þ

and perform a local optimization of the local RBF model within the bounds lb;ub½ �. For local optimization we adapt a sequen-
tial quadratic programming strategy, which was also used by the winner of the 2020 CEC Single Objective Bound Constrained
Competition [44]. We find the local optimum and check, if it is not already in the population, before evaluating it and adding
it to the population.

The evaluation of points based on the Lipschitz-based surrogate model can be thought of as an exploration step in the
algorithm (and should increase our ability to find the regions of good solutions), whereas the evaluation of points based
on the local optimization procedure can be thought of as an exploitation step of the algorithm (and should give us the means
to improve the best solutions we have found so far).

The cycle of generating new population, evaluating it on the RBF and Lipschitz surrogate models and conducting the local
optimization is carried out until a maximum number of objective function evaluations is reached. The pseudocode1 for the
LSADE method is described in Algorithm1.

1 The MATLAB code can be found at the authors github: https://github.com/JakubKudela89/LSADE
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4. Results and Discussion

To examine the effectiveness of the proposed method, we compare it with six other state-of-the-art algorithms on a
testbed of standard benchmark functions [45] that are summarized in Table 1. Although there are more recent benchmark
sets, such as [46], these were not yet used for benchmarking SAEAs. The dimensions for the comparison are
D ¼ 30;50;100;200 for all of the benchmark functions. We also investigate the advantages of the individual components
of the LSADE method, the choice of the conditions for using the different components, and the choice of basis functions
for the RBF surrogates. The algorithm is implemented in MATLAB R2020b and runs on an Intel(R) Core(TM) i5-4460 CPU
@ 3.20 GHz desktop PC.

4.1. Experiment Setting

For constructing both the local and the global RBF surrogate models we used the SURROGATES toolbox [47] with default
settings (multiquadric RBF with parameter c ¼ 1). The DE coefficients were set to F ¼ 0:5 and Cr ¼ 0:5 [48]. The number of
initial points were set to 100 for D ¼ 30;50½ � and 200 for D ¼ 100;200½ �. The number of children was set to D. The local opti-
mization uses the best c ¼ 3 � D points found so far (or less if there are not enough points yet evaluated), and utilizes the
sequential quadratic programming algorithm implemented in the FMINCON function with default parameters. The Lipschitz
approximation parameter was set to a ¼ 0:01. The maximum number of function evaluations was set to 1000 for all prob-
lems. For all benchmark functions, 20 independent runs are conducted to get statistical results. Finally, some of the more in-
depth results regarding the sensitivity of the parameters of the LSADE algorithm are studied in the Appendix.

4.2. Comparison of Individual Components

Firstly, we assess the effectiveness of the individual components of the LSADE: the RBF surrogate, the Lipschitz surrogate,
the local optimization procedure, and their combinations. This corresponds to setting the RBF condition, Lipschitz condition,
and Local Optimization condition to true or false (1 or 0) for every iteration of the algorithm. We denote the 8 possible vari-
ations as a triplet (R – RBF, Li – Lipschitz, Lo – Local Optimization) R# j Li# j Lo#, where the ‘‘#” indicates if the condition was
true or false. The R0 j Li0 j Lo0 variation does not use any optimization (as there is no rule to add points for evaluation) and
instead just evaluates 1000 randomly selected points, using the entire computational budget. The results (mean of the best-
found objective function values over the 20 runs) for the different variations in dimensions D ¼ 30;50½ � are reported in
Table 2. Not surprisingly, the R0 j Li0 j Lo0 variant comes out being substantially worse than the other ones and is the only
one that has its cells in the table colored in grey. The remaining variations are color-coded in the following way: the variant
with the best (lowest) mean objective function value for a given problem instance has the corresponding cell in the table
colored in a dark shade of green, the one with the worst (highest) mean objective function value has a dark red color,
and the ones in between are ordered from green (better) to red (worse). This paradigm is also used in the subsequent tables
for making straightforward comparisons. From Table 2 we can see that the ‘‘usefulness” of the individual components of
LSADE is very problem-dependent, as there are instances, where adding either component may be beneficial or detrimental.
However, based on the results, it seems advantageous to have the RFB condition be true, as the majority of the best results (11
of the 14 instances) were achieved by the R1 variants. As for the other two components, the situation is more nuanced – it is
clear that they are both beneficial (the best results are always in a variant with either Li1 or Lo1), but the trade-off between
adding one or the other needs to be be investigated in more detail.

4.3. Tuning the Lipschitz and Local Optimization Conditions

As LSADE allows controlling the addition of points for evaluation for the individual surrogates, we use it for tuning the
balance between the exploration via the Lipschitz condition and the exploitation via the Local Optimization condition (from
this point onward, the RBF condition is always true). We start by using static rules for both conditions to be true, which will
be based on the current iteration number. We consider 5 possibilities: 1 – iteration number divisible by 1 (i.e., every itera-
tion); 2 – iteration number divisible by 2 (every other iteration); 4 – iteration number divisible by 4; 8 – iteration number

Table 1
Benchmark functions used for the comparison

Problem Description Property Optimum

F1 Ellipsoid Unimodal 0
F2 Rosenbrock Multimodal with narrow valley 0
F3 Ackley Multimodal 0
F4 Griewank Multimodal 0
F5 F10 in [45] Very complicated multimodal �330
F6 F16 in [45] Very complicated multimodal 120
F7 F19 in [45] Very complicated multimodal 10
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Table 2
Comparison of the individual components of LSADE on D ¼ 30;50½ �.

Table 3
Comparison of the static rules for the Lipschitz and Local Optimization conditions, D ¼ 30;50½ �.
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divisible by 8; 0 – never. For example, Li2 j Lo0 means that points for real function evaluation based on the Lipschitz condition
are added every two iterations and the Local Optimization is not used at all. In this setting, there were 25 variations in total.
The results of the computations (mean over the 20 independent runs) for all 25 variations of the considered static rules for
D ¼ 30 are reported in Table 3. In the table, next to the benchmark function identifier is the best and worst results in square
brackets, where we chose to omit the rules with Li0 or Lo0 (as these were often quite a lot worse than the other ones). Also in
Table 3 are the aggregate results for D ¼ 50, while the detailed results can be found in the Appendix. These results suggest
that using both the Lipschitz surrogate and the local optimization procedure is beneficial for every benchmark problem. The
Lispchitz surrogate is especially well suited for problems F3 and F5-F7 (which are the ones with the complicated multimodal
structure). However, none of the variations performed very well for all the considered problems, and the difference between
the best and the worst variation for a given problem (even with disregarding rules with Li0 or Lo0) was quite high.

Since the Lipschitz surrogate should serve as an exploration-enhancing part of the algorithm, it is only natural that the
frequency of its use should diminish as the iterations progress, to make space for the parts of the algorithm that focus on
the exploitation of prospective areas. Hence, we devised several dynamic rules that decrease the frequency of using the Lip-
schitz surrogate, and increase the frequency of the local optimization, both in a linear manner. For instance, the variant Li1–
4 j Lo8–1 starts with the Lipschitz surrogate being used every iteration and the local optimization procedure being used every
8 iterations, and ends with the Lipschitz surrogate being used every 4 iterations and the location optimization procedure
being used every iteration. The individual conditions for the 9 considered variations can be found in the Appendix. The
results of the computations with the dynamic rules for D ¼ 30;50;100½ � are summarized in Table 4. When comparing the
results from the dynamic and the static rules, two important observations can be made. First, the dynamic rules have a much
smaller interval between the best and the worst variation for the given problem instance, while the values of the best
instances remain comparable. Second, there is one variation that stands out as having good results across many problem
instances, particularly in higher dimensions.

The Li1–4 j Lo8–1 variant of the algorithm was selected as the best-performing one and will be used as the default vari-
ation for the subsequent modifications. It would probably be advantageous to devise a scheme that automatically decides on
the frequency of using the Lipschitz surrogate or the local optimization procedure based on the past improvements and to
tailor it for each problem separately. This is a research topic we plan to investigate in the future.

Table 4
Comparison of the dynamic rules for the Lipschitz and Local Optimization conditions, D ¼ 30;50;100½ �.
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4.4. Comparison of Different RBFs

Next, we investigate the effect of using different basis functions for the two RBF surrogate models (one global and one
local). We use the Li1–4 j Lo8–1 rule for the Lipschitz and Local Optimization conditions that was tuned for the multiquadratic
(MQ) basis function and run the algorithm with cubic, thin plate spline (TPS), linear, and Gaussian basis function for the two
RBFs instead. The results of the computations can be found in Table 5. From these results, it is apparent that the choice of the
basis function has a substantial effect on the performance of the algorithm. Both the multiquadratic and the cubic basis func-
tions performed very well on most of the problem instances, the TPS function was consistently mediocre, the Gaussian func-
tion performer mostly poorly (apart from the F1 problem) and the linear function performed the worst. The convergence
histories of these variations can be found in the Appendix. Once again, it would very likely be beneficial to devise a scheme
that would automatically choose the ‘‘appropriate” basis function for each problem separately. In the same vein, using dif-
ferent RBFs for the local and global models could also improve the performance of the algorithm.

4.5. Comparison with Other Algorithms

The proposed LSADE method is compared with six SAEAs, namely, SA-COSO [26], ESAO [33], SAGWO [36], GSGA [34],
MGP-SLPSO [35], and SAMSO [31], which are all methods for high-dimensional expensive problems that can be compared
on the same testbed (although some of the problems have not been evaluated by some of the algorithms). SA-COSO is a
surrogate-assisted cooperative swarm optimization algorithm, in which a surrogate-assisted particle swarm optimization
algorithm and a surrogate-assisted social learning based particle swarm optimization algorithm cooperatively search for
the global optimum. ESAO is an evolutionary sampling-assisted optimization method that combines global and local search
to balance exploration and exploitation, and employs DE as the optimization method. SAGWO utilizes the grey wolf opti-
mization algorithm and conducts the search in three phases, initial exploration, RBF-assisted meta-heuristic exploration,
and knowledge mining on RBF. GSGA uses a surrogate-based trust region local search method, a surrogate-guided GA updat-
ing mechanism with a neighbor region partition strategy, and a prescreening strategy based on the expected improvement
infilling criterion of a simplified Kriging in the optimization process. MGP-SLPSO employs a multi-objective infill criterion

Table 5
Comparison of different basis functions, D ¼ 30;50;100½ �.
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that considers the approximated fitness and the approximation uncertainty as two objectives for a Gaussian process assisted
social learning particle swarm optimization algorithm. SAMSO is a a surrogate-assisted multiswarm optimization algorithm
for high-dimensional problems, which includes two swarms: the first one uses the learner phase of teaching–learning-based
optimization to enhance exploration and the second one uses the particle swarm optimization for faster convergence. The
data for the comparison were obtained from the corresponding papers, with the exception of the data for SA-COSO and ESAO,
which were obtained from [31].

The average objective function value for the considered algorithms and for the LSADE algorithm with multiquadratic and
cubic RBFs are reported in Table 6. More detailed results, including the best results, worst results, and standard deviations of
the independent runs for all the considered algorithms can be found in the Appendix. Looking at D ¼ 30 first, we can see that
there is no one algorithm that is strictly better than all the others on all the benchmark functions. The less complicated func-
tions F1-F4 are dominated by MGP-SLPSO, GSGA, SAGWO, and EASO, while for the more complicated functions F5-F7 SAMSO
seems to be the best. Both of the LSADE variants come out somewhere in the middle for all problems. In a direct comparison
with LSADE, the best ones are SAMSO (better in 5/7 than LSADE-MQ) and GSGA (better in 5/7 than LSADE-C). For D ¼ 50 the
situation is quite similar: the best algorithms for the less complicated problems are MGP-SLPSO, SAGWO, and ESAO, while
SAMSO dominates the more complicated problems again. Both of the LSADE variants are, once again, somewhere in the mid-
dle. In a direct comparison with LSADE, the SAMSO is the best (better in 6/7 than LSADE-MQ). However, the situation

Table 6
Comparison with other algorithms, average objective function value.
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changes substantially for higher dimensions. For D ¼ 100, MGP-SLPSO, LSADE-C, and SAGWO dominate the less complicated
functions, while LSADE-MQ and LSADE-C have the best results for the more complicated function. In direct comparison with
LSADE, the best ones are GSGA and SAGWO (both 4/7 for both variants). For D ¼ 200, only three of the six considered algo-

Fig. 3. Convergence history of the considered algorithms on the benchmark functions F1–F4 in dimensions D ¼ 30;50;100½ �.
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rithms reported results (possibly because of prohibitively large computational times as will be investigated in the following
section). In these largest instances, LSADE-MQ and LSADE-C were the best choices for all problems with the exception of F3
for which SAMSO was the best.

The convergence histories of the considered algorithms for D ¼ 50;100;200½ � are depicted in Figs. 3 and 4, where on the y
axis are not the objective function values, but the difference between the objective function value and the corresponding
optimum (otherwise, the log operator would fail for F5). For D ¼ 200, the convergence histories of the six compared algo-
rithms were not available, and the convergence history of LSADE can be found in the Appendix. From these results, it is quite
clear that the LSADE algorithm with properly tuned rules for using the newly proposed Lipschitz surrogate model and local
optimization procedure compares well to the state-of-the-art SAEAs, especially for the high-dimensional highly complicated
benchmark problems.

4.6. Computational Complexity

For LSADE the computational complexity mainly consists of five parts: the computation time for initial search, creating
and evaluating the local and global RBF surrogate models, creating and evaluating the Lipschitz model, local optimization,
and real function evaluations. In the following, we focus on empirical analysis of the computational time for the surrogates

Fig. 4. Convergence history of the considered algorithms on the complicated benchmark functions F5–F7 in dimensions D ¼ 30;50;100½ �.
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and the local optimization procedure, as the time for real function evaluations depends on the problem the algorithm is
applied to solve (these evaluations are expected to be costly, otherwise the algorithm should not be used). First, we compare
the computational times for the individual components of the LSADE algorithm, using the R0 j Li0 j Lo1, R0 j Li1 j Lo0, and R1 j
Li0 j Lo0 variants of the algorithm for the computation of the benchmark problems for D ¼ 30;50½ �. The results of these com-
putations are reported in Table 7. We observe that the computation of Lipschitz surrogate model is significantly less com-
putationally demanding than the computation of the (multiquadratic) RBF surrogate model. Unsurprisingly, the
computational requirements for the local optimization are quite large, as these computations also contain the construction
of the local RBF surrogate model.

The computational requirements for different variants of the LSADE algorithm will differ based on the number of RBF and
Lipschitz surrogate evaluations, and on the number of times the local optimization procedure is used. The number of times
these individual components were used for the variant of LSADE that was chosen for numerical comparisons (Li1–4 j Lo8–1),
as well as for the other variants can be found in the Appendix. The average computational times of LSADE-MQ and LSADE-C
for the benchmark problems for D ¼ 30;50;100;200½ � can be found in Table 8. The computational times for different variants
of LSADE as well as for different basis functions can also be found in the Appendix. Also in Table 8 are the computational
times of SA-COSO, MGP-SLPSO, and SAGWO that were reported in the respective papers. As for the other compared algo-
rithms, GSGA reported a computational time of 3 h for the function F3 in D ¼ 100, and EASO and SAMSO did not include
an empirical analysis of computational complexity. This comparison gives a clue as to why were the MGP-SLPSO, SAGWO,
and GSGA algorithms not used for solving the large D ¼ 200 problems – the computational times become a bit prohibitive for
a large number of runs on numerous benchmark functions (but not necessarily prohibitive for a real application). On the
other hand, the computational requirements for LSADE remain relatively low, with a dependence on the problem dimension
that is roughly quadratic (at least for the considered benchmark problems). This is another indication that the LSADE algo-
rithm is well suited for high-dimensional expensive problems.

Table 7
Computational time [s] of the individual components of LSADE, D ¼ 30;50½ �.

D F R0 jLi0 jLo1 R0 jLi1 jLo0 R1 jLi0 jLo0
30 F1 76.35 3.44 38.96

F2 43.12 3.36 38.97
F3 46.59 3.19 38.36
F4 30.02 3.03 37.46
F5 70.94 3.40 39.10
F6 55.24 7.01 43.27
F7 74.55 7.03 44.49

50 F1 239.17 5.46 51.15
F2 158.25 5.57 51.57
F3 153.27 5.41 53.34
F4 85.77 5.78 53.40
F5 231.53 5.75 52.91
F6 170.06 9.62 56.26
F7 229.90 9.43 55.92

Table 8
Comparison with other algorithms, computational times [s].

D SA-COSO MGP-SLPSO SAGWO LSADE-MQ LSADE-C

30 N/A N/A 226 33.24 54.14
50 595 666 428 59.8 83.45

100 833 741 1099 164.1 167.7
200 N/A N/A N/A 591.3 685.6

Table 9
Dependence of computational time [s] of computing the Lipschitz constant estimate on dimension D and on the number of points for surrogate construction n.

D

30 50 100 200 500 1000

n 30 2.13E-04 9.45E-05 1.34E-04 1.81E-04 2.76E-04 4.84E-04
50 3.31E-04 3.03E-04 2.97E-04 4.52E-04 7.54E-04 1.32E-03

100 9.77E-04 8.73E-04 1.11E-03 1.60E-03 2.96E-03 5.40E-03
200 3.02E-03 3.41E-03 5.14E-03 6.27E-03 1.20E-02 2.13E-02
500 1.87E-02 2.16E-02 2.73E-02 3.91E-02 7.56E-02 1.34E-01

1000 6.98E-02 8.81E-02 1.13E-01 1.56E-01 3.11E-01 5.39E-01
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The complexity of the Lipschitz surrogate itself depends on two main operations: on the estimation of the Lipschitz con-
stant and on the evaluation of the surrogate. Through empirical analysis (performed on F7) shown in Table 9 we can see that
for the Lipschitz constant estimation there is a linear dependence of the computational time on the problem dimension D
and a quadratic dependence on the number of evaluated points n. Similarly, in Table 10, we find that the computational time
for evaluating the Lipschitz surrogate depends linearly on both D and n.

5. Conclusion

In this paper, we proposed a novel Lipschitz-based surrogate model for computationally expensive problems and used it
to develop LSADE, a differential evolution-based surrogate-assisted evolutionary algorithm. The LSADE algorithm utilizes the
combination of the Lipschitz-based and standard RBF surrogate models and a local optimization procedure to balance the
exploration and the exploitation on a limited computational budget. The proposed LSADE algorithm was evaluated and
its hyperparameters (such as the choice of the particular RBF surrogate and the frequency of its individual components) were
tuned on a testbed of seven widely used 30, 50, 100, and 200 dimensional benchmark problems. The computational results
show its effectiveness and competitiveness with other state-of-the-art algorithms, especially for complicated and high-
dimensional problems.

There still remains much room for further improvements. The conditions for including new points based on the Lipschitz
surrogate and local optimization could be made in an adaptive manner based on the progress of the algorithm. Similarly, the
use of different RBFs or ensembles within the same algorithm, or the use of different evolutionary algorithms could also
make the method more effective for certain classes of problems. The method could also be tested on a more diverse set
of benchmark functions. Future work will also include the extension of the Lipschitz-based surrogate model to multifidelity
and multicriteria optimization problems and its application to real-world problems.
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Appendix A. Appendix A - Detailed Results for the Static Rules

In Table 11 are the detailed results for the static rules for D ¼ 50. It shows, once again, that using both the Lipschitz sur-
rogate model and the local optimization procedure provides substantial benefits. On its own, using the Lipschitz surrogate
model was better than using the local optimization procedure for benchmark functions F3, F4, F6 and F7. However, the com-
binations of these two components are far superior for all considered benchmark functions.

Table 10
Dependence of computational time [s] for evaluating 10,000 points on the Lipschitz surrogate model on dimension D and on the number of points for surrogate
construction n.

D

30 50 100 200 500 1000

n 30 7.09E-02 6.81E-02 8.57E-02 1.19E-01 2.15E-01 3.92E-01
50 8.97E-02 1.05E-01 1.32E-01 1.85E-01 3.43E-01 6.08E-01

100 1.60E-01 1.88E-01 2.47E-01 3.53E-01 6.73E-01 1.19E+00
200 3.07E-01 3.61E-01 4.81E-01 6.91E-01 1.33E+00 2.38E+00
500 7.29E-01 8.88E-01 1.17E+00 1.69E+00 3.30E+00 5.93E+00

1000 1.45E+00 1.76E+00 2.33E+00 3.37E+00 7.06E+00 1.22E+01
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Appendix B. Appendix B - Conditions for the Dynamic Rules

In Table 12 are the conditions used for the dynamic rules of the LSADE algorithm. The mod function gives the remainder
after division (modulo operation) and d�e is the ceil operation that rounds the value inside to the nearest integer greater than
or equal to that value.

Appendix C. Appendix C - Computational Complexity for Different Dynamic Rules and Basis Functions

The computational complexity of the different variants of the LSADE algorithm depends on the number of times the algo-
rithm computed the RBF global and local models, the Lipschitz model and the local optimization procedure. Based on the
rules described in Table 12, the number of evaluation of the individual components of the LSADE algorithm for the different
variations of the dynamic rule are shown in Table 13.

In Table 14 are the computational times for the different variation of the dynamic rule for D ¼ 30;50;100½ �. We can see
that the computational effort is tied most directly to the number of times the local optimization procedure was used – the
variants that use it more often needed more computational time, especially when the dimension of the problems increased.
Another interesting observation can be made regarding the difference in computational complexity for the different bench-
mark functions – F1, F2, and F5 seem to require significantly more computational effort for the dynamic rules, especially in
higher dimensions. We can compare this observation with the computational times for the individual components of LSADE
that is reported in the paper. There, we can see that the computational times for local optimization procedure were quite

Table 11
Results for the static rule, D ¼ 50.

Li jLo F1 F2 F3 F4 F5 F6 F7

0 j0 285.5 214.4 18.36 79.97 272.9 787.4 1229
0 j1 3.728 65.41 17.99 191.9 20.03 752.7 1238
0 j2 3.523 66.94 17.77 122.0 4.710 738.0 1231
0 j4 22.32 69.03 17.71 73.31 14.93 703.4 1209
0 j8 5.086 65.10 17.72 43.94 �6.35 697.0 1181
1 j0 69.96 161.8 10.58 9.118 161.9 567.8 1047
2 j0 41.16 112.8 13.81 5.002 204.2 597.8 1102
4 j0 35.79 97.44 16.41 6.165 181.6 621.2 1133
8 j0 34.67 90.68 16.95 8.976 216.4 654.0 1162
1 j1 2.352 65.12 15.56 6.464 �138.0 410.4 1077
1 j2 3.861 62.05 13.81 1.628 �132.2 363.2 1028
1 j4 4.645 61.36 9.822 1.082 �120.9 364.7 1019
1 j8 6.003 49.13 6.460 1.045 �106.2 389.8 1023
2 j1 0.817 60.57 15.61 12.24 �76.34 454.4 1100
2 j2 0.687 55.65 15.34 2.408 �92.19 423.2 1102
2 j4 1.253 51.08 14.16 1.183 �90.54 423.9 1061
2 j8 1.959 50.49 13.92 1.010 �60.46 440.9 1058
4 j1 0.575 65.37 16.07 30.49 �66.03 558.6 1156
4 j2 0.702 56.74 16.21 6.269 �64.67 544.1 1125
4 j4 0.513 54.82 15.78 1.424 �45.27 491.7 1095
4 j8 0.967 47.45 15.69 1.105 �46.09 468.2 1112
8 j1 0.629 62.46 16.78 71.78 �18.57 615.8 1195
8 j2 0.623 58.93 16.73 18.43 �40.99 570.5 1181
8 j4 0.445 59.70 16.72 4.286 0.750 568.5 1156
8 j8 0.708 48.66 16.50 1.587 �35.96 533.9 1150

Table 12
Conditions for dynamic rules of the different variants of the LSADE algorithm.

Li jLo Lipschitz condition Local Condition

1–4 j8–1 mod iter; d8�iter1000e
� � ¼ 0 mod iter; d8000�15�iter

1000 e� � ¼ 0
1–6 j8–1 mod iter; d10�iter1000 e

� � ¼ 0 mod iter; d8000�15�iter
1000 e� � ¼ 0

1–8 j8–1 mod iter; d14�iter1000 e
� � ¼ 0 mod iter; d8000�15�iter

1000 e� � ¼ 0
1–4 j6–1 mod iter; d8�iter1000e

� � ¼ 0 mod iter; d6000�12�iter
1000 e� � ¼ 0

1–6 j6–1 mod iter; d10�iter1000 e
� � ¼ 0 mod iter; d6000�10�iter

1000 e� � ¼ 0
1–8 j6–1 mod iter; d14�iter1000 e

� � ¼ 0 mod iter; d6000�10�iter
1000 e� � ¼ 0

1–4 j4–1 mod iter; d8�iter1000e
� � ¼ 0 mod iter; d4000�8�iter

1000 e� � ¼ 0
1–6 j4–1 mod iter; d12�iter1000 e

� � ¼ 0 mod iter; d4000�8�iter
1000 e� � ¼ 0

1–8 j4–1 mod iter; d15�iter1000 e
� � ¼ 0 mod iter; d4000�8�iter

1000 e� � ¼ 0
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Table 14
Computational time [s] for the different dynamic rules for D ¼ 30;50;100½ �

D F 1–4 j8–1 1–6 j8–1 1–8 j8–1 1–4 j6–1 1–6 j6–1 1–8 j6–1 1–4 j4–1 1–6 j4–1 1–8 j4–1
30 F1 34.81 35.30 38.17 43.48 36.11 35.77 36.47 39.48 39.76

F2 36.44 38.48 42.56 53.36 37.84 37.81 40.02 42.55 43.94
F3 28.24 33.15 35.92 39.94 31.07 30.67 30.01 33.20 33.78
F4 29.62 33.24 36.32 40.36 32.01 32.38 31.52 32.34 34.22
F5 36.27 40.97 45.66 41.19 38.88 43.65 39.14 40.21 41.59
F6 36.95 39.75 48.67 43.02 40.63 47.03 39.86 40.17 42.91
F7 30.39 34.61 42.91 35.24 32.88 40.35 33.63 34.65 36.38

50 F1 66.73 69.96 75.20 84.41 73.73 90.86 82.39 89.50 88.31
F2 70.27 74.56 81.22 97.81 81.04 94.28 93.03 97.69 97.13
F3 44.13 46.28 49.45 59.08 51.52 61.87 58.04 58.47 58.86
F4 49.63 52.70 58.52 64.85 59.76 75.67 63.64 70.84 74.52
F5 70.52 74.81 80.54 97.25 77.47 94.39 91.03 91.95 94.57
F6 64.46 69.44 73.05 80.62 69.74 77.45 82.91 85.41 86.28
F7 52.90 55.64 61.47 58.95 58.13 66.13 66.27 69.47 71.75

100 F1 194.43 209.00 228.94 237.74 229.36 234.38 270.51 301.35 312.44
F2 200.79 225.49 244.92 256.21 239.94 248.38 287.85 327.42 331.41
F3 124.03 146.51 137.47 150.47 144.99 147.01 174.52 203.86 182.72
F4 136.74 161.40 185.65 163.92 168.58 185.41 199.25 238.07 238.36
F5 202.60 211.31 246.00 239.35 231.15 242.88 280.10 309.55 360.38
F6 163.63 170.32 199.43 187.03 176.06 199.93 219.83 246.08 276.70
F7 126.78 138.73 170.19 151.88 150.29 168.68 173.01 207.39 234.45

Table 15
Computational time [s] for the different basis functions, D ¼ 30;50;100;200½ �.

D F MQ Cubic TPS Linear Gaussian

30 F1 34.81 54.53 43.40 33.71 45.88
F2 36.44 58.33 49.46 32.42 50.65
F3 28.24 51.36 41.60 48.91 51.99
F4 29.62 62.10 54.11 54.30 51.92
F5 36.27 54.06 44.84 33.63 38.53
F6 36.95 53.23 51.09 37.53 43.71
F7 30.39 45.41 49.36 38.11 40.61

50 F1 66.73 102.76 92.01 44.63 86.73
F2 70.27 108.29 85.52 48.05 85.45
F3 44.13 64.07 62.10 77.25 76.60
F4 49.63 93.61 84.86 76.13 77.39
F5 70.52 76.13 70.61 41.16 47.43
F6 64.46 72.62 73.43 44.33 53.72
F7 52.90 66.70 59.00 43.56 52.37

100 F1 194.43 243.85 201.95 93.25 214.97
F2 200.79 257.15 209.09 104.64 189.06
F3 124.03 171.90 191.66 168.00 175.51
F4 136.74 179.88 179.44 167.52 131.28
F5 202.60 107.27 90.91 70.36 84.71
F6 163.63 104.77 88.37 80.79 88.68
F7 126.78 109.52 93.51 90.94 96.84

200 F1 883.57 1078.10 – – –
F2 847.72 1114.60 – – –
F3 446.99 801.77 – – –
F4 420.28 501.90 – – –
F5 640.02 546.68 – – –
F6 467.05 327.74 – – –
F7 433.72 428.97 – – –

Table 13
Number of evaluations of the individual components of LSADE for different dynamic rules for D ¼ 30;50½ �

Li jLo global RBF surrogate Lipschitz surrogate local optimization

(+local RBF)

1–4 j8–1 495 260 145
1–6 j8–1 510 231 159
1–8 j8–1 531 189 180
1–4 j6–1 471 254 175
1–6 j6–1 512 231 157
1–8 j6–1 533 189 178
1–4 j4–1 445 248 207
1–6 j4–1 469 200 231
1–8 j4–1 483 172 245
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Fig. 5. Convergence history of LSADE with different basis functions on the benchmark functions F1–F7 in different dimensions.
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Table 16
Detailed statistics of the results for SAMSO, MGP-SLPSO, GSGA, and SAGWO algorithms on all considered benchmark functions.

SAMSO MGP-SLPSO GSGA SAGWO

D F mean std best mean worst std best mean worst std best mean worst std

F1 0.0053 0.0057 N/A 0 N/A 0 0.0051 0.072 0.326 0.093 0.00001 0.000065 0.0003 0.000075
F2 28.3 0.854 N/A 100 N/A 22.3 25.69 27.59 29.04 1.295 26.79 28.29 28.83 0.517
F3 0.628 0.542 N/A 6.58 N/A 2.6 0.0065 0.023 0.057 0.023 0 0 0 0

30 F4 0.538 0.144 N/A 0.013 N/A 0.005 0.095 0.228 0.383 0.222 0.000001 0.015 0.134 0.032
F5 �239 24.3 N/A �220 N/A 19.6 �245.2 �203 �159.0 24.87 �176 �128.8 �58.71 30.82
F6 372 14.7 N/A N/A N/A N/A 275.5 424.7 563.1 106.2 348.4 489.8 675.8 128.8
F7 922 3.66 N/A 952 N/A 19 918.8 927.2 938.8 6.043 942.5 973.2 1016 18.47
F1 0.513 0.285 0 0 0 0 0.203 0.621 1.868 0.484 0.0007 0.004 0.015 0.0036
F2 50.1 0.768 88.4 120 165 18.7 46.84 48.21 49.10 0.766 48.35 49.06 49.94 0.449
F3 1.53 0.436 7.77 9.31 12.1 1.13 0.0060 0.021 0.076 0.023 0 0 0 0

50 F4 0.666 0.107 0.037 0.154 0.614 0.13 0.272 0.346 0.442 0.071 0.000035 0.025 0.230 0.058
F5 �169 31.7 �43.4 33 88.4 36.1 �139.6 �75.82 12.09 49.99 �16.63 98.39 161.5 46.90
F6 326 98.6 N/A N/A N/A N/A 271.8 403.3 524.8 87.59 430.2 502 564.2 45.25
F7 970 29.2 1030 1060 1110 21.4 943.7 970.7 1002 18.18 910 1044 1132 40.83
F1 72.1 17.8 0 0.00005 0.001 0.0002 2.603 12.32 27.15 9.394 0.017 0.139 0.371 0.097
F2 286 52.5 455 612 733 67.9 99.743 109.0 139.3 11.76 104.9 123.4 144.8 11.02
F3 6.12 0.409 13.4 14.3 15.7 0.621 0.156 1.31 2.807 0.968 0 0 0 0

100 F4 1.06 0.026 0.478 0.715 0.847 0.724 0.580 0.706 0.804 0.070 0.00021 0.023 0.229 0.052
F5 737 42 877 885 1160 117 620.4 672.5 705.2 29.79 676.7 800.1 919.0 79.27
F6 513 18.5 N/A N/A N/A N/A 422.4 447.2 472.6 14.25 482.0 518.6 555.3 20.54
F7 1290 33.4 1330 1390 1490 47.7 1220 1256 1287 24.56 910.2 1350 1437 107.5
F1 1520 21.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F2 1150 11.6 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F3 12 0.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

200 F4 9.03 1.33 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F5 4960 138 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F6 684 37.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F7 1340 24.3 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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high for problems F1, F5, and F7, while the other two components had only small dependence of computational time on the
benchmark function.

However, when we look at the computational complexity for different basis functions, that is reported in Table 15, we see
that this dependence on the benchmark function is not shared among them. What we see instead is that for each choice of a
basis function there are benchmark functions for which the computations seem to be more ‘‘difficult”, regardless of dimen-
sion. For instance, F3 and F4 need more computational time for the linear basis function, while being among the ‘‘easiest” for
the multiquadratic basis function. This could be explained by the different nature (and, thus, different ‘‘difficulty”) of the
local RBF models for the sequential quadratic programming optimizer that is used as the local optimization procedure.

Appendix D. Appendix D - Convergence Histories for Different Basis Functions

The convergence histories for different basis functions are depicted in Fig. 5. We can see that, most of the time, the best
variant (i.e., the best choice of the basis function) of LSADE for a particular problem instance did not plateau around the 1000
real function evaluation limit. Also, the best performing variant for the particular problem instance (i.e, the one that had be
best result after 1000 real function evaluations) is not necessarily the one that was the best when the number of real function
evaluations was smaller. This phenomenon can be clearly observed for the D ¼ 200 benchmark problems, where the conver-
gence histories for cubic and multiquadratic basis functions cross one another for the majority of the considered benchmark
functions. This suggests that it may be beneficial to consider several basis functions in an ensemble at the same time and find
a rule for using one of them based on the properties of the particular problem.

Appendix E. Appendix E - Detailed Results for the Algorithms Considered for the Comparison

In Tables 16 and 17 are detailed results of the computations of the six algorithms considered for comparison and two two
LSADE variants (LSADE-MQ and LSADE-C). These detailed results were obtained from the respective publications, with the
expection of the results for EASO and SA-COSO that were obtained from the SAMSO paper, and contain the best value, mean,
the worst value, and standard deviation from the corresponding computational experiments (for some algorithms, some of
these statistics were not available, and not all of the algorithms were tried on all of the benchmark functions).

From these results, we can see that although the LSADE variants are mediocre for the benchmark problems in smaller
dimensions, they are performing very well in the dimensions D ¼ 100;200½ �, especially for the benchmark functions F5-F7

Table 17
Detailed statistics of the results for EASO, SA-COSO, LSADE-MQ, and LSADE-C algorithms on all considered benchmark functions.

EASO SA-COSO LSADE-MQ LSADE-C

D F mean std mean std best mean worst std best mean worst std

F1 0.027 0.070 3.85 1.19 0.0039 0.011 0.021 0.005 0.0008 0.011 0.047 0.012
F2 25.04 1.57 59.9 24.3 24.31 27.06 29.35 1.243 27.20 27.77 29.36 0.546
F3 2.521 0.84 5.01 1.22 0.026 1.308 3.028 1.011 0.0025 0.256 1.186 0.441

30 F4 0.953 0.05 1.44 0.18 0.0098 0.051 0.107 0.027 0.046 0.176 0.673 0.172
F5 6.325 26.5 �57.4 17.5 �278.2 �218.7 �136.0 35.68 �256.2 �172.6 �81.31 39.83
F6 N/A N/A 528 94.8 229.2 433.7 664.1 149.3 233.5 426.2 674.3 148.1
F7 931.6 8.94 969 24.3 922.2 965.7 1097 51.86 916.1 938.8 1004.3 26.37
F1 0.740 0.555 46.6 17.4 0.265 1.358 3.500 0.860 0.047 0.433 1.304 0.299
F2 47.39 1.71 253 56.7 43.92 47.65 49.17 1.332 45.53 47.98 49.19 0.864
F3 1.431 0.249 8.86 1.1 2.615 6.876 15.39 3.456 0.029 0.695 2.264 0.600

50 F4 0.94 0.042 5.63 0.892 0.560 0.819 1.051 0.132 0.198 0.38 0.662 0.129
F5 198.6 45.8 235 40.9 �194.6 �98.78 �5.288 52.92 �183.0 �10.03 151.2 93.88
F6 N/A N/A 613 37.4 259.0 370.3 579.8 109.5 339.2 481.6 657.1 80.89
F7 975.3 37.1 1080 36.6 954.3 1016 1134 53.369 936.1 976.3 1103 38.52
F1 1283 134 985 214 58.02 112.8 171.2 33.61 12.93 30.94 61.73 12.46
F2 578.8 44.8 2500 97.4 108.3 140.6 194.3 24.10 97.62 106.4 120.8 6.631
F3 10.36 0.211 15.9 0.514 9.431 12.05 16.54 2.203 3.540 4.622 6.157 0.619

100 F4 57.34 5.84 63.5 14.9 3.344 6.517 10.04 1.974 0.694 0.816 0.923 0.059
F5 713.4 26.5 1420 123 �71.63 60.28 426.2 121.0 503.0 646.8 768.0 64.37
F6 N/A N/A 807 65.7 267.3 332.7 419.4 37.77 486.8 550.4 688.2 43.30
F7 1372 27.5 1410 22.8 1076 1144 1232 44.45 1002 1056 1146 34.27
F1 17616 1170 16382 2980 2473 3959 5192 705.2 587.6 793.5 1137 154.3
F2 4318 284 16411 4100 683.0 927.2 1087 112.4 507.3 576.3 662.5 46.35
F3 14.69 0.219 17.86 0.022 13.97 15.2 16.08 0.509 11.59 14.58 17.30 1.400

200 F4 572.9 36 577.7 101 93.89 135.6 188.2 22.05 2.149 2.892 3.456 0.394
F5 5389 157 3927 27.3 1114 1416 2034 287.1 2042 2305 2625 156.8
F6 N/A N/A N/A N/A 474.5 578.7 883.3 88.76 541.2 722.7 818.7 60.65
F7 1456 20.4 1347 24.7 1226 1276 1352 28.15 1140 1222 1274 33.38
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with a more complicated multimodal landscape. For instance, the worst solution obtained by LSADE-MQ in D ¼ 100 for
benchmark functions F5-F7 was better than the mean of the solutions of all other compared algorithms (except for
LSADE-C).
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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 0 1 2 – 1 0 2 5

WARM-START CUTS
FOR GENERALIZED BENDERS DECOMPOSITION

Jakub Kůdela and Pavel Popela

In this paper, we describe a decomposition algorithm suitable for two-stage convex stochastic
programs known as Generalized Benders Decomposition. For this algorithm we propose a new
reformulation that incorporates a lower bound cut that serves as a warm-start, decreasing the
overall computation time. Additionally, we test the performance of the proposed reformulation
on two modifications of the algorithm (bunching and multicut) using numerical examples. The
numerical part is programmed in MATLAB and uses state-of-the-art conic solvers.

Keywords: stochastic programming, Generalized Benders Decomposition, L-shaped
method, warm–start

Classification: 90C15, 90C25, 49M27

1. INTRODUCTION

In stochastic programming, we usually have to deal with problems that are large-scale
but have a special structure [3]. Proper utilization of this special structure is the key
part in the construction of any practically usable algorithm. One of the most widely
used algorithms for two-stage stochastic linear programs is the L-shaped method devel-
oped by Van Slyke and Wets [12]. This method is based on (or, as the authors of the
method wrote in the original paper: “is essentially the same as”) the algorithm devel-
oped by Benders in [2] known as the Benders Decomposition. Over the years, numerous
extensions for the L-shaped method have been proposed. A summary of the ones that
are currently used can be found in [13] and [14].

A further generalization of the Benders decomposition for nonlinear convex problems
([1, 4]) was proposed by Geoffrion in [7] and was named the Generalized Benders Decom-
position (GBD). The method found its main use as a solution technique for mixed-integer
nonlinear problems, described in [5] and [6].

In this paper, we describe a formulation of the GBD that suits the particular structure
of two-stage stochastic programming problems. After that, we introduce a reformulation
that enables us to add a lower bound cut, which acts as a “warm-start” for the algorithm.
As the lower bound cut, we decided to use the one that we can compute with the least
effort. As there have been several lower bounds proposed for stochastic programs (for

DOI: 10.14736/kyb-2017-6-1012
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example in [3] and [11]) the question of the appropriate one for our problem will be left
open for future research.

2. GBD – MAIN IDEAS

In this section, we give a brief insight into the GBD, as it is not our intention to devote
several pages to its thorough description. An interested reader can find an in-depth
analysis of the method in the original paper [7] and in the works of Floudas in [5] and
[6].

The problems GBD aims to solve are of the form:

minimize
x,y

f(x, y)

subject to G(x, y) ≤ 0, x ∈ X, y ∈ Y,
(1)

where x ∈ X ⊆ <n1 , y ∈ Y ⊆ <n2 , f : <n1 × <n2 −→ < is a real-valued objective
function and G : <n1 ×<n2 −→ <m is an m-vector of constraint functions. The variable
x is called a complicating variable in the sense that (1) is a much easier optimization
problem in y when x is temporarily held fixed. The following conditions are required:

C1: Y is a nonempty, convex set and the functions f and G are convex for each fixed
x ∈ X.

C2: The set
Zx = {z ∈ <m : G(x, y) ≤ z for some y ∈ Y } (2)

is closed for each fixed x ∈ X.

C3: For each fixed x ∈ X ∩ V , where

V = {x : G(x, y) ≤ 0, for some y ∈ Y }, (3)

one of the following conditions holds:

(i) the problem (1) has a finite solution and has an optimal multiplier vector for
the inequalities.

(ii) the problem (1) is unbounded, that is, its objective function value goes to
−∞.

This covers quite a wide range of problems [5]. The particular situation we are
interested in is when f and G are linearly separable in x and y, i. e.

f(x, y) = f1(x) + f2(y),
G(x, y) = G1(x) +G2(y).

(4)

The basic idea in GBD is the generation, at each iteration, of an upper bound and
a lower bound on the optimal solution of (1). The upper bound results from a subprob-
lem, while the lower bound results from a master problem. The subproblem corresponds
to the problem (1) with fixed x-variable (i. e., it is in the y-space only), and its solution
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provides information about the upper bound and the Lagrange multipliers ([1, 4]) as-
sociated with the inequality constraints. The master problem is derived via nonlinear
duality theory, makes use of the Lagrange multipliers obtained in the subproblem, and
its solution provides information about the lower bound, as well as the next set of fixed
x-variable to be used subsequently in the subproblem [5].

3. GBD FOR TWO-STAGE STOCHASTIC PROGRAMMING PROBLEMS

In stochastic programming linear separability of the objective function and constraints
is a very common property. Especially the two-stage stochastic programming problems
can be often linearly separated into the functions concerning only the first-stage and
the second-stage decision variables – this is the raison d’etre of the following passages,
and it is why we believe that the GBD (in its slightly modified form) is a well-suited
algorithm for these kinds of problems.

3.1. Problem formulation

Let us consider the following problem:

minimize
x,y1,...,yK

f1(x) +

K∑

k=1

p(ξk)f2(yk, ξk)

subject to G11(x) ≤ 0,

G21(ξk)x+G22(yk, ξk) ≤ 0, ξk ∈ Ξ,

(5)

where f1 : <n1 −→ < is a convex function, all m1 constraint functions G11 : <n1 −→ <m1

are convex, and for all ξk ∈ Ξ with |Ξ| = K finite, G21(ξk) is a m2 × n1 matrix,
f2(·, ξk) : <n2 −→ < is convex, all m2 constraint functions G22(·, ξk) : <n2 −→ <m2 are

convex, P (ξ = ξk) ≡ p(ξk) > 0,
∑K
k=1 p(ξk) = 1.

The master problem corresponding to (5) has the following form:

minimize
x,θ

f1(x) + θ

subject to G11(x) ≤ 0,
Dix ≤ di, i = 1, . . . , p,
Ejx− θ ≤ ej , j = 1, . . . , r,

(6)

where θ ∈ < serves as the lower bound on the second stage objective value. The meaning
of matrices D,E and vectors d, e will be fully discussed in the actual solution procedure.
These matrices and vectors correspond to the feasibility and optimality cuts derived
from the solutions of the subproblem.

Because of the structure of the two-stage stochastic programming problems, the sub-
problem separates into K independent subproblems (one for each scenario) in the form:

minimize
yk

f2(yk, ξk)

subject to G21(ξk)x+G22(yk, ξk) ≤ 0.
(7)
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Remark 3.1. Regarding our notation – one could use k instead of ξk in the formulations
above (and in the ones that will follow). The use of ξ is standard in the stochastic
programming literature.

3.2. Solution procedure

The following algorithm is an implementation of the GBD inspired by [7] and [5]. The
single difference (apart from the notation) is that the separability of the subproblem into
K independent subproblems is taken into account. At the start of the procedure, the
matrices D,E and vectors d, e are empty (they store the successive cuts as the iterations
progress).

To our best knowledge, this is the first implementation of the GBD for two-stage
stochastic convex programming problems of the form (5).

Step 0. Set p = 0, r = 0, and ε > 0.

Step 1. Solve (6) and obtain (x̄, θ̄). The optimal objective value of (6) gives us a lower
bound on optimal objective value of (5).

Step 2. For fixed x = x̄ solve all K subproblems (7). One of two possibilities can
happen.

Step 2A. For some k the subproblem (7) is infeasible. Solve the following problem:

minimize
yk,v≥0

||v||1
subject to G21(ξk)x̄+G22(yk, ξk) ≤ v,

(8)

where v ∈ <m2 is a decision vector representing “slacks” in the constraints. Get
(ȳk, v̄) and from its dual obtain the optimal Lagrange multipliers λ. Set p = p+ 1.
Add a new row to the matrix D and vector d in (6):

Dp = λTG21(ξk), dp = λT (−G22(ȳk, ξk)). (9)

Return to Step 1.

Step 2B. All the subproblems have finite optimal values, we obtained (ȳk, uk), where
uk are optimal Lagrange multipliers. The evaluation of the objective of (5) at
(x̄, ȳ1, . . . , ȳK) gives us an upper bound on its optimal value. Check for optimality:
if

θ̄ + ε ≥
K∑

k=1

p(ξk)f2(ȳk, ξk), (10)

terminate, (x̄, ȳ1, . . . , ȳK) are ε-optimal [7]. Otherwise, set r = r+1 and add a new
row to the matrix E and vector e in (6):

Er =

K∑

k=1

p(ξk)(uTkG21(ξk)),

er = −
K∑

k=1

p(ξk)(f2(ȳk, ξk) + uTk (G22(ȳk, ξk)).

(11)

Return to Step 1.



1016 J. KŮDELA AND P. POPELA

Remark 3.2. In Step 1, before any optimality cut is added, θ̄ as well as the optimal
objective value of (6) will be −∞. For computational reasons it is advisable to include
a lower bound on θ in the actual implementation of the algorithm.

Remark 3.3. If X ⊆ V (i. e., in the case of complete or relatively complete recourse
[3]), the Step 2A is never needed and for a given ε > 0 the GBD terminates in a
finite number of iterations. If however, X * V , then we may need to solve Step 2A
infinitely many successive times. In such a case, to preserve finite ε-convergence, we
can modify the procedure so as to finitely truncate any excessively long sequence of
successive executions of Step 2A and go to Step 2B with x̂ equal to the extrapolated
limit point which is assumed to belong to X ∩ V , see [5] or [6].

4. REFORMULATION WITH A BOUNDING CUT

In this section, we introduce a novel reformulation of the master problem (6) that in-
cludes bounds obtained from problems, that can be thought of as predecessors of the
two-stage stochastic programming problem (5). The definitions of these problems, as
well as their subsequent relations, are based on [9].

4.1. Bounds

Let us define
minimize
xk,yk

f1(xk) + f2(yk, ξk)

subject to G11(xk) ≤ 0,
G21xk +G22(yk, ξk) ≤ 0,

(12)

as the optimization problem for one particular realization ξk ∈ Ξ and denote its opti-
mal objective function value as z(ξk) The wait-and-see solution is the solution without
nonanticipativity constraints (i. e. all scenarios are treated and optimized separately).
We will denote the average of the optimal objective values of (12) (when treated sepa-
rately) as:

WS =

K∑

k=1

p(ξk)z(ξk). (13)

Now we may compare this wait-and-see solution to the solution of (5). We will denote
the optimal objective value of (5) as RP (the recourse problem [3]). The following
inequality holds for any stochastic program:

WS ≤ RP. (14)

From this, we can see that WS creates a valid lower bound on the harder problem we
are aiming to solve. The idea behind the reformulation is to include such a valid lower
bound to the algorithmic procedure to “jumpstart” it and by doing so save on iterations,
and, as a result, save on the overall computational effort and time.

For practical purposes, many people would believe that finding the wait-and-see so-
lution is still too much work. A natural temptation is to solve a much simpler problem:
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the one obtained by replacing all random variables by their expected values. This is
called the expected value problem, which is simply

EV = z(ξ̄), (15)

where ξ̄ =
∑K
k=1 p(ξk)ξk.

4.2. Reformulation

Although WS is a valid bound, the computational effort for its enumeration is much
higher compared to the effort to compute EV (if |Ξ| = K, then computing EV is K times
faster). However, EV does not necessarily have to play the role of a lower bound on RP;
there are instances, where RP ≤ EV. For the purpose of deriving the reformulation, we
will, for now, suppose that EV is, in fact, a valid lower bound on RP. The discussion on
what is going to occur when it is not will follow shortly after. Suppose

EV ≤ RP, (16)

holds, then

f1(x) +

K∑

k=1

p(ξk)f2(yk, ξk) ≥ EV, (17)

holds for the optimum of (5). This inequality cannot be added directly to (5) since it
would cease to be a convex program. The reformulation we propose does not directly
alter (5) but is instead aimed at the master problem (6). A new variable z is introduced
to bound the first-stage objective from above (by minimizing this variable we effectively
minimize the first-stage objective itself)

f1(x) ≤ z, (18)

which is a convexity preserving inequality. Furthermore, this new variable z added to
the variable representing the second stage θ form a lower bound on the overall objective
function. Finally, the bound

z + θ ≥ EV, (19)

since it is affine, can be added to (6), and the reformulation of the problem is

minimize
z,x,θ

z + θ

subject to f1(x) ≤ z,
G11(x) ≤ 0,
z + θ ≥ EV,
Dix ≤ di, i = 1, . . . , p
Ejx− θ ≤ ej , j = 1, . . . , r.

(20)

After this reformulation, the algorithm continues as usual, arriving at an ε-optimal
solution in, preferably, a shorter time than its original counterpart (we will see the
results of some numerical examples in later sections).
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Now, let us address what happens if (16) does not hold. One of two possibilities can
occur, namely, that optimal objective function value (as determined by the algorithm)
will be equal to EV, or that the problem will be infeasible. The price we pay for
mistakenly using the cuts (16) is, in both cases, one iteration of the algorithm – i. e.
after one iteration we can assess, if our algorithm will arrive at the desired solution,
and, either restart it without (16) (possibly including WS instead), or continue.

However, certain situations can happen when we restart the algorithm without (16)
and get the same result again. This occurs if the original problem is infeasible (in which
case we have some serious model or data issues) or if EV = RP, in that case we would
have to run the entire algorithm only to arrive at the same objective function value
(which is a bit unfortunate, but unavoidable).

Another important question is if the cut (16) is worth having an additional variable.
The numerical examples we provide in the later sections should supply us with some,
although not definitive, insight into this issue.

Lastly, the question whether or not it is better to use the guaranteed lower bound
in WS is also present. As we mentioned earlier, WS is computationally much more
expensive than EV. In the examples that will follow we did not carry any examination
of the WS bound, nor of any other possible bound. This is one of the areas that require
further future investigation.

The solution procedure can be summarized in the following steps:

Step 0. Solve the expected value problem to get EV (15). Set p = 0, r = 0, and ε > 0.
Solve (20) and obtain (z̄, x̄, θ̄). If z̄ + θ̄ = EV, terminate (and use the original
method without the EV cut, or use WS instead). Otherwise, go to Step 2.

Step 1. Solve (20) and obtain (z̄, x̄, θ̄).

Step 2., Step 2A., Step 2B. The same as in section 3.2.

5. BUNCHING AND MULTICUTS

Just as in the linear case with the L-shaped method, different implementations of the
algorithm can be researched for improving its performance ([3, 13]). Two possible ad-
justments suitable for GBD – bunching and the multicut formulation will be discussed
and brought into the numerical examination.

Bunching, as the name suggests, is a technique that instead of the full scenario de-
composition uses “bunches” of scenarios and decomposes the original problem alongside
these bunches. Having L bunches of scenarios and sets of indices Bl 6= ∅, l = 1, . . . , L,
such that Bi ∩ Bj = ∅ for i 6= j and

⋃L
l=1Bl = {1, . . . ,K}. The subproblems (7) for

each bunch l have the form

minimize
yk,k∈Bl

∑

k∈Bl

p(ξk)f2(yk, ξk)

subject to G21(ξk)x+G22(yk, ξk) ≤ 0, k ∈ Bl.
(21)
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The feasibility and optimality cuts in Step 2A. and Step 2B. of the algorithm are changed
accordingly. The feasibility cut in Step 2A. becomes

Dp =
∑

k∈Bl

λTkG21(ξk), dp = −
∑

k∈Bl

λTkG22(ȳk, ξk), (22)

and the optimality cut in Step 2B. becomes

Er =

L∑

l=1

∑

k∈Bl

uTkG21(ξk),

er = −
L∑

l=1

∑

k∈Bl

p(ξk)(f2(ȳk, ξk) + uTkG22(ȳk, ξk),

(23)

where λk and uk are the Lagrange multipliers corresponding to the inequalities from
scenario k ∈ Bl.

In the linear case, bunching comes from the idea that several second-stage problems
might have the same optimal basis [3]. In the convex case, the justification is a bit
different. Our argumentation is purely in the realm of the actual computation – it
is sometimes faster (due to a non-zero initialization time, etc.) to compute a larger
instance containing several separable problems than to solve these problems separately.
The examples will show, up to a certain point, exactly this kind of behavior.

The multicut formulation comprises of developing one cut for every second-stage
problem (i. e. for every scenario) instead of the aggregated cut introduced in (6). It
results in adding a separate θk for each scenario and as a consequence in a much greater
number of cuts which more accurately describe the recourse function [3]. The master
problem for multicut formulation has the following form (without the additional cut
developed in the previous section)

minimize
x,θ1,...,θK

f1(x) +

K∑

k=1

θk

subject to G11(x) ≤ 0,
Dix ≤ di, i = 1, . . . , p,
Ej(k)x− θk ≤ ej(k), j(k) = 1, . . . , r(k),
k = 1, . . . ,K,

(24)

where r(k) and j(k) indices are related to the kth subproblem, see the steps below.
In this case, the feasibility cuts remain the same, but the remaining steps require the
following changes:

Step 0. – Multicut Set p = 0, r(k) = 0, for k = 1, . . . ,K and ε > 0.

Step 1. – Multicut Solve (24) and obtain (x̄, θ̄1, . . . , , θ̄K).

Step 2. – Multicut For fixed x = x̄ solve all K subproblems (7). One of two possi-
bilities can happen.

Step 2A. – Multicut As before.
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Step 2B. – Multicut All the subproblems have finite optimal values, we obtained
(ȳk, uk), where uk are optimal Lagrange multipliers. For k = 1, . . . ,K if

θ̄k + ε ≤ p(ξk)f2(ȳk, ξk), (25)

set r(k) = r(k) + 1 and add a new row to the matrix E and vector e in (24):

Er(k) = p(ξk)(uTkG21(ξk)),
er(k) = −p(ξk)(f2(ȳk, ξk) + uTkG22(ȳk, ξk)).

(26)

If (25) does not hold for any k, terminate. Otherwise, return to Step 1.

Even though this formulation provides a more accurate description of the recourse
function, its usefulness in the convex case is highly ambiguous. The number of variables
in the master problem is much larger than in the original algorithm and the number of
constraints (cuts) added in each iteration is also much higher.

6. NUMERICAL EXAMPLES

To test the above mentioned theoretical concepts, we designed two convex two-stage
problems. On these problems, we compare the performance of different variations of
the GBD as well as a formulation without any decomposition (denoted as full recourse
problems).

The implementation was done in MATLAB using its embedded fmincon solver and
the state-of-the-art conic solvers SeDuMi and SDPT3 [10] (which are a part of the CVX
modeling system [8]). Although the examples are not derived from any applied problems,
they provide a valid insight into the advantages and disadvantages of the presented
methods.

6.1. Example 1

The first example investigates the following problem

minimize
x,y1,...,yk

(x1 − 4)4 + (x2 − 3)4 +

K∑

k=1

pk(qk,1e
yk,1 + qk,2y

4
k,2)

subject to x2 − ln(x1 + 1)− 1 ≤ 0,
x2 + x31 − 8 ≤ 0,
x1, x2 ≥ 0,
x1 + hk,1 − yk,1 ≤ 0, k = 1, . . . ,K,
x2 + hk,2 − yk,2 ≤ 0, k = 1, . . . ,K,

where the random parameters q and h are q ∼ |N(0, 3)|, h ∼ 0.7 · |N(0, 1)| + 0.5. The
scenarios are then constructed using the usual Monte Carlo sampling, the number of
scenarios will vary to demonstrate the performance of the different approaches. The
methods and solvers used for solving the problem were:

• vanilla (original) version of GBD (master and subproblems solved by fmincon);
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• reformulation with the EV cut (master and subproblems solved by fmincon);

• bunching of several scenarios (master and subproblems solved by fmincon);

• bunching of several scenarios with the EV cut (master and subproblems solved by
fmincon);

• full recourse problem (FRP) solved by fmincon;

• FRP solved by SDPT3 (as a part of the CVX modeling system);

• FRP solved by SeDuMi (as a part of the CVX modeling system).

The required precision for all the methods was set to ε = 10−5. The results are summa-
rized in the tables that follow. The Time[s] value represents the computational time it
took the procedure to terminate, given the same level of accuracy for all methods. The
number of scenarios in the first instance is K = 60. The first two tables show, how the
computational time of the GBD is affected by introducing the EV cut:

Method Vanilla EV cut
Time[s] 12.26 9.05

Tab. 1. Computational time [s] for Vanilla version and EV cut,

K = 60.

and by bunching with different sizes of the bunch:

Bunch size 2 3 5 10 12 15 20 30
Time[s] – Without EV cut 7.04 5.08 3.61 2.76 2.64 2.65 2.75 3.22
Time[s] – With EV cut 5.19 3.79 2.75 2.07 2.02 1.99 2.13 2.44

Tab. 2. Computational time [s] for bunching with different sizes of

the bunch, K = 60.

An identical structure is utilized in the case of K = 240 scenarios:

Method Vanilla EV cut
Time[s] 43.84 35.42

Bunch size 2 3 5 6 8 10 12 15
Time[s] – Without EV cut 24.8 17.7 12.4 11.4 9.9 9.2 8.8 8.7
Time[s] – With EV cut 19.9 14.3 10.2 9.2 8.0 7.4 7.2 7.0

Bunch size 16 20 24 30 40 60 80 120
Time[s] – Without EV cut 8.7 8.9 9.4 10.5 12.2 16.8 21.5 25.3
Time[s] – With EV cut 7.0 7.2 7.7 9.5 9.8 13.6 17.3 20.2

Tab. 3. Computational time [s] for Vanilla, EV cut and bunching,

K = 240.
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From these result, we see that the EV cut, as well as efficient bunching, can have a strong
effect on the overall computation time. The experiments suggest that there exists an
“optimal” bunch size that is independent of the number of scenarios. For this particular
problem, it seemed that a bunch size between 12 and 16 was the one. For the subsequent
computations, the bunch size 15 was chosen.

In the following table, we compare the computation times for growing number of
scenarios using the methods and solvers mentioned above:

Number of scenarios 60 240 1,500 2,400 4,800 6,000

Vanilla 12.3 43.8 258.6 410.1 – –
EV cut 9.1 35.4 208.9 332.7 – –
Bunch 15 2.7 8.7 52.5 78.0 154.75 194.9
Bunch 15 with EV 1.9 7.0 40.1 62.6 124.6 156.4
FRP – SDPT3 6.1 22.3 139.9 241.7 – –
FRP – SeDuMi 1.4 6.2 32.8 65.2 170.3 242.5
FRP – fmincon 0.5 12.2 3,000∗ 3,000∗ – –

Tab. 4. Computational time [s] for different methods, increasing

number of scenarios.

The asterisk(*) denotes that the algorithm did not arrive at the desired precision (i. e.
even after 3,000s the fmincon did not arrive sufficiently near the optimum). The dash(–)
means that we did not pursue the analysis in this direction since we anticipated results
incomparable with the more efficient methods.

These results show that for big enough problems, the efficient implementation GBD,
even with simpler solvers, can outperform the state-of-the-art solvers. For smaller in-
stances, however, these solvers are more efficient (as will be presented in the results of
the second example).

6.2. Example 2

The second example included in our investigation, compared to the first one, adds some
more first and second-stage variables and non-differentiable functions. These are the
reason why, in the implementation, the more efficient solvers had to be utilized for
the solution of the master problem (fmincon performed very poorly in this case). The
problem in question is the following

minimize
x,y1,...,yk

(x1 − 4)4 + (x2 − 3)4 + (x3 − 2.5)2 + 3|x1 + x4 + 4x5 − 15|

+

K∑

k=1

pk(qk,1e
yk,1 + qk,2y

4
k,2 + qk,3(yk,3 − 2)2

+qk,4|yk,4 + qk,5yk,5|)
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subject to x2 − ln(x1 + 1)−√x3 + x4 + x25 − 10 ≤ 0,
x2 + x31 + x33 − 10 ≤ 0,
−x4 −

√
x5 + 5 <= 0,

xi ≥ 0, i = 1, . . . , 5
Tkx +Wkyk ≤ hk, k = 1, . . . ,K.

The random parameters q, h,W and T are (using some MATLAB syntax), q ∼ |N(0, 1)|,
h ∼ −0.7 · |N(0, 1)| − 1, W = −I5, M = 5x5 matrix with 1 to 3 zeros in each column,
the rest are 1, T = abs(0.2.∗ randn(5)).∗M. The scenarios are, again, constructed using
the Monte Carlo sampling. As before, we used several methods and solvers for solving
the problem:

• vanilla version of GBD (master solved by SeDuMi, subproblems by fmincon);

• EV cut version (master solved by SeDuMi, subproblems by fmincon);

• bunching + EV cut (master solved by SeDuMi, subproblems by by fmincon);

• bunching + EV cut + multicut (master solved by SeDuMi, subproblems by fmincon);

• FRP solved by SDPT3;

• FRP solved by SeDuMi.

The required precision for all the methods was set to ε = 10−5. By computations similar
to that of the first example, we found the appropriate bunching size to be 5. The
comparison of the different methods for varying number of scenarios is summarized in
the following table:

Number of scenarios 125 250 500 1,000 2,000 3,000 5,000 7,500

Vanilla 19 45 77 164 313 – – –
EV cut 15 34 61 123 320 – – –
Multicut 19 36 134 150 309 – – –
Bunch 5 12 32 44 84 170 255 452 650
Bunch 5 + EV 9 17 34 71 175 210 364 578
Bunch 5 + Multicut 11 20 32 74 250 452 – –
Bunch 5 + Multicut + EV 9 15 34 99 256 463 – –
FRP – SDPT3 13 30 64 130 334 – – –
FRP – SeDuMi 1 2 6 15 40 102 355 622

Tab. 5. Computational time [s] for different methods, increasing

number of scenarios.

The results demonstrate the pros and cons of using the GBD algorithm. For smaller
instances, it is much more efficient to use the appropriate state-of-the-art and free solver
(SeDuMi) to attack the full recourse formulation. However, for larger problems, the
bunching variation of the GBD was able to outperform all the rest. The multicut
variation suffered from a growing size of the master problem and, in this setting, cannot
be considered as an improvement (a similar behavior for linear problems was shown in
[13]).
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7. CONCLUSION

In this paper, we introduced a novel utilization and reformulation of the traditional
Generalized Benders Decomposition. To support the utility of our reformulation (as
well as the utility of the GBD itself), we presented our computational experience.

From the result of the numerical examples, it is apparent that the GBD and our
modifications definitely have a place as solid techniques for solving medium-sized convex
two-stage stochastic problems and that especially the bunching ideas and modifications
produce fruitful results.

It must be acknowledged that further investigation (i. e. a wider variety of numerical
test, preferably from applications) is needed to make the arguments more conclusive.
Also, further research in terms of usable lower bound as the “warm-start” cuts is antic-
ipated.
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CHANCE CONSTRAINED OPTIMAL BEAM DESIGN:
CONVEX REFORMULATION AND PROBABILISTIC
ROBUST DESIGN

Jakub Kůdela and Pavel Popela

In this paper, we are concerned with a civil engineering application of optimization, namely
the optimal design of a loaded beam. The developed optimization model includes ODE-type
constraints and chance constraints. We use the finite element method (FEM) for the approxi-
mation of the ODE constraints. We derive a convex reformulation that transforms the problem
into a linear one and find its analytic solution. Afterwards, we impose chance constraints on
the stress and the deflection of the beam. These chance constraints are handled by a sampling
method (Probabilistic Robust Design).

Keywords: optimal design, stochastic programming, chance constrained optimization,
probabilistic robust design, geometric programming

Classification: 90C15, 90C30, 65C05, 49M25

1. INTRODUCTION

Optimal design problems in engineering frequently lead to optimization problems involv-
ing differential equations. One of the classes of these problems is shape optimization
[11]. The particular shape optimization problem considered in this paper is the optimal
design of a beam (be it a fixed beam, a cantilever beam, etc.) subjected to some kind of
loading. Since shape optimization problems are inherently non-convex, most approaches
use metaheuristics such as genetic algorithms [13] or cuckoo search [9]. A closely related
field of topology optimization (where the size and shape of the structure can be ma-
nipulated) has developed a multitude of successful methods (level set, homogenization,
topological derivative, etc.), see [19].

This problem was previously also examined in [21] and [24], where the authors used
the finite element method (FEM) and the finite difference method to approximate the
ordinary differential equations (ODE) and solve the problem by nonlinear programming
techniques. Our paper shows that this beam design problem can be formulated as
a geometric programming problem, which can be further transformed into a convex
one, and thus can be efficiently solved (in comparison with the previous approaches).
Geometric programming problems with random coefficients (although without chance
constraints) were investigated in [8].

DOI: 10.14736/kyb-2018-6-1201
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An important issue regarding the design is its reliability (see [12]). In the context
of this paper the reliability of the design will mean that the constraints in the result-
ing optimization program should hold with high probability. Depending on how reliable
design is required, we can destinguish between the so-called chance constrained (or prob-
abilistic constrained) optimization problems (see, e. g. [20]) and the robust optimization
problems (see, e. g. [3]). Current approaches dealing with reliability constrained beam
design, such as [2] and [25] use simple (point) loads and Gaussian distribution of the
unknown parameters. In this paper we investigate the chance constrained beam de-
sign problem under more complicated random loads. We utilize the sampling approach
(called Probabilistic Robust Design) developed in [5, 6] and [7] to obtain a manageable
approximation of the chance constrained problem and use a scenario-deletion method
to compute a trade-off between the reliability of the design and the objective value.

2. PROBLEM FORMULATION

The problem is best described by Figure 1. We consider a fixed beam of length l with
rectangular cross-section that is subjected to a load hpxq (with the opposite direction
than the axis y), which is depicted in Figure 1a. The task is to find the optimal design,
in terms of the cross-section dimensions a and b (Figure 1b), that minimizes the weight
of the beam.

Naturally, given a load hpxq the beam will deflect and will be subjected to a bending
stress. The requirement for the design is that the maximum stress in the beam is less
then a material-specific constant, that ensures that the design is safe (we use the value
at which the material begins to deform plastically). The problem can be formulated as
the following ODE-constrained optimization program:

minimize
a,b,vpxq

ρabl (1)

subject to E
ab3

12

d4v

dx4
pxq “ hpxq, x P r0, ls, (2)

ˇ̌
ˇ̌E b

2

d2v

dx2
pxq

ˇ̌
ˇ̌ ď σM , x P r0, ls, (3)

vp0q “ 0,
dv

dx
p0q “ 0, vplq “ 0,

dv

dx
plq “ 0, (4)

aL ď a ď aU , bL ď b ď bU , (5)

(6)

where ρ is the density of the material, vpxq is the deflection of the beam (with the
opposite direction than the axis y) in a point x P r0, ls, E is the Young modulus, σM
is the maximum stress allowed, and aL, aU , bL, bU are the bounds on the cross-section
dimensions. The constraint (2) is the ODE that governs the deflection of the beam vpxq
given a specific load hpxq. The constraint (3) is the maximum allowed stress in the
beam. The constraint (4) defines the boundary conditions for the ODE (i. e. that we
have a fixed beam).
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a: The scheme of loaded beam.
b: Beam cross-
section.

Fig. 1. The problem geometry.

2.1. FEM problem approximation and solution

To tackle the problem (1) – (5) we use the FEM to approximate the ODE in (2) and (3).
Following [22] (p. 25 – 27), we divide the one-dimensional beam with the space dimension
x into N finite elements. We will denote the nodal value of the deflection vpxq in the node
xe as Ve “ vpxeq and the nodal value of its derivative in the same node as θe “ dv

dx pxeq.
The continuous variable v is approximated by ṽ in terms of nodal values as follows:

ṽe “ rN1N2N3N4srVe´1 θe´1 Ve θesT
where N1, . . . , N4 are the following cubic shape functions:

N1 “ 1

d3
pd3 ´ 3dx2 ` 2x3q, N2 “ 1

d2
pd2x´ 2dx2 ` x3q,

N3 “ 1

d3
p3dx2 ´ 2x3q, N4 “ 1

d2
px3 ´ dx2q,

and d “ l
N is the length of one element. Substitution in (2) and application of Galerkin’s

method leads to four element equations:

ż d

0

»
——–

N1

N2

N3

N4

fi
ffiffiflE

ab3

12

d4

dx4
rN1N2N3N4s dx

»
——–

Ve´1

θe´1

Ve
θe

fi
ffiffifl “

ż d

0

»
——–

N1

N2

N3

N4

fi
ffiffiflhpxqdx.

To avoid differentiating four times, the following approximation is used:ż
Ni

d4Nj
dx4

dx « ´
ż

dNi
dx

d3Nj
dx3

dx «
ż

d2Ni
dx2

d2Nj
dx2

dx.

The resulting system of linear equations has the form: E ab3

12 KV “ h, where V “
pV0, θ0, . . . , VN , θN qT . The dimensions of the stiffness matrix K are p2N ` 2qˆp2N ` 2q
and its precise description can be found in [21] or [22]. The order of accuracy of the
finite element approximation is Opd2q.

Using this approximation of the deflection, the stress limit (3) on each element is
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given by

|E b
2
rN 2

1 N
2
2 N

2
3 N

2
4 srVe´1 θe´1 Ve θesT | ď σM .

This equation describing the stress in one specific node holds only for the end nodes
belonging to one element (the first one at x0 and the last one at xN ). Since the rest of
the nodes belongs to two adjacent elements, the stresses are not equal. Therefore, we
consider the average stress from this discontinuity:

E
b

2

1

2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
rN 2

1 p0qN
2
2 p0qN

2
3 p0qN

2
4 p0qs

»
——–

Ve´1

θe´1

Ve
θe

fi
ffiffifl` rN

2
1 pdqN

2
2 pdqN

2
3 pdqN

2
4 pdqs

»
——–

Ve
θe
Ve`1

θe`1

fi
ffiffifl

ˇ̌
ˇ̌
ˇ̌
ˇ̌
.

The system of inequalities that approximates (4) can be written as |E b
2CV| ď σM , where

the matrix C has dimensions pN`1qˆp2N`2q and its complete description can be found
in [21].

The FEM approximation of the problem (1) – (5) is then the following (using the
notation described above):

minimize
a,b,V

ρabl (7)

subject to E
ab3

12
KV “ h, (8)

|E b
2
CV| ď σM , (9)

aL ď a ď aU , bL ď b ď bU . (10)

This problem has 2N variables (2N`2 in V of which 4 are fixed by boundary conditions,
and 2 design variables a and b), 2N ` 2 constraints and a box constraints on a and b,
and is non-convex, meaning that the certification of global optimality is computationally
very demanding.

The crucial realization (the one that is absent in [21] and [24]) is that the stiffness
matrix K is, by design, always invertible. In other words – given a, b and h, the equation
describing the deflection of the beam has a unique solution. Using this fact, we can
rewrite (8) as:

V “ 12

Eab3
K´1h, (11)

and (9) becomes:

| 6

ab2
CK´1h| “ 1

ab2
|6CK´1h| ď σM . (12)

Let us denote as vM the maximum of |6CK´1h| over all the nodes of the FEM discretiza-
tion. Since σM is the same for all N ` 1 nodes, the N ` 1 inequalities (9) are equivalent
to a single inequality:

vM
ab2

ď σM . (13)

Utilizing these results and neglecting the constants ρ and l in the objective (7), we can
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reformulated the problem (7) – (10) as the following equivalent problem:

minimize
a,b

ab (14)

subject to
vM
ab2

ď σM , aL ď a ď aU , bL ď b ď bU , (15)

which is a geometric program, that can be transformed into a convex program (this
transformation is utilized in the following sections), with 2 variables, 1 constraint and
box constraints on variables. This problem has the following analytic solution (that is
derived in the Appendix A):

• if vM
aUb2U

ą σM , the problem is infeasible,

• if vM
aLb2L

ď σM , the solution is a˚ “ aL, b
˚ “ bL,

• if b “
b

vM
aLσM

is within the bounds, b˚ “ b, a˚ “ aL,

• else a “ vM
b2UσM

and a˚ “ a, b˚ “ bU .

This can be readily seen from the problem structure – a percentage increase in both a
and b has the same result on the objective function value. However, percentage increase
in b causes the left hand side of the inequality (13) to decrease faster than an equal
percentage increase in a, making it preferable to increase b as much as needed (i. e.
satisfying the inequality or the box constraint) before increasing a.

This result covers some of the numerical examinations done in [21] and [24] (which
were more focused on the illustration of the combination of FEM and stochastic pro-
gramming), without the need for using any optimization software (the only value one
has to compute numerically is vM ). Another advantage is that for the same geometry
(i. e. the same boundary conditions and number of elements) we can precompute the
FEM matrices C and K (or its appropriate factorization, see [22], Chapter 3) and use
them to quickly get optimal solution for different values of the load h.

2.2. Additional variable, constraints and convex reformulation

The structure of the problem allows us to consider the material constant E as a variable,
without destroying the convexity of the upcoming reformulation. This means we can
choose the quality of the material – higher E corresponding to better and more expensive
one. To be able to perform the convex reformulation, the dependence of the cost on the
material (per volume units) must be in the form cEp, with c ą 0, p P R. The objective
function then becomes cEpabl, where the constants c and l can be dropped during the
optimization.

An additional restriction on the solution involves the maximum absolute deflection
of the beam, which we denote as δM . In our FEM formulation, the vector V includes
both the deflection of the beam and its first derivative in each node of the division. The
condition on maximum deflection involves only the odd components in V:

|Vi| ď δM , i “ 1, 3, 5, . . . , 2N ` 1, (16)
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which is equivalent to a single inequality

max
i“1,3,5,...,2N`1

|Vi| ď δM , (17)

using (11) and denoting the maximum of the odd components of |12K´1h| as wM we
get

wM
Eab3

ď δM . (18)

The final constraint restricts the ratio between b and a to be less then the maximum
allowed rM .

Adding these constraints to (14) – (15), treating E as a design variable (within the
bounds 0 ă EL ď EU ) and changing the objective yields the following geometric program
(presented here in its standard form):

minimize
a,b,E

Epab (19)

subject to
vM
σM

a´1b´2 ď 1, (20)

wM
δM

E´1a´1b´3 ď 1, (21)

1

rM
ba´1 ď 1, (22)

aLa
´1 ď 1,

1

aU
a ď 1, bLb

´1 ď 1,
1

bU
b ď 1, ELE

´1 ď 1,
1

EU
E ď 1, (23)

where all the coefficients of the monomials in (19) – (23) are clearly positive, meaning
we can use the following transformation to derive an equivalent convex program. First,
we transform the variables: ya “ log a, yb “ log b, yE “ logE. Then, we can write every
monomial fpa, b, Eq “ caα1bα2Eα3 , where c ą 0, α1, α2, α3 P R in the form

fpa, b, Eq “ fpeya , eyb , eyE q “ ceα1yaeα2ybeα3yE “ eα1ya`α2yb`α3yE`log c,

turning a monomial function into the exponential of an affine function. Next we trans-
form the objective and the constraints, by taking the logarithm. Since every function
both in the objective and the constraints is a monomial, the transformation results in a
linear program:

minimize
ya,yb,yE

ya ` yb ` p yE (24)

subject to ´ ya ´ 2yb ` log vM ´ log σM ď 0, (25)

´ ya ´ 3yb ´ yE ` logwM ´ log δM ď 0, (26)

´ ya ` yb ´ log rM ď 0, (27)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU . (28)

Remark 2.1. If the dependence of the material cost was
ř
iPI ciEpi , ci ą 0, instead

of the simple cEp, there would still be a convex reformulation, but it would no longer
result in a linear program – there would be a term involving a logarithm of a sum of
exponentials in the objective (see [4], p. 160 – 162).
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3. RANDOM LOADS AND ROBUST SOLUTION

Next we investigate how the problem changes, when we introduce uncertainty. The
previous papers [21] and [24] dealt with the situation, when the Young modulus E was
random. In this paper, we assume that the randomness is in the load h. Instead of spec-
ifying the distribution of h by its cumulative distribution function or moment generating
function (that would allow us to use the Bernstein approximation, see [16]), we devised
a mechanism that produces random samples/scenarios. The use of scenarios is typical
for engineering applications because of the difficulty of identifying the probability distri-
bution. In this way, we imitate the situation when one does not know the distribution
of a certain random variable, but only has access to its realizations – in our experience
a much more common case. The sampling procedure is the following (Upa, bq denotes a

Fig. 2. A sample of 5 scenarios of the load hpxq.

uniform distribution):

0. Pick a random integer i between 1 and 4. Set hpxq “ 0.

1. Repeat i times: Generate a Bernoulli trial.

a) If 0, randomly pick 4 points 0 ď xa ď xb ď xc ď xd ď l and add to
hpxq a trapezoidal load hapxq between xa and xd. Height of the trapezoid is
hM „ Up0, 1q (Figure 2, scenarios 1 and 3).

b) If 1, sample hµ „ Up0, lq, hσ „ Up0, lq and add to hpxq the bell curve load:

hbpxq “ 1

hσ
?

2π
e
´px´hµq2

2h2σ .

2. Normalize the load hpxq: Pick H „ Up8000 N, 15000 Nq. Compute hi “
şl
0
hpxqdx,

and set hpxq “ H
hi
hpxq.
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This sampling procedure generates very real-life like loads as can be seen in Figure 2 (see
[15]). Because we transformed the original problem (1) – (5) into the problem (24) – (28),
we are much more interested in the values vM and wM resulting from the the different
load scenarios, and the actual loads hpxq are of little importance. In Figure 3 we see the
scatter plots and histograms of log vM and logwM using 2,000 scenarios of the load.

Fig. 3. Scatter plots and histograms of log vM and logwM , 2,000
scenarios.

The important question is how to approach the optimization model (24) – (28) when
some of its parameters, namely vM and wM , are random. One possibility is to use a so
called robust formulation (see [3]), i. e. to enforce that the constraints will hold for any
possible value of the random parameter. This results in the following formulation:

minimize
ya,yb,yE

ya ` yb ` p yE (29)

subject to ´ ya ´ 2yb ` log vM pξq ´ log σM ď 0, @ξ P Ξ, (30)

´ ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0, @ξ P Ξ, (31)

´ ya ` yb ´ log rM ď 0, (32)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (33)

where ξ is a random outcome from a sample space Ξ. This formulation is best suited
for situation, when the violation of the constraints would have disastrous consequences.

Given our scenario generation procedure, the robust formulation requires us to find
the scenarios that result in the highest values of vM and wM , and then optimize the
design with respect to these extreme values. The generation procedure allows for point
loads (setting all 4 point of the trapezoid into a single point) and the magnitude of the
point load is restricted to 15, 000 N by the normalization step. This allows us to find the
worst-case scenarios simply by using the formulas for the deflection and stress of a fixed
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beam under point load (these can be found in [17] and [23]). The analysis of the worst
case situations is carried out in the Appendix B.

4. CHANCE CONSTRAINTS AND PROBABILISTIC ROBUST DESIGN

The issue with the robust formulation is that it produces solutions that may be overly
conservative. A different approach is to allow the possibility, that some of the constraints
are violated, provided that the probability of violation is small. This corresponds to the
following chance constrained (or probabilistic constrained, see [20]) formulation of the
problem:

minimize
ya,yb,yE

ya ` yb ` p yE (34)

subject to P

ˆ ´ya ´ 2yb ` log vM pξq ´ log σM ď 0,
´ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0

˙
ě 1´ ε, (35)

´ ya ` yb ´ log rM ď 0, (36)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (37)

where 1´ε is the reliability level (or, alternatively, ε is the allowed violation probability).
Except for some special cases, the formulation (34) – (37) is hard to solve exactly (see
[20]).

One of the standard approaches (see [14]) to get an approximate solution is to fix
the reliability level ε, draw a large number S of scenarios and construct a mixed-integer
program, where for each scenario we have a binary decision variable, that corresponds
to that scenario being neglected or not. One of the constraints then requires that we
neglect less then εS scenarios. This method is clearly constrained by our ability to solve
large mixed-integer programs. One of the most recent of the multiple approaches for
solving the mixed-integer formulation was developed in [1].

In this paper we use a different approach based upon a method called Probabilistic
Robust Design (see [5, 6] and [7]). This approach requires only that the objective is a
convex functions and that the constraint functions are convex for any realization of ξ
– there are no other restrictions on the position of the random variable (such as only
right-hand side, linearly perturbed, etc.). The first part of the method is, again, to draw
a large number S of scenarios (denoted by s) and solve the following problem:

minimize
ya,yb,yE

ya ` yb ` p yE (38)

subject to ´ ya ´ 2yb ` log vM psq ´ log σM ď 0, s “ 1, . . . , S, (39)

´ ya ´ 3yb ´ yE ` logwM psq ´ log δM ď 0, s “ 1, . . . , S, (40)

´ ya ` yb ´ log rM ď 0, (41)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU , (42)

where the 2N constraints (39) and (40) can be reduced to the following 2 constraints:

´ ya ´ 2yb `max
s
plog vM psqq ´ log σM ď 0, (43)

´ ya ´ 3yb ´ yE `max
s
plogwM psqq ´ log δM ď 0. (44)

For a high enough choice of S, the optimal solution to (38) – (44) yields a feasible solu-
tion for the chance constrained problem (29) – (33) with high probability (see [5]). As
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investigated in [18], the approach tends to be overly conservative (i. e., the feasibility
result holds, but we get a solution that is far from optimal for the chance constrained
problem).

The result regarding optimality for this approach was added in [6], where the idea
of discarding scenarios was developed. The main idea is, in addition to drawing S
scenarios, to determine a number k ă S, such that if we remove any k scenarios, the
optimal solution of this modified problem is, again, feasible for the chance constrained
problem with high probability. Furthermore, if the k scenarios are removed in an optimal
fashion (i. e. we select those whose removal decreases the optimal objective value the
most), there is a direct link between the optimal solution of the modified problem and the
optimal solution of the chance constrained problem (in the sense that we get closer the
more scenarios S we draw). Although this basically recovers the standard mixed-integer
approach discussed above, there is a crucial difference in how the scenario-removal is
achieved.

As discussed in [6], we can remove the k scenarios at once (the mixed-integer variant)
or we can use a greedy approach that removes just one scenario at a time. In our case,
the greedy approach makes perfect sense – there are only two scenarios (called support
scenarios in [7]) whose removal can decrease the optimal objective value of (38) – (44):

s1 “ argmax
s

plog vM psqq and s2 “ argmax
s

plogwM psqq.
To determine, which one of the two scenarios should be removed, we must solve two
additional linear problems (with s1 or s2 temporarily removed) and compare their op-
timal objective values – this is repeated k times. The individual optimization problems
have three variables and differ only in the value of one coefficient in (40) or (41) and as
such can be efficiently solved by warm-starting the optimization algorithm with the last
solution.

There is one different approach we will discuss, and that is the approximation of the
joint chance constraint (35) by individual chance constraints:

P p´ya ´ 2yb ` log vM pξq ´ log σM ď 0q ě 1´ ε1, (45)

P p´ya ´ 3yb ´ yE ` logwM pξq ´ log δM ď 0q ě 1´ ε2, (46)

which become

´ ya ´ 2yb ` Φ´1
v p1´ ε1q ´ log σM ď 0, (47)

´ ya ´ 3yb ´ yE ` Φ´1
w p1´ ε2q ´ log δM ď 0, (48)

where Φ´1
v and Φ´1

w are the (empirical) quantile functions of log vM pξq and logwM pξq,
and ε1, ε2 ą 0 are appropriately chosen. The problem then becomes:

minimize
ya,yb,yE

ya ` yb ` p yE (49)

subject to ´ ya ´ 2yb ` Φ´1
v p1´ ε1q ´ log σM ď 0, (50)

´ ya ´ 3yb ´ yE ` Φ´1
w p1´ ε2q ´ log δM ď 0, (51)

´ ya ` yb ´ log rM ď 0, (52)

log aL ď ya ď log aU , log bL ď yb ď log bU , logEL ď yE ď logEU . (53)

The choice of ε1 and ε2 is crucial – simply setting ε1 “ ε2 “ ε does not guarantee that
the reliability of the optimal solution of (49) – (53) is better than 1´ ε (see Figure 4). To
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obtain a safe approximation of the joint chance constraint (35), ε1 and ε2 must satisfy
(see [16]): ε1 ` ε2 ď ε, the simplest values being ε1 “ ε2 “ ε

2 .

5. NUMERICAL RESULTS

Our goal is to obtain a trade-off curve between the optimal objective value (the weight
of the beam) and the reliability of the design. To achieve this we used our scenarios
generation technique to draw two large sets of scenarios, where the first one contained
S1 and the second S2 scenarios. The first one was used for the optimization part (i. e.
solving (38) – (44)), the second one was used for the estimate of the reliability level ε.
The method proceeded as follows:

0. Generate the two sets of scenarios.
Repeat k times:

1. Solve (38) – (44) using the first set of scenarios. Obtain an optimal design.

2. Estimate the reliability of the design using the second set of scenarios: given a
design in the form of a, b and E, the constraints (39) – (40) either both hold, or
at least one of them does not hold. This outcome describes a binomial random
variable – compute its point estimate (a fraction of scenarios for which at least
on of the constraints did not hold) and its 99.9% confidence interval (using the
Clopper-Pearson interval).

3. Determine, which one of the two support scenarios to remove, and delete it from
the first set of scenarios. Return to 1.

The problem setting under the numerical investigation was as follows: the length of
the beam l “ 1 m, number of elements for the FEM formulation N “ 1,000, objective
coefficient p “ 1

2 , limits on the variables aL “ bL “ 10´2 m, aU “ bU “ 10´1 m,
EL “ 1.9¨105 MPa and EU “ 2.2¨105 MPa, maximum stress σM “ 120 MPa, maximum
deflection δM “ 5¨10´4 m, maximum ratio between the variables rM “ 5, number of
scenarios in the first set S1 “ 50,000, number of scenarios in the second set S2 “ 100,000,
number of scenarios to discard k “ 2,500.

The number of elements was chosen such that the length of one element d “ l
N “

10´3 m results in accuracy Op10´6q of the FEM approximation, which is roughly of
the same order as the accuracy of the optimization algorithm (termination criteria for
optimality), that was set to 10´7. The accuracy of the FEM was checked using the
analytic results in the Appendix B and using ANSYS (commercial engineering simula-
tion software). The FEM formulation was programmed and solved in MATLAB, the
optimization parts were computed using the CVX modeling system (see [10]).

In Figure 4 is depicted the trade-off between the reliability level ε and the optimal
objective value using the two approaches (38) – (44) and (49) – (53). In the first approach
we gradually remove the scenarios (upto k “ 2,500) – the computational time for each
iteration (two optimization problems, scenario removal) was around 0.4 s. In the second
approach (49) – (53) we vary the values of ε1 “ ε2 between 0 and 0.05 – the computational
time for each value was around 0.2 s. Furthermore, used a grid of 1,001 steps for ε1 and
ε2 between 0 and 0.05 and computed the results for all of these grid values (they fill the
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Fig. 4. The trade-off between reliability and optimal objective
value.

grey area in Figure 4), this took 45 hours. The robust solution was computed using the
results in the Appendix B (maximum point loads in 1

2 l and 1
3 l).

The comparison between the two methods favours the scenario-removal one (38) – (44)
over solving (49) – (53) with ε1 “ ε2, as it produces designs with better objective value.
For example, given the target (point estimate of) ε “ 0.01, the closest design produced by
(49) – (53) is for ε1 “ ε2 “ 0.008, with the objective value 1.776¨104, whereas the method
using (38) – (44) with k “ 568 deleted scenarios achieved the objective value 1.769¨104.
Moreover, the scenario-removal method (38) – (44) produced as good solutions as the
best ones using the grid values for ε1 and ε2 and solving (49) – (53).

The shape of the trade-off heavily depends on the distribution of hpxq (and, conse-
quently, on the distribution of vM and wM ). For the computation we used the scenario
generation described earlier, which was constructed ad hoc to demonstrate the method.
In a real situation (e. g., the one in [12]), the scenario generation will be swapped for
the particular problem-specific outcomes.

6. CONCLUSION

In this paper, we have presented new reformulation for the optimal beam design problem,
that serves as a test example for a larger set of problems solvable by similar techniques as
presented. This reformulation leads to a geometric program and as such can be solved
to global optimality. We then used this reformulation and extended the problem by
considering randomness in the load and presented the robust and chance constrained
problems. The chance constrained variant was handled by the Probabilistic Robust
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Design approach. For the given scenario generation procedure we computed the trade-
off between reliability and optimal objective value. Further research will be focused on
situations, when the cross-section of the beam is not rectangular and the reformulation
results in a possibly non-convex problem.

APPENDIX

A. The Analytic Solution

Here we derive the analytic solution for (14) – (15). We use the same convex reformula-
tion as in (34) – (37) to derive an equivalent linear program:

minimize
ya,yb

ya ` yb (54)

subject to ´ ya ´ 2yb ` log
vM
σM

ď 0, (55)

log aL ď ya ď log aU , log bL ď yb ď log bU . (56)

0. a) If log vM
σM

ď log aL ` 2 log bL, we are done, a˚ “ aL, b
˚ “ bL.

b) If log vM
σM

ą log aU ` 2 log bU , the problem is infeasible.

1. Otherwise, we need ya, yb : ya ` 2yb “ log vM
σM

, log aL ď ya ď log aU , log bL ď yb ď
log bU .

2. The KKT conditions:ˆ
0
0

˙
“
ˆ

1
1

˙
` ν

ˆ
1
2

˙
` λ1

ˆ´1
0

˙
` λ2

ˆ
0
´1

˙
` λ3

ˆ
1
0

˙
` λ4

ˆ
0
1

˙
, (57)

λ1plog aL ´ yaq “ 0, λ2plog bL ´ ybq “ 0, λ3pya ´ log aU q “ 0, λ4pyb ´ log bU q “ 0,
(58)

log aL ď ya ď log aU , log bL ď yb ď log bU , ya ` 2yb “ log
vM
σM

, λi ě 0, i “ 1, . . . , 4.

(59)

3. From complementary slackness condition (58) we get 16 different possible situa-
tions - corresponding to a or b being at the specific bounds. From the outset it is
clear that the variables cannot be at the lower and upper bound at the same time:
λ1 and λ3 cannot be both nonzero, the same holds for λ2 and λ4. This rules out
7 possibilities.

4. If λ1 “ 0, λ2 “ 0, λ3 “ 0, λ4 “ 0, from (57) we have

ν “ ´1, from the first row, ν “ ´1

2
, from the second row,

which is not possible. This means that there cannot be an optimal solution such
that aL ă a˚ ă aU and bL ă b˚ ă bU at the same.

5. If λ1 ą 0, λ2 “ 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aL, yå “ log aL. From (57) we have

ν “ ´1

2
, λ1 “ 1

2
ą 0,
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meaning that y˚b “ 1
2 log vM

aLσM
and b˚ “ ey

˚
b “

b
vM
aLσM

is a possible solution,

provided bL ă b˚ ă bU .

6. If λ1 ą 0, λ2 ą 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aL, b
˚ “ bL. This is the situation in 0.

a).

7. If λ1 ą 0, λ2 “ 0, λ3 “ 0, λ4 ą 0, i. e. a˚ “ aL, b
˚ “ bU . From (57) we have

λ1 “ 1` ν ą 0 ñ ν ą ´1, λ4 “ ´1´ 2ν ą 0 ñ ν ă ´1

2
, which is possible.

This is the (arguably rare) situation when log aL ` 2 log bU “ log vM
σM

.

8. If λ1 “ 0, λ2 ą 0, λ3 “ 0, λ4 “ 0, i. e. a˚ “ aU . From (57) we have

ν “ ´1, λ2 “ ´1 ą 0, which is not possible.

9. If λ1 “ 0, λ2 ą 0, λ3 ą 0, λ4 “ 0, i. e. a˚ “ aU , b
˚ “ bL from (57) we have

λ3 “ ´1´ ν ą 0 ñ ν ă ´1, λ2 “ 1` 2ν ą 0 ñ ν ą ´1

2
, which is not possible.

10. If λ1 “ 0, λ2 “ 0, λ3 ą 0, λ4 “ 0, i. e. b˚ “ bL. From (57) we have

ν “ ´1

2
, λ3 “ ´1

2
ą 0, which is not possible.

11. If λ1 “ 0, λ2 “ 0, λ3 ą 0, λ4 ą 0, i. e. a˚ “ aU , b
˚ “ bU . From (57) we have

λ3 “ ´1´ ν ą 0 ñ ν ă ´1, λ4 “ ´1´ 2ν ą 0 ñ ν ă ´1

2
, which is possible.

This is the situation when log aU ` 2 log bU “ log vM
σM

.

12. If λ1 “ 0, λ2 “ 0, λ3 “ 0, λ4 ą 0, i. e. b˚ “ bU . From (57) we have

ν “ ´1, λ4 “ 1 ą 0, which is possible, yå “ log
vM
b2UσM

, a˚ “ vM
b2UσM

.

B. Worst case deflection and stress for point load

The following results are using the known formulas for deflection and bending moment
for fixed beam under a point load that can be found in [17] and [23]. The Figure 5

depicts the situation and provides a graphical description of the used notation.

Fig. 5. Point load.
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The maximum deflection of a fixed beam under point load is computed by the fol-
lowing formula (can be found in [23], p. 190):

δM “ 2Hl3al
2
b

3EIp3la ` lbq2 , (60)

where la and lb correspond to the location of the point load (la` lb “ l), I is the moment

of inertia of the cross-section and E is the Young modulus. In our case I “ ab3

12 . If we
look at (60) as a function of the location la of the point load, its maximum occurs when
la “ lb “ l

2 l.
The maximum stress for each point x P r0, ls in the beam can be expressed in the

following terms: σM pxq “ Mpxq
I yM , where Mpxq is the bending moment and yM “ ˘ b

2 .
This allows us to use the formulas for maximum bending moment of fixed beam under
point load to find the critical points (the signs in the formulas are neglected, since the
constraint (3) restricts the absolute value of the stress). The bending moment of a beam
under point load changes linearly between the points 0, la, and l, so it suffices to compute
the bending moment in these three points. Given a point load at x “ la bending moment
at the ends of the beam (x “ 0 and x “ l) is

left end: Mpx “ 0q “ Hlal
2
b

l2
, right end: Mpx “ lq “ Hl2alb

l2
,

the maximum occurs when la “ 1
3 l (or la “ 2

3 l) resulting in Mpx “ 0 or x “ lq “ 4
27 lH.

The moment at the location of the point is Mpx “ laq “ 2Hl2al
2
b

l3 , for which the
maximum occurs when la “ lb “ 1

2 l, resulting in Mpx “ 1
2 lq “ 1

8 lH. This means that
worst case occurs, when the point load is located in la “ 1

3 l or la “ 2
3 l.
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e-mail: Jakub.Kudela@vutbr.cz

Pavel Popela, FSI, Technická 2, Brno. Czech Republic.
e-mail: popela@fme.vutbr.cz



A11



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2990726, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Pool & Discard Algorithm for Chance
Constrained Optimization Problems
JAKUB KŮDELA1, PAVEL POPELA2
1Institute of Computer Science and Automation, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2,
Brno, Czech Republic (e-mail: Jakub.Kudela@vutbr.cz)
2Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, Brno, Czech Republic
(e-mail: popela@fme.vutbr.cz)

Corresponding author: Jakub Kůdela (e-mail: Jakub.Kudela@vutbr.cz).

The financial support for this work was provided by The Ministry of Education, Youth and Sports of the Czech
Republic INTER-COST project LTC18053, and by the project “Computer Simulations for Effective Low-Emission
Energy” funded as project No. CZ.02.1.01/0.0/0.0/16 026/0008392 by Operational Programme Research, Development
and Education, Priority axis 1: Strengthening capacity for high-quality research.

ABSTRACT In this paper, we describe an effective algorithm for handling chance constrained
optimization problems, called the Pool & Discard algorithm. The algorithm utilizes the scenario
approximation framework for chance constrained optimization problems, and the warm-start and
problem modification features of modern solvers. The exploitation of the problem structure and
efficient implementation allows us to considerably speed up the computations, especially for large
instances, when compared with conventional methods.

INDEX TERMS chance constrained programming, scenario approximation, P&D algorithm,
stochastic programming, constraint removal

I. INTRODUCTION
This article describes a novel method for handling
chance constrained optimization problems that was
developed in the author’s dissertation [1]. The
introduction into the topic of chance constrained
optimization is derived (more or less directly) from
[2] – with most of the used notation adapted from
[2] as well. Let X ⊆ <nx be a convex and closed
domain of optimization and consider a family of
constraints x ∈ Xξ parameterized in ξ ∈ Ξ. The
uncertain parameter ξ describes different instances
of an uncertain optimization scenario. We adopt a
probabilistic description of uncertainty and suppose that
the support Ξ for ξ is endowed with a σ-algebra D and
that a probability measure P is defined over D. The
probability measure P describes the probability with
which the uncertain parameter ξ takes value in Ξ. Then,
a chance constrained optimization program is written as:

CCPε : minimize
x∈X

cTx

subject to P{ξ : x ∈ Xξ} ≥ 1− ε.
(1)

Here, we assume that the σ-algebra D is large enough,
so that {ξ : x ∈ Xξ} ∈ D, i.e. {ξ : x ∈ Xξ} is a
measurable set. Also, linearity of the objective function

can be assumed without loss of generality, since any
objective of the form

minimize
x∈X

c(x),

where c(x) : X → < is a convex function, can be re-
written as

minimize
x∈X ,y≥c(x)

y,

where y is a scalar variable.
In the CCPε (1), constraint violation is tolerated, but

the violated constraint set must be no larger than ε. The
parameter ε allows us to trade robustness (in terms of
the probability of constraint violation) for performance
(in terms of the optimal objective value): the optimal
objective value J∗ε of CCPε is a decreasing function
of ε and provides a quantification of such a trade-off.
Depending on the particular application (the range of
applications is quite wide), ε can take different values
and has not necessarily to be thought of as a “small”
parameter.
Chance constrained programming has been around

for more than half a century, at least since the work
of Charnes, Cooper and Symonds in the fifties, see
[3]. In [3], however, only individual chance constraints
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were considered. Joint probabilistic constraints, as in
(1), were first considered by Miller and Wagner, [4], in
an independent context, while a general theory is due
to Prékopa, see [5], [6]. Prékopa was also the one to
introduce the convexity theory based on logconcavity,
which was a fundamental step toward solvability of a
large class of chance constrained problems. The books
[7] and [8] provide an excellent and broad overview
on logconcavity theory in stochastic programming, and
related results. Yet another study about the convexity
of chance constrained problems is [9], while convex
approximations of chance constrained problems are
considered in [10], [11], and [12]. Stability of the solution
under perturbation of the chance constrained problem
is studied in [13] and [14]. Although chance constrained
problems can be efficiently solved in some special cases,
it remains true that the feasible set of CCPε is in general
non-convex in spite of the convexity of the sets Xξ.
Therefore, an exact numerical solution of CCPε is, at
least in general, extremely hard to find.

II. SAMPLE COUNTERPART APPROACH
We can view the variable x ∈ X ⊆ <nx as the
“design variable”. The family of possible instances is
parameterized by an “uncertainty vector” ξ ∈ Ξ ⊆ <nξ .
Then, the prototype optimization problem consists in
minimizing a linear objective cTx, subject to that x
satisfies the constraints g(x, ξ) ≤ 0,∀ξ ∈ Ξ, where
g(x, ξ) : X × Ξ → [−∞,∞] is a scalar-valued function
that specifies the constraints. Note that considering
scalar-valued constraint functions can be assumed
without loss of generality, since multiple constraints
g1(x, ξ) ≤ 0, . . . , gm(x, ξ) ≤ 0 can be expressed
by a single scalar-valued constraint by the position
g(x, ξ) = maxi=1,...,m gi(x, ξ). Although convexity is
preserved by this operation, other valuable properties,
such as linearity or differentiability, are lost. In typical
situations, Ξ has infinite cardinality, i.e., it contains an
infinite number of possible instances for ξ.

Assumption 2.1 (Convexity):
For each ξ ∈ Ξ the sets Xξ are convex and closed.

Assumption 2.1 requires convexity only with respect
to the design variable x, while generic nonlinear
dependence with respect to ξ is allowed.

Depending on the situation at hand, the measure P
can have different interpretations. On one hand, it can
be the actual probability with which the uncertainty
parameter ξ takes on value in Ξ. On the other hand,
P can simply describe the relative importance we assign
to different uncertainty instances. We have the following
definition:

Definition 2.2 (Probability of Violation):
Let x ∈ X be given. The probability of violation of x is

defined as

V(x) = P{ξ ∈ Ξ : g(x, ξ) > 0}.

For example, if we assume a uniform probability density,
then V(x) measures the “volume of bad” parameters
ξ such that the constraint g(x, ξ) ≤ 0 is violated. A
solution x with small associated V(x) is feasible for most
of the problem instances, i.e., it is approximately feasible
for the worst-case problem. This concept of approximate
feasibility has been introduced in the context of robust
control in [15]. Any such solution is here named an “ε-
level” solution:
Definition 2.3 (ε-Level Solution):
Let ε ∈ (0, 1). We say that x ∈ X is an ε-level robustly
feasible (or, more simply, an ε-level) solution, if V(x) ≤
ε.
Our ultimate goal is to devise an algorithm that
returns a ε-level solution, where ε is any fixed small
reliability level. The approach utilized in this paper uses
a surrogate model called “Scenario Design Problem”.
By scenario it is here meant any possible realization or
instance of the uncertainty parameter. In the “scenario
design” we optimize the objective subject to a finite
number of these randomly selected scenarios.
Definition 2.4 (Scenario Design Problem):
Assume that S independent identically distributed
samples ξ1, . . . , ξS are drawn according to probability
P. A scenario design problem is given by the convex
program

SDPS : minimize
x∈X

cTx

subject to g(x, ξi) ≤ 0, i = 1, . . . , S.
(2)

The acronym SDPS refers to the fact that (2) is a
convex program with S constraints. Here we assume the
following technical condition on the scenario problem:
Assumption 2.5 (Feasibility):
For all possible extractions ξ1, . . . , ξS , the optimization
problem (2) is either infeasible, or, if feasible, it attains
a unique optimal solution.
The scenario problem SDPS is a standard convex
optimization problem with a finite number of constraints
S and, hence, its optimal solution x̂S is (usually)
efficiently computable by means of numerical algorithms
[16].

The relationship between the number of sampled
scenarios S and the probability of violation of the
optimal solution to corresponding Scenario Design
Problem V(x̂S) was investigated in [17] and [18] – for
a chosen ε we can always find S large enough such
that x̂S is ε-level feasible for the original problem (1)
with arbitrarily high confidence. There is, however, no
guarantee, that the resulting optimal objective value of
(2) will be anywhere close to the true optimal value J∗ε .
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The results derived in [18] show that the distribution
function of V(x̂S) is bounded by a beta distribution
with parameters nx and S − nx + 1, and imposing that
V(x̂S) ≤ ε holds with high confidence implies that V(x̂S)
will be much less than ε in many cases, resulting in a
conservative solution.

Next we introduce a concept that is crucial for the
success of the Pooling part of the upcoming algorithm.
Of the S generated scenarios, only some of these S
will be “bounding” in the sense that they prevent the
solution from “falling” to a lower objective value.
Definition 2.6 (Support Scenario):
Scenario ξi, i ∈ {1, . . . , S}, is a support scenario for
the scenario problem SDPS if its removal changes the
optimal solution of SDPS .
The following theorem, whose proof can be found in [18]
or in a different form in [19], gives us the bound on the
number of support scenarios:
Theorem 2.7 (Number of Support Scenarios):
The number of support scenarios for SDPS is at most
nx, the size of x.
What is most important about this result is the fact
that the number of support scenarios does not depend
on the number of generated scenarios S. The first main
contribution of this paper is an efficient way of solving
(2), with the use of Theorem 2.7.

III. POOLING PART OF THE POOL & DISCARD
ALGORITHM
The idea behind the Pooling part of the algorithm is the
following: if one were to verbally describe the problem
(2), the one word that came to our mind was “long”, as
there are much more constraints than decision variables.
Moreover, the number of support constraints (or support
scenarios), that the optimal solution of (2) depends upon
is very small, when compared to the overall number of
constraints (or scenarios).

The method consists of solving (2) by the following
procedure. First, we start by completely neglecting
the constraints in (2) that correspond to the different
scenarios and solve this relaxed optimization problem.
Then we find the most violated constraints (by
computing the slacks), add them to the relaxed problem
and find a new optimal solution.

The Pooling part can be summarized as follows:
Step 0. Set I = ∅.
Step 1. Solve the following problem:

minimize
x∈X

cTx

subject to g(x, ξi) ≤ 0, i ∈ I,
(3)

and obtain a solution x̂.
Step 2. Check feasibility of the solution by computing

the slacks si:

si = g(x̂, ξi), i ∈ {1, . . . , S}. (4)

Step 3. If max
i∈{1,...,S}

si > 0, find the associated index

of the maximum value î = argmax
i∈{1,...,S}

si, add it to

the set I and return to Step 1. Otherwise, set
x∗ = x̂, I∗ = I and terminate.

It is important to remark that by the end of this
procedure, we not only get the optimal solution of
(2), but also an index set I that contains the support
scenarios – this will be very significant for the success
of the Discarding part of the P&D algorithm.
Another equally important remark concerns the

efficient implementation of the algorithm. In Step 1,
we are sequentially solving problems that are extremely
similar, only differing in a single constraint. The use of
warm-starts (when made possible by a proper choice of
solution method) or even problem modification1 (when
supported by our choice of a solver) have immense
effect on the efficiency of the Pooling part. For the
implementation of the numerical examples that are
investigated in this paper, we have chosen the JuMP
package [20] for modeling optimization in the Julia
language [21] and the CPLEX 12.7 solver [22]. This
combination allowed us to use the algorithm to its
full extent2. The machine, on which we conducted the
numerical examples, was a PC with 3.6 GHz AMD
Ryzen 5 2600X Six-Core CPU, 32 GB RAM, NVIDIA
GeForce GTX 1050 Ti, running on 64-bit Windows 10.

A. NUMERICAL EXAMINATION – ASSET
ALLOCATION PROBLEM
The first numerical example we chose to demonstrate
the utility of the Pooling part of the P&D algorithm is
the (by now, almost canonical) asset allocation problem
[8]. Suppose we have n assets x1, . . . , xn that we want
to invest in. The returns r1, . . . , rn of these assets are
random variables. Our goal is to allocate our resources
to these different assets, in order to maximize the ε
quantile (often called the Value at Risk, or VaR) of
the returns. This formulation neglects several of the
important real-world issues – we do not allow short
position, do not consider more than one trading period,
etc. – the example is, above all else, intended to show the
capabilities of the P&D algorithm. Our asset allocation
problem can be summarized as follows:

maximize
x≥0,t∈<

t

subject to P{t ≤∑n
j=1 rjxj} ≥ 1− ε,∑n

i=j xj ≤ 1.
(5)

Our ability to solve (with no quotation marks) this
problem depends heavily on the distribution of the

1https://www.ibm.com/support/knowledgecenter/SSSA5P_
12.5.0/ilog.odms.cplex.help/CPLEX/OverviewAPIs/topics/
Modify.html

2The implementation of all of the presented numerical examples
can be found on the authors GitHub: https://github.com/
JakubKudela89
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returns r1, . . . , rn and the chosen quantile ε. Thanks to
[23], we know that the feasible set of a scalar chance
constraint

P{aTx ≤ b} ≥ 1− ε,
is convex, provided that the vector (aT , b)T of the
coefficients has symmetric logarithmically concave
density and ε < 1/2. We will use this result and model
the returns r as random variables that are independent
and normally distributed (and, hence, have a symmetric
logarithmically concave density). More precisely, the
return rj has the following distribution

rj ∼ N (µj , σj), µj = 1 + 0.1 j − 1
n− 1 , σj = 0.1 j − 1

n− 1 ,

i.e., the first return is “deterministic”, with return r1 =
1, and the nth return has mean µn = 1.1 and standard
deviation σn = 0.1. Because of the chosen distribution of
returns, the problem (5) can be transformed [8] into the
following second order cone problem (SOCP, see [16]):

maximize
x≥0,t∈<

t

subject to
∑n
j=1 µj ·xj ≥ t+

Φ−1(1− ε)·||(σ1·x1, . . . , σn·xn)||2,∑n
j=1 xi ≤ 1,

(6)
where Φ−1(1 − ε) is the 1 − ε quantile of the standard
normal distribution. As an SOCP, this problem falls
into the category of “easy” to solve (we can compute
the optimal solution with little effort for large values
of n – well into thousands) and as such provides the
perfect ground for illustrating the capacities of the P&D
algorithm.

The scenario approach, works with a sample of S
scenarios of the returns rij , j = 1, . . . , n, i = 1, . . . , S.
Using these scenarios, the sample counterpart to (5) has
the following form:

maximize
x≥0,t∈<

t

subject to t ≤∑n
j=1 r

i
jxj , i ∈ {1, . . . , S}∑n

j=1 xj ≤ 1.
(7)

First of all, we will investigate on (7) the dependence
of computation time of the Pooling part (CTPP)
of the P&D algorithm for varying number of assets
n and scenarios S. Additionally, we provide the
computation time for the Pooling part without the
use of warm-starts and problem modification (CnoWS)
and the computation time for solving the problem (7)
conventionally (CTC), i.e., passing it to the solver
(CPLEX) with all the scenarios.

The results of the computations are summarized
in Table 1 and clearly demonstrate the effectiveness
of the Pooling part of the P&D algorithm. As the
number of scenarios grows, CTPP grows very slowly
when compared to CTC, becoming over 20 times faster
for the largest number of considered scenarios. The

main factor in the effectiveness of the Pooling part is
the low growth in the number of iterations needed to
solve the problems with more scenarios – this should
not be too surprising, since the number of support
scenarios stays the same (for the same n). The variant
without warm-start or problem modification CnoWS
eventually (for high values of n) suffers from too big
of an overhead when constructing the corresponding
optimization problem, but can still outperform CTC in
large number of instances.

IV. CONSTRAINT REMOVAL ALGORITHM
If all the S constraints are enforced, however, one cannot
expect that good approximations of chance constrained
solutions are obtained. To get a less conservative
solution we use the framework introduced in [2] for
relaxing problem (7). Their approach allows us to
remove k constraints out of the S scenario constraints. A
general removal procedure is formalized in the following
definition:
Definition 4.1 (Constraint Removal Algorithm):
Let k < S. An algorithm A for constraints removal
is any rule by which k constraints out of a set of S
constraints are selected and removed. The output of A
is the set A{ξ1, . . . , ξS} = {i1, . . . , ik} of the indexes of
the k removed constraints.
The sample-based optimization program where k
constraints are removed as indicated by A is expressed
as

SDPAS,k : minimize
x∈X

cTx

subject to g(x, ξi) ≤ 0,
i ∈ {1, . . . , S} \ A{ξ1, . . . , ξS},

(8)
and its solution will be hereafter indicated as x∗S,k. We
introduce the following assumptions:
Assumption 4.2 (Constraint Violation):
Almost surely with respect to the multi-sample
(ξ1, . . . , ξS), the solution x∗S,k of the sample-based
optimization program SDPAS,k violates all the k
constraints that A has removed.
This assumption requires that the algorithm A chooses
constraints whose removal improves the solution by
violating the removed constraints, and it rules out for
example algorithms that remove inactive constraints
only, or algorithms that remove constraints at random.
Thus, this assumption is very natural and reflects the
fact that we want to remove the constraints that improve
the optimal objective value.

The next Theorem (proved in [2]) provides theoretical
guarantees that V(x∗S,k) ≤ ε, i.e. that the optimal
solution x∗S,k of the optimization program SDPAS,k is
feasible for the CCPε.
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TABLE 1: Results of the computation. Average over 10
runs.

n S CTC [s] CnoWS [s] CTPP [s] iterations

10

100 0.002 0.008 0.002 12.7
1,000 0.012 0.013 0.004 18.9
5,000 0.062 0.011 0.005 17.4
10,000 0.125 0.014 0.005 15.3
20,000 0.301 0.013 0.005 13.5
50,000 0.920 0.024 0.020 11.9
100,000 1.897 0.033 0.044 10.7

20

100 0.004 0.013 0.005 17.3
1,000 0.021 0.030 0.008 29.3
5,000 0.105 0.044 0.011 37.3
10,000 0.239 0.057 0.014 40.4
20,000 0.557 0.079 0.026 46
50,000 1.928 0.106 0.071 49.9
100,000 4.169 0.137 0.192 50.5

30

100 0.003 0.021 0.004 21.8
1,000 0.030 0.046 0.011 38.4
5,000 0.158 0.077 0.016 50.9
10,000 0.299 0.109 0.028 54.2
20,000 0.866 0.131 0.054 59.1
50,000 2.816 0.164 0.102 67.8
100,000 6.165 0.230 0.192 70.5

50

100 0.004 0.031 0.006 26.3
1,000 0.036 0.093 0.018 51.7
5,000 0.239 0.198 0.031 72.6
10,000 0.708 0.234 0.048 73.2
20,000 1.496 0.251 0.142 83.3
50,000 4.542 0.359 0.163 92.6
100,000 10.088 0.492 0.472 98.9

100

100 0.008 0.078 0.012 36.1
1,000 0.078 0.322 0.039 78.6
5,000 0.648 0.596 0.072 104.9
10,000 1.374 0.796 0.136 118.6
20,000 3.328 0.936 0.181 129.8
50,000 9.255 1.234 0.427 142.6
100,000 21.359 1.698 0.686 155.9

200

100 0.012 0.216 0.027 48.1
1,000 0.172 1.197 0.105 114.3
5,000 1.421 2.350 0.223 161
10,000 3.125 2.872 0.418 174.7
20,000 7.236 3.911 0.534 195.9
40,000 16.130 5.066 0.864 215.7
80,000 36.252 6.525 1.547 233.8

300

100 0.021 0.426 0.046 56.7
1,000 0.291 2.363 0.194 136.6
5,000 2.538 5.368 0.515 197.8
10,000 5.222 7.187 0.779 223.2
20,000 11.847 9.573 1.149 248.1
40,000 26.222 12.496 1.670 272.5
80,000 58.863 15.490 2.924 296.6

500

100 0.039 0.890 0.073 62.1
1,000 0.603 6.538 0.473 173.2
5,000 5.094 16.820 1.292 261.3
10,000 11.616 23.065 1.805 295.3
20,000 22.105 28.940 2.699 324.6
50,000 66.267 42.398 4.929 371

1,000

100 0.084 2.806 0.201 75.2
1,000 1.311 29.882 1.894 239
5,000 14.877 97.380 6.016 385.4
10,000 32.063 134.708 8.987 440.4
20,000 65.047 174.532 12.640 492.6
50,000 155.843 244.268 20.227 561.8

Theorem 4.3 (Feasibility):
Let β ∈ (0, 1) be any small confidence parameter value.

If S and k are such that
(
k + nx − 1

k

) k+nx−1∑

i=0

(
S
i

)
εi(1− ε)S−i ≤ β, (9)

then PS{V(x∗S,k) ≤ ε} ≥ 1− β.
The final result establishes that the objective value of
CCPε (whose optimal objective value will be denoted as
J∗ε ) can be approached at will, provided that sampled
constraints are optimally removed. Let Aopt be the
optimal constraints removal algorithm which leads –
among all possible eliminations of k constraints out of S
– to the best possible improvement in the cost objective;
further, let x∗S,k,opt and J∗S,k,opt be the corresponding
optimal solution and objective value. We have the
following theorem (again, proved in [2]).
Theorem 4.4 (Optimality):
Let β ∈ (0, 1) be any small confidence parameter
value, and let ν ∈ (0, ε) be a performance degradation
parameter value. If S and k are such that
(
k + nx − 1

k

) k+nx−1∑

i=0

(
S
i

)
εi(1− ε)S−i+

S∑

i=k+1

(
S
i

)
(ε− ν)i(1− ε+ ν)S−i ≤ β,

(10)

then
(i) V(x∗S,k) ≤ ε
(ii) J∗S,k,opt ≤ J∗ε−ν
simultaneously hold with probability at least 1− β.
One optimal way of removing constraints consists
in discarding those constraints that lead to the
largest possible improvement of the cost function.
This approach is implemented by the following integer
program, which has been described and investigated in
[24], [25] and [26]:

minimize
x∈X

cTx

subject to g(x, ξi)−Mzi ≤ 0, i = 1, . . . , S,∑S
i=1 zi ≤ k, z ∈ {0, 1}S .

(11)

where M is a constant large enough so that, if zi =
1, then the constraint is satisfied for any candidate
solution x. For k = 0, the formulations (2) and (11)
are equivalent. By construction, problem (11) provides
a framework for optimally selecting the constraints to be
removed based on the inequality (10). However, solving
(11) may be computationally challenging due to the
increase in complexity from (2) to (11) that arises from
the introduction of one binary variable per each of the
S scenarios. In recent years, there have been developed
strengthening procedures (see [27] and [28]) for some
special structured problems, that significantly improve
upon the formulation (11).
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V. POOL & DISCARD ALGORITHM
The Discarding part of the algorithm consists of utilizing
the index set I, finding the support scenarios among
this set and finding the one scenario, whose removal
decreases the optimal objective value the most – this
is repeated k times, where k is either set a priori
(by Theorem 4.3), or is terminated once an estimate
of the probability of violation of obtained solution
V(x) reaches certain threshold. This approach is almost
identical to the one discussed in [29] (called greedy
constraint removal), with the distinction that our
algorithm utilizes the Pooling step and uses warm-starts
(primarily utilizing I) throughout the iterations and as
such can be rather effective (this will be demonstrated
in the following sections). The P&D algorithm can be
summarized as follows:

Step 0. Solve the pooling part described above to
obtain I∗ and x∗. Set γ > 0, k > 0, Ip = ∅.

Repeat k times, or terminate once
an estimate of V(x∗) reaches a threshold:
Step 1. Find the set of support scenarios Ir ⊂ I∗
– either by examining the slacks (si > −γ) or the
associated dual variables (µi > γ).

Step 2. For each of the support scenarios ir ∈ Ir,
solve the following problem:

minimize
x∈X

cTx

subject to g(x, ξi) ≤ 0,
i ∈ {1, . . . , S} \ {ir ∪ Ip},

(12)

using the Pooling part, warm-started by using I =
I∗ \ {ir} and x = x∗. Denote the solution to (12)
as x∗ir , its optimal objective function value v∗ir and
its final set of scenarios I∗ir .

Step 3. Find the index with the best optimal
objective value: i∗ = argmin

ir

v∗ir . Set x∗ = x∗i∗ ,
I∗ = I∗i∗ and add the corresponding scenario to
the set of permanently discarded ones Ip.

The parameter γ can be, in theory, set to 0 – what
discourages us from doing so are the implementation
issues of numerical computing. When reporting the
optimal dual variables µ the solvers rarely return exactly
0, more often, we get values ranging from 10−8 to 10−16

(the same goes for the slacks in the active constraints).
If we did set γ to 0 we would (likely) have to consider
all the scenarios as possible support scenarios and
the execution of the algorithm would be significantly
prolonged. Unless stated otherwise, the parameter γ
was set to 10−6. It should be added, that Step 2. of
the Discarding part can be fully parallelized to work
more efficiently on multi-core machines or distributed
computing environments.

A. NUMERICAL EXAMINATION – ASSET
ALLOCATION PROBLEM CONTINUED
We will return to the same problem structure (7) again
and examine the computational time for the whole P&D
algorithm for varying number of variables and scenarios.
In the Discarding part of the algorithm, we decided to
discard k = bεSc scenarios – note that this choice does
not guarantee, that the resulting solution obtained by
the P&D algorithm will be a ε-level feasible, not to
mention having the objective value close to the optimal
value objective J∗ε .
To examine the effect of the warm-start in the

discarding part (using the best solution x∗ and the
index set I∗ from the previous iteration), we will first
compare the computational times of the P&D algorithm,
an algorithm that uses just the Pooling part without
warm-starts (denoted as “PnoD”), and an algorithm
that uses neither Pooling nor Discarding (denoted as
“noPnoD”, which is essentially the one used in [29]), on
a small-scale example (n = 20, ε = 0.01).

TABLE 2: Comparing the algorithms. Average over 10
runs.

n ε S k noPnoD [s] PnoD [s] P&D [s]

20 0.01

100 1 0.02 0.03 0.01
1,000 10 2.35 1.10 0.23
2,500 25 15.60 3.59 0.68
5,000 50 78.19 8.90 1.66
10,000 100 371.48 22.79 3.71
20,000 200 1,931.58 59.14 8.64

The comparison is summarized in Table 2 – the
utilization of Pooling and the warm-starts in Discarding
combined provide immense computational savings
compared to the other two methods (while arriving
at the exact same solution). To further compare the
effectivity of the P&D algorithm, we set the parameters
n, S, and k to the same values that can be found
in [29] and compare the computation times directly
(although they used different distributions for the asset
returns, the problem structure is exactly the same).
The results of the computation are reported in Table
3 – for n = 20, the results reported in [29] are
comparable with the noPnoD variant of the algorithm,
with slight improvement that is most likely caused by
a more powerful machine and a newer version of the
optimization solver. In the largest instance, the P&D
algorithm was more that 200 times faster. For the
n = 200, the authors in [29] used a random scenario
removal strategy, instead of the greedy one (removing
one of the support scenarios at random, instead of the
one whose removal decreased the optimal objective value
the most) – this algorithm is O(n) times faster than
the greedy one, but results in an inferior solution. In
this setting, the P&D variant with randomized removal
(denoted as P&D∗) was almost 500 times faster than the
one in [29].
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TABLE 3: Comparing the different algorithms. The results with a ∗ are for random scenario removal. Average over 5 runs.

n S k [29] results [s] noPnoD [s] PnoD [s] P&D [s] P&D∗ [s]

20
2,500 18 15.1 11.15 2.56 0.49 0.04∗

5,000 76 138.0 117.16 13.63 2.36 0.18∗

10,000 220 875.3 772.93 47.03 6.99 0.54∗

20,000 582 5,412.4 5,315.1 176.28 23.44 1.73∗

200
20,000 582 5,521∗ - - 3,486.5 44.3∗

40,000 1,164 26,307∗ - - 8,312.4 126.3∗

80,000 2,328 120,535∗ - - 19,521.7 241.7∗

The real crux of the matter, however, is the following:
“How good a solution (in terms of ε-level feasibility and
objective value) do we get by using the P&D algorithm?”
The remarkable thing about our optimal asset allocation
problem is that for a chosen value of ε, we can get the
optimal solution by solving the SOCP (6). Moreover, for
every asset allocation x, we can find the corresponding
ε quantile of the returns exactly. Or, alternatively, we
can for a given value of the returns t and a given asset
allocation x compute (again, exactly) the probability
P{t ≤∑n

j=1 rjxj} (i.e., the smallest value of ε, for which
our choice of x and t is feasible).

For the examination, we chose a problem with n =
30 assets and ε = 0.01. The optimal objective value
(obtained by solving (6)) was 1.0309. The results are
summarized in Table 4, Figure 1 and Figure 2. Using
the formula for the needed number of scenarios from
[18], with β = 10−10, we get that to obtain a feasible
solution to this problem with high probability (1 − β),
we need to solve (7) with at least S = 8,547 scenarios
(without any discarding). The solution to this problem
had the objective value 1.0179 (third column of Table
4), with the probability of violation 0.0029 (i.e. P{t ≤∑n
j=1 rjxj} = 0.0029) – i.e. we obtained a feasible

solution, but with a rather poor objective value.
Afterwards, we ran the Discarding part of the

algorithm, discarding bεSc scenarios. The objective
value improved to 1.0318 (fifth column of the table),
but the corresponding probability of violation increased
to 0.0138 – meaning that the combination of x and
t (obtained after discarding) was no longer feasible.
However, during the Discarding part of the algorithm
we stored the particular solutions in each iteration. This
allows us to find the last admissible (feasible) solution
and find its corresponding objective and a number of
scenarios that we discarded to get it – in this case the
objective value was 1.0291 (seventh column of the table)
with 31 discarded scenarios. An interesting thing to note
is that even for 5,000 scenarios we still get a feasible
solution (with probability of violation 0.0041) and can
remove some scenarios, but for the lower numbers of
scenarios even the “robust” solution is not feasible.

When we vary the number of scenarios several
interesting phenomena appears. Firstly, when increasing
the number of scenarios S we get a smaller value of
the “robust” solution objective (the solution after the

Pooling part) and smaller corresponding probability
of violation (both of these are rather intuitive).
Secondly, when we increase the number of scenarios, the
probability of violation of the solution after discarding
bεSc scenarios approaches ε and the number of removed
scenarios for an admissible solution gets closer to bεSc.
Thirdly, and most impressively, the admissible solution
objective gets surprisingly close to the optimal value of
(6).
Another feature of the P&D algorithm is that since we

remove one scenario at a time, we can use the successive
results to construct an approximation of the trade-off
between reliability and optimal objective function value.
This is best shown on Figure 1, where we can see the
progression of the P&D algorithm for different number
of scenarios – each point corresponds to a solution with
different number of removed scenarios (typically, more
removed scenarios correspond to points more up and
to the right). We included the optimal trade-off curve
obtained by solving the SOCP (6) for different values of
ε (called “exact solution” in the legend of Figure 2).
It must be emphasized that the P&D algorithm does

not in any way incorporate any knowledge about the
underlying distribution of the random variables. All it
“sees” are the realizations in the form of individual
scenarios.
The relationship between computational times,

number of scenarios S, number of variables n and chosen
probability of violation ε is further investigated in Tables
5, 6 and 7. From these results we can see that when
we increase ε, the computation times increase linearly.
The same cannot be said for when increasing S – the
number of scenario removals and computational times
of the pooling steps grow simultaneously, resulting in
a superlinear increase computational time. Similar (and
more impactful) behaviour can be observed in Table 7,
where the number of variables n changes – this results in
a larger number of possible support scenarios and larger
solution times for the successive optimization problems.

When we increase the number of scenarios S, the
resulting solutions (after discarding bεSc scenarios) get
very close to the true optimum J∗ε , although it was
not guaranteed by any theory. In similar fashion, the
probability of violation of the solutions get very close to
ε.
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TABLE 4: The “quality” of the solutions produced by the P&D algorithm, n = 30, target ε = 0.01, optimal objective
J∗

ε = 1.0309. Varying number of scenarios, single run of the algorithm.

S k RSO RSPV ODεS PVDεS ASO NRS
500 5 1.0324 0.0291 1.0400 0.0466 – –

1,000 10 1.0292 0.0183 1.0377 0.0368 – –
2,000 20 1.0289 0.0120 1.0336 0.0220 – –
5,000 50 1.0231 0.0041 1.0326 0.0160 1.0303 31
8,547 85 1.0179 0.0029 1.0318 0.0138 1.0291 53
20,000 200 1.0167 0.0014 1.0319 0.0128 1.0304 147
50,000 500 1.0140 0.0004 1.0310 0.0111 1.0305 463
100,000 1,000 1.0129 0.0003 1.0309 0.0102 1.0308 980
250,000 2,500 1.0101 0.0001 1.0308 0.0101 1.0308 2,487
RSO – “robust” solution optimal objective value (no scenarios removed),

RSPV – “robust” solution probability of violation,
ODεS – optimal objective value after discarding bεSc scenarios,
PVDεS – probability of violation after discarding bεSc scenarios,

ASO – admissible solution optimal objective value,
NRS – number of removed scenarios for admissible solution.

FIGURE 1: The “quality” of the solutions produced by the P&D algorithm, n = 30. Varying number of scenarios, single
run of the algorithm.

TABLE 5: Results of the computations, n = 20. Average over 10 runs.

ε = 0.02 ε = 0.05 ε = 0.15
J∗

ε = 1.0280 J∗
ε = 1.0364 J∗

ε = 1.0517
S ODεS PVDεS t [s] ODεS PVDεS t [s] ODεS PVDεS t [s]

100 1.0456 0.1465 <0.1 1.0497 0.1859 0.1 1.0601 0.2584 0.2
1,000 1.0322 0.0411 0.4 1.0387 0.0700 1.0 1.0528 0.1709 2.9
2,500 1.0299 0.0295 1.4 1.0374 0.0602 3.1 1.0512 0.1548 8.0
5,000 1.0286 0.0237 3.2 1.0363 0.0539 6.7 1.0509 0.1508 17.5
10,000 1.0284 0.0225 7.5 1.0361 0.0513 15.3 1.0510 0.1514 39.0
20,000 1.0280 0.0211 17.2 1.0363 0.0514 37.7 1.0510 0.1516 93.7
50,000 1.0279 0.0205 53.3 1.0360 0.0504 121.7 1.0508 0.1505 317.2
100,000 1.0278 0.0202 146.0 1.0359 0.0500 335.6 1.0507 0.1497 914.4
250,000 1.0278 0.0200 854.5 1.0360 0.0500 2,058.9 1.0508 0.1502 5,987.6

ODεS – optimal objective value after discarding bεSc scenarios,
PVDεS – probability of violation after discarding bεSc scenarios.
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FIGURE 2: The “quality” of the solutions produced by the P&D algorithm, n = 30. Varying number of scenarios, single
run of the algorithm. Close up on ε = 0.01.

TABLE 6: Results of the computations, n = 30. Average over 10 runs.

ε = 0.02 ε = 0.05 ε = 0.10
J∗

ε = 1.0355 J∗
ε = 1.0433 J∗

ε = 1.0511
S ODεS PVDεS t [s] ODεS PVDεS t [s] ODεS PVDεS t [s]

100 1.0526 0.1785 <0.1 1.0585 0.2159 0.1 1.0636 0.2692 0.2
1,000 1.0406 0.0487 0.8 1.0457 0.0737 1.9 1.0527 0.1285 3.8
2,500 1.0375 0.0310 2.6 1.0441 0.0607 6.2 1.0514 0.1095 11.2
5,000 1.0369 0.0270 6.3 1.0434 0.0549 14.7 1.0512 0.1062 25.7
10,000 1.0357 0.0223 15.0 1.0434 0.0531 32.8 1.0508 0.1034 57.0
20,000 1.0356 0.0215 33.9 1.0430 0.0507 76.4 1.0508 0.1022 137.3
50,000 1.0354 0.0205 102.1 1.0430 0.0507 226.3 1.0506 0.1006 411.7

TABLE 7: Results of the computations, ε = 0.02. Average over 10 runs.

n = 50 n = 100 n = 200
J∗

ε = 1.0442 J∗
ε = 1.0544 J∗

ε = 1.0630
S ODεS PVDεS t [s] ODεS PVDεS t [s] ODεS PVDεS t [s]

100 1.0624 0.2130 0.1 1.0749 0.3086 0.2 1.0808 0.3758 0.7
1,000 1.0494 0.0563 2.2 1.0608 0.0775 9.0 1.0702 0.1030 36.4
2,500 1.0466 0.0346 7.5 1.0576 0.0448 34.3 1.0670 0.0592 140.8
5,000 1.0456 0.0286 19.6 1.0566 0.0351 83.6 1.0652 0.0422 430.6
10,000 1.0450 0.0250 45.8 1.0557 0.0282 204.8 1.0642 0.0308 1,034.4
20,000 1.0444 0.0224 97.5 1.0551 0.0244 444.2 1.0639 0.0268 2,626.2
50,000 1.0442 0.0209 289.1 1.0545 0.0214 1,351.4 1.0633 0.0226 7,662.8

VI. NONLINEAR JOINT CHANCE CONSTRAINED
EXAMPLE

In this section we investigate the performance of the
algorithm on nonlinear example that appeared in the
numerical sections of the state-of-the-art methods in
[30] and [31]. Both of these methods are scenarios
(or sample) based and use the indicator function
approximation (although they approach it in different

ways). In the method described in [30], the constraints
need to be convex in x and the problem can be a joint
chance constrained one. In the method described in [31],
the constraints do not have to be convex, but must be
continuously differentiable in x and the authors deal
with a single chance constraint only. The problem both
papers have chosen for the numerical examination is the
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following one:
minimize

x≥0
−∑n

j=1 xj

subject to P{∑n
j=1 ξ

2
ijx

2
j − b ≤ 0, i = 1, . . . ,m}

≥ 1− ε,
(13)

where ξij , i = 1, . . . ,m and j = 1, . . . , n are independent
and identically distributed standard normal random
variables, b ∈ <. In the case of [31], m = 1 (a single
chance constraint).

Optimal solution x∗ of the problem (13), derived in
[30], is:

x∗1 = x∗2 = · · · = x∗n =
[
b/F−1

χ2
n

((1− ε) 1
m )
] 1

2
, (14)

where F−1
χ2
n

is the inverse chi-squared distribution
function with n degrees of freedom.

Because of the nature of the problem (quadratic
and convex), we were able to use the CPLEX solver,
and utilize the problem modification feature again. We
start the numerical examination with the same setting
as [31]: n = 10,m = 1, b = 10, ε = 0.05. The
parameter γ that controls the selection of scenarios
to discard, was set to 10−3. Using the formula (14),
the optimal objective value of this problem is -7.390.
We generate a number of scenarios S (the values were
log-spaced between 102 and 104) and set the P&D
algorithm to discard bεSc of them. After that we
estimate the reliability (1 − ε) of the obtained solution
using 105 new scenarios. The results of the computations
are summarized in Table 8. Unsurprisingly, the more

TABLE 8: Results of the computation. J∗
ε = −7.390.

Average values over 10 runs.

S ODεS reliability P&D [s]
100 -8.042 0.8535 0.44
167 -7.968 0.8700 1.08
278 -7.736 0.9039 1.87
464 -7.564 0.9255 4.17
774 -7.528 0.9322 7.94

1,292 -7.539 0.9356 14.80
2,154 -7.467 0.9422 27.53
3,594 -7.440 0.9454 51.09
5,995 -7.400 0.9491 92.14
10,000 -7.397 0.9497 174.75

scenarios are taken into account, the better (closer to
the theoretical optimum) the result. The computational
time is quite good, considering [31] report around 500 s
as the computational time for their algorithm (that uses
500 scenarios and reports the optimal objective value
-7.627) and the big-M mixed-integer formulation does
not converge in an hour [31] (again, using “just” 500
scenarios).

The second setting we investigate is from [30]: n = 10,
m = 10, b = 100, ε = 0.1. The optimal objective value,
using (14), is −20.82. Note that in this setting we are
dealing with a “proper” joint chance constraint problem,
with nonlinear (but convex) constraint functions. In the

Pooling part of the algorithm, when we find a scenario
with a violated constraint, we have a choice of either
adding all of the m constraints that correspond to this
scenario to the problem, or to add only the violated
ones. In our implementation we chose the former, since it
corresponds more closely to the description of the P&D
algorithm we gave in the previous sections, although
additional computational savings could be gained by
properly implementing the latter approach. The number
of scenarios used in the examination ranged between 102

and 104 and the number of scenarios to discard was set
to bεSc. The results of the computations are listed in
Table 9.

TABLE 9: Results of the computation. J∗
ε = −20.82.

Average values over 10 runs.

S ODεS reliability P&D [s]
100 -21.46 0.8042 6.67
251 -21.42 0.8305 15.14
631 -21.03 0.8720 51.24

1,585 -20.96 0.8853 162.21
3,981 -20.84 0.8962 494.94
10,000 -20.83 0.8975 1,670.65

To compare the results with the ones achieved in [30],
where they used 10,000 scenarios for the computations
– the numbers the authors report are a bit vague:
“Our algorithm typically requires less than 10 iterations
to converge to the optimal value, and each iteration
approximately takes 6 s on average.”
The main objections being that their algorithm was
presented on two problems with different dimensions
(the one presented here and a smaller one), and that,
at least judging from the figures (as there is no other
way to find the value), their “optimal solution” was
around −20.4, which is rather far from the real one. It is
important to emphasize again that the P&D algorithm
does not produce just one solution – as a sort of a
by-product it generates a sequence of decisions, that
are “optimal” with respect to an increasing number of
discarded scenarios. When we estimate the reliability of
these solutions, we get an approximation of the trade-off
between the reliability level (1-ε) and optimal objective
value. Naturally, this approximation gets better as we
increase the number of scenarios. The approximation of
the trade-off for the setting described above is depicted
in Figure 3 – it shows just one run of the P&D algorithm
for different number of scenarios and the optimal values
computed using the formula (14). The reliability of the
solution is estimated using 105 different scenarios. If
we stopped the algorithm with 200 scenarios once the
estimate of the reliability of the solution gets lower
than the desired level 1− ε and use the previous value,
we would discard only 12 scenarios with the objective
value −20.47 and estimated reliability 0.9143 – this
takes around 6 s. Note that the robust solution for this
problem, i.e. the solution for ε = 0, is clearly 0, since
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FIGURE 3: Approximation of trade-off between reliability and optimal objective value. Nonlinear joint chance constrained
example.

each ξ2
ij can attain any nonnegative value.

VII. CONCLUSION
The main advantage of the P&D algorithm lies in
the exploitation of the structure of the scenario design
problem, which is done on two levels:
• The Pooling part of the P&D algorithm utilizes
the fact that the number of support scenarios
is usually very small compared to the number
of sampled scenarios. By iteratively solving much
smaller problems we can get the solution faster and
need less memory, than we would need to solve the
scenario design problem with all scenarios at once
(compare the columns CTC and CTPP in Table 1).

• The Discarding part of the algorithm fully utilizes
the set I that contains the current support
scenarios, to find the ones that will be discarded
(either be the greedy or the randomized algorithm).
Since it only solves comparatively much smaller
problems (and, each scenario removal should
terminate in just a few iterations), it brings
additional computational savings (compare the
columns PnoD and P&D in Table 2). The combined
effect of the two parts of the algorithm is best
seen in the difference between columns noPnoD and
P&D in Table 2.

The numerical examinations show that P&D
algorithm provides a powerful framework for handling
certain types of chance constrained optimization

problems. When compared with conventional approaches
[29] on a linear example (see Table 3), it was several
hundred times more efficient in the largest instances. On
the nonlinear examples, it was on par with the state-of-
the-art methods [31] and [30].
Further investigation are possible – in the Pooling

part of the algorithm for joint chance constrained
problems, the choice between including all constraints
for a violated scenario, or just the ones that are violated,
could bring additional computational savings. Also, the
use of P&D (or just the use of Pooling) could be applied
in other classes of convex optimization problems (e.i.,
semi-definite problems in control) that need to be set in
chance constrained (or robust) setting and require the
consideration of large number of scenarios.
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a b s t r a c t

The production of mixed municipal waste changes due to the increase of separation rate, urbanization
and other factors. The future changes in the legislation and technology development influences the way
the waste is being treated. Thus the method, location and capacity of processing sites are unknown. The
realization of future projects can be supported by the developing of transportation infrastructure. Such a
feature may be represented by a robust transfer station grid, which can be designed to handle all possible
future realizations and technological solutions (establishment of waste treatment facilities). The paper
presents an approach utilising a mathematical model for the design of transfer stations. It is formulated
as a multi-objective two-stage mixed-integer stochastic programming problem, where the trade-off
between the environmental aspect and the economic viability is considered. The model is tested
through a case study for the Czech Republic, where the waste treatment of over 6,000 municipalities is
analysed. The solutions for different preferences are assessed throughout the principle called out-of-
sample stability with 10,000 scenarios. The optimal decision consists of the robust transfer station
grid with selected locations and their respective capacity. The particular solution with respect to the
potential trade-off suggests to save 1.148 mil of travelled kilometres with only 0.77 mil EUR. The output
in the form of decision support can serve possible stakeholders from the field of waste management to
plan more sustainable projects.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Most countries are struggling with changing demographic
conditions. The population growth can be identified in developing
countries, while in developed nations the age of the population is
steadily growing (World Bank Open Data, 2018). The paper by
Kleme�s et al. (2017) is worthmentioning, because they summarized
the progress in the sustainability applications from the recent
years. At the same time, there is an ubiquitous technological boom
and a change in the lifestyle associated with it. These aspects have
an impact on products that are reflected in the waste produced, in
terms of the absolute amount (Lou et al., 2017) and the waste
composition (Chen, 2018a). Apart from the economic aspect, also

the areas focusing on saving primary raw materials (Chen, 2018b)
and reducing the emissions (Fan et al., 2018a) are becoming more
prominent. An example may be a package for circular economy
issued in May 2018 by EU (Directive (EU) 2018/849, 2018/850,2018/
851 and 2018/852 e required to transpose the directives into na-
tional law of the member states by 5 July 2020) or an earlier
document (from the year 2008), that anchors the preference of
waste management in “waste hierarchy” (Directive (EU) 2008/98/
EC). This hierarchy has been analysed (Gharfalkar et al., 2015) in
more detail. The EU legislation is reflected by the local legislation of
the EU member states, where binding milestones with fixed
deadlines are defined.

Changing the way of waste treatment is only possible with the
corresponding development of the waste processing infrastructure.
Experts in this field are focused on the development of new so-
phisticated approaches for complex planning, where the main de-
cision criterion is not only the cost but also the environmental point

* Corresponding author.
E-mail address: jakub.kudela@vutbr.cz (J. K�udela).

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro

https://doi.org/10.1016/j.jclepro.2019.05.167
0959-6526/© 2019 Elsevier Ltd. All rights reserved.

Journal of Cleaner Production 230 (2019) 1294e1304



of view (Barbosa-P�ovoa et al., 2018). The optimization models
regarding the waste management can be divided into main
categories:

� location problem, see Wichapa and Khokhajaikiat (2017),
� allocation problem, see Boonmee et al. (2018),
� network flow, see Tian et al. (2018),
� supply chain, see Islam and Huda (2018),
� and other.

The tasks mentioned in the bullet points are significantly
affected by transportation cost. The other point of view represents
the carbon emission production, which can be also used as a cri-
terion in such tasks. The transition to high levels of renewable
energy is included in future plans (Walmsley et al., 2015). Infra-
structure building is influenced by local trends that are evolving
due to legislative changes. For new projects, the economic sus-
tainability is the essential aspect. The planning of the facility
commissioning in waste management is difficult due to a long
approval period (Putna et al., 2018). The projects are significantly
affected by local environmental organizations, that often stop the
project (Hsu, 2006). For these reasons, the forecasting of future
waste handling is very difficult. Specific forecast contains many
indeterminate factors which are projected in the main indicators
(Cervantes et al., 2018). The current state of the waste handling,
which is an important input for the simulations of future devel-
opment (�Sompl�ak et al., 2017) was analysed.

Since, the transportation is the key part of the whole chain of
waste flow, deep evaluations of its component are needed. Most
mathematical models solve the transport within the optimization
of processing capacities, but their locations are set (Peri et al., 2018).
However, the resulting flow allocation is not effective when
changing the parameters of the terminal facility. On the other hand,
transport and infrastructure models are usually solved with fixed
processing grid (existing processing infrastructure). There exist
several location allocation models in waste management. Bojic
et al. (2013) examined the problem of allocating solid biomass
power plants in Serbia. Sarker et al. (2018) focused on designing a
logistic system for bio-methane gas production. However, these
models do not include any sources of uncertainty and focus only on
a single objective.

In the case of strategic decision-making in transport (Boonmee
et al., 2018), all possible networks in the debris operation process
were considered. It consists of waste collection and separation sites,
processing and recycling sites, disposal sites and market sites to
solve the post-disaster supply chain. Gambella et al. (2018)
addressed a tactical problem of waste flow allocation from a
waste operator point of view with the aim of minimizing the total
management cost with considered profits from special sub-
products. Coban et al. (2018) studied the possible disposal tech-
niques for municipal authorities that could be applicable to Turkey
with regards to the ever-growing amounts of the municipal solid
waste. Another point of view was proposed by Zhao et al. (2016),
where the complex network design problem was investigated. It
considers the regional hazardous waste management system and
searches for the transfer routes. The goal was to minimize the total
cost and the inherent risk at the same time. Waste transfer stations
and their locations were examined in the city of Nashik (India) by
Yadav et al. (2016). The introduced study considers various waste
treatment options, but the evaluation of new processing capacities
is not included. The multi-objective approach for eco-design was
proposed by Ji et al. (2016) and solved by Pareto optimization to
obtain optimal transportation strategy. None of these approaches
reflect the future possible legislation changes which can be pro-
jected in the development of certain technology while due to the

local conditions, different locations are suitable for a realization of
the different projects. This results in unstable optimal solutions
when the corresponding legislation changes. Even when some
similar thoughts were provided, big simplifications were consid-
ered, which limit the application to real problems.

This paper introduces the planning of transport infrastructure
for municipal waste processing, specifically the location of the
transfer stations with the capacity selection. The new approach is
based on two-stage stochastic programming. The uncertainties are
projected through the model parameters. The result is the sug-
gestion of transfer stations placement, which is robust for future
realization of unknown parameters. These unknown parameters
were analysed separately in the following papers:

� The possibility of different processing facilities (Asefi and Lim,
2017) e sorting line, Waste-to-Energy plant, Mechanical-
biological treatment plant, Monoblock, co-incineration with
coal.

� The capacity of facilities (Rudi et al., 2017).
� The price variability e a requirement for the return of the in-
vestment e municipal or private investor (Ferdan et al., 2015),
the development of the price and the demanded heat (Putna
et al., 2018).

� The competitive waste market e construction of new facilities
(�Sompl�ak et al., 2014).

� Exporting/importing the waste (as a raw material) abroad
(Botello-�Alvarez et al., 2018).

� The legislation changes (Tomi�c et al., 2017).

From the above-mentioned points it is clear, that it is advanta-
geous to consider a large number of scenarios for the description of
the possible future realizations of the indeterminate parameters.
The above-mentioned papers mostly focus on the testing instances
or highly aggregated task with NUTS 3 (Nomenclature of Territorial
Units for Statistics), which is very limited for practical use, espe-
cially for design of low-capacity facilities. This paper considers the
analysed area on themore detailed level, which corresponds to LAU
2 (Local Administrative Unit). Such an approach entails significant
demands on the compilation and the implementation of the
mathematical model. The solvability and acceptable time and re-
sources for computations play a crucial role. The approach will be
described in detail in Section 5. The developed optimization model
is multi-objective, providing a desired level of trade-off between
the ecological and the economic objectives. This is achieved by
minimizing the overall building and managing costs, and mini-
mizing the total distance travelled by all the vehicles (and, hence,
the emissions produced by those vehicles, see Fan et al. (2018b) for
extensive review on air emission assessment) simultaneously.

2. Problem description

The main focus of the developed optimization model is to serve
as a decision support on the selection of the location and the ca-
pacity of waste transfer stations. The purpose of these transfer
stations is to be a transportation hub where the waste from the
neighbouring municipalities is gathered, compressed, and loaded
on a more cost-efficient vehicle before it is shipped to a waste
treatment facility. See Gregor et al. (2017) for the evaluation of
related costs. The decision on the placement and the capacity of
these stations is a strategic one, as it needs to be made in advance,
and has a lasting impact on the behaviour of the system (in this
case, on the flows through the transportation network and the
resulting costs and emissions). In the language of stochastic pro-
gramming (Birge and Louveaux, 1997), these decisions are called
the “first-stage” decisions, as they need to be made without the
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knowledge of the particular realization of the uncertain parame-
ters. These decisions must bemade robust enough to be suitable for
a wide range of possible future values of the uncertain parameters.

The optimization variable representing the decision on building
the transfer station in a specific place is inherently binary, making
the problem a mixed-integer one and adding extensive computa-
tional complexity. The relation between the cost of building a
transfer station and its capacity is nonlinear, and (what is even
more important) nonconvex, making the problem even more
challenging. The non-linearity is caused by the purchasing of press
equipment which decreases per unit of processed waste. This dif-
ficulty is overcome using the special ordered set of type 1 (or SOS1)
variables (Williams, 2013), that linearize the cost function and help
to decrease the computational complexity.

The other decisions, namely the transportation of waste, the
usage of the transfer stations, and the choice of thewaste treatment
facility are all operational ones e they can adjust to the uncertain
prices at the waste treatment facilities. In stochastic programming
terms, these decisions are called “second-stage”. To describe the
transportation of waste (which essentially is a network flow) be-
tween the municipalities, a fitting mathematical structure is
needed. In this case, because of the two different modes of trans-
port (“normal one” and the one from transfer stations), two sepa-
rate graphs are used. The first one has each municipality
represented by a node and arcs describing the available road
network between those municipalities (cf. Fig. 1 in the Case Study).
The second graph describes the network using the transfer stations
e the nodes are only the municipalities where there is either a
possible transfer station location, or a waste treatment facility. The
arcs describe the shortest paths between all pairs of possible
transfer stations and waste treatment facilities.

The multi-objective nature of the model stems from the desire
to design systems that are both economical and with as small
environmental impact as possible. In this case, the environmental

impact of a solution is measured in terms of the total distance
travelled by all the vehicles used in the transportation of waste. The
modelling technique employed to tackle the multi-objectivity of
the problem is the standard scalarization one (Boyd and
Vandenbarghe, 2004), where the two objectives are given
different weights. These weights are used to construct a new single
objective function that is minimized. By appropriately changing the
weights, one obtains the desired trade-off curve (or a Pareto fron-
tier) between the two objectives, as well as the corresponding
optimal decisions.

As already stated in Section 1, there is a multitude of uncertain
factors that need to be accounted for. This uncertainty in data is
modelled as different possible scenarios, with the objective
computed as an average (trade-off between costs and distance)
over these scenarios. Intuitively, as the number (and the quality) of
the considered scenarios grows, so does the quality of the decision
that is based upon them. However, with rising number of scenarios
comes an increase of computational difficulty, as to each scenario
corresponds a separate set of second-stage decisions. This difficulty
is addressed by the use of an appropriate optimization method
described in Section 5.

3. Model formulation

All the necessary notation used to describe the mathematical
model is summarized in Table 1. The mathematical model of the
problem is developed using a combination of description styles to
ease the notation. Most notably, the scalar product of two column
vectors x; y is denoted as xTy (all vectors considered are column
vectors). In the equations, some subscripts are hidden, meaning
that the full vector of values is usede e.g., in Eq (3), the subscript j is
missing to indicate that the inequality should hold for all of the
corresponding values (component-wise for the two vectors).

The weighted objective function is given by Eq (1). The first

Fig. 1. A map showing the layout of the case study.
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addend denotes the expected costs, that are associated with the
construction of the transfer stations, waste processing, and trans-
portation. The second addend denotes the expected distance trav-
elled by the vehicles transporting waste. Its computation is based
on the amount of transported waste on the arcs of the networks
and the capacity of the vehicles used on the two different networks
(with and without the use of the transfer stations). The scalariza-
tion parameter l2½0;1� is used to describe the level of trade-off
between the two objectives.

minimize l ,

0
@ X

i2I;t2T

ei;tdi;t þ
X
s 2 S

ps
�
cT1x1;s þ cT2x2;s þ f Ts ys

�1A

þ ð1� lÞ,
� X

s 2 S

ps
�
dT1x1;s

�
b1 þ dT2x2;s

�
b2

��

(1)

The constraints describing the model take the following form:

A1x1;s þA2x2;s þ ys � r ¼ 0; cs2S (2)

ys� q; cs2S (3)

X
flows from i2I

x2;s �
X
t 2T

ki;tdi;t ; cs2S; ci2I (4)

x1;s; x2;s; ys �0; cs2S (5)

X
t2T

di;t � 1; ci2I (6)

di;t 2 f0;1g; ci2I; ct2T (7)

The constraint Eq (2) describes the “conservation of waste” e

the net balance of the amount of waste that is produced in a mu-
nicipality, transported (by the two different networks) in and out of
a municipality, and processed in a municipality must be equal to
zero. The constraint Eq (3) denotes the waste-processing capacities

of the different municipalities (with the ones without a waste
processing facility having qj ¼ 0). The constraint Eq (4) links the
decision of building the transfer stations with the use of the asso-
ciated networke the sum of the transported waste from a node i by
the transfer station network must be less than the installed transfer
station capacity in that node. The constraint Eq (5) ensures that the
transportation and processing variables will be nonnegative. The
two last constraints Eq (6) and Eq (7) together define the SOS1
variable e at most one of the possible capacities of the considered
transfer stations must be chosen (with the possibility not to build
any).

4. Case study

The case study involves the transfer station planning in the
Czech Republic for the mixed municipal waste. In terms of scale, it
deals with the most detailed description of the road networks and
municipality structure available. In total, 6258 nodes (municipal-
ities producing waste), 44 waste processing plants (15 of which
were foreign, allowing a potential export of the waste to Germany
or Austria) and 116 possible places for the transfer stations were
considered (these sets are not mutually exclusive). For every
possible transfer station 6 options for its capacity were considered.

The waste processing sites have the possibility to utilise
potentially produced heat from waste, i.e. existing district heating
systems, see Putna et al. (2018). In such locations, the construction
of new facilities (Waste-to-Energy, Mechanical Biological Treat-
ment, Processing of Refuse Derived Fuels) is considered. These
technologies can effectively utilise residual municipal waste
(�Sompl�ak et al., 2014). The newly created facilities comply with
(Directive (EU) 2018/850), which aims to move away from land-
filling through the use of waste (material or energy recovery). The
robust design of transfer stations promotes the financial sustain-
ability of new projects and is therefore an important aspect of the
transition to a more efficient waste management anchored in
(Directive (EU) 2008/98/EC).

The first road network (connecting themunicipalities, described
by the incidencematrix A1) had 24,770 arcs and is depicted in Fig. 1.
In order to differentiate between the transportation of waste that

Table 1
The notation.

Type Symbol Description [unit]

Sets s 2S Set of scenarios
j2J Set of nodes (municipalities)
i 2I 3J Set of possible transfer stations
t 2T Set of possible options for transfer station capacities

Parameters A1 The first incidence matrix (connections between municipalities) [-]
A2 The second incidence matrix (transfer stations e treatment facilities) [-]
d1 Distances on the first incidence matrix (on A1) [km]
d2 Distances on the second incidence matrix (on A2) [km]
c1 Transfer costs, without the transfer stations (on A1) [EUR/t]
c2 Transfer costs, using transfer stations (on A2) [EUR/t]
b1 Capacity of vehicles on A1 [t]
b2 Capacity of vehicles on A2 [t]
ps Probability of a scenario s [-]
ei;t Cost of a construction of a transfer station at location i, with capacity option t [EUR]
ki;t Capacity of a transfer station at location i, with capacity option t [t]
fj;s Cost of processing waste at node j, scenario s [EUR/t]
rj Production of waste at node j [t]
qj Waste processing capacity of node j [t]
l Scalarization parameter [-]

Variables di;t Decision on building the transfer station at location i, with capacity option t; binary (SOS1), first-stage [-]
x1;s Flows on A1 in scenario s; continuous, second-stage [t]
x2;s Flows on A2 in scenario s; continuous, second-stage [t]
yj;s Amount of processed waste in node j, scenario s; continuous, second-stage [t]
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does or does not use the transfer stations, a separate road network
was computed e for each possible transfer station was found the
shortest path to eachwaste-processing plant. In this pre-processing
step, 5075 shortest path optimization problems were solved,
resulting in the second network (described by the incidence matrix
A2) with 5075 arcs (omitting the ones that started and ended at the
same place). The transfer of waste when using the transfer stations
is assumed according to (Gregor et al., 2017). Flows on the first
network are considered to be serviced by vehicles with capacity
b1 ¼ 10 t, and the flows from transfer stations are serviced by ve-
hicles with capacity b2 ¼ 24 t. For the purpose of simplification, the
vehicles are assumed fully loaded. This assumption has an unde-
niable effect on the resulting optimal solution. The model could be
refined by considering less aggregated data (on a weekly/monthly
basis instead on the yearly basis) and by obtaining the information
about the utilization of the vehicles collecting the waste. Addi-
tionally, as pointed out by How et al. (2016) adding both weight and
volume constraints significantly increases the precision of the
transportation model.

The first-stage of the optimization problem consisted only of the
planning decisions (on where to build the transfer stations) and is
described by 696 binary variables. The second-stage of the opti-
mization problem used 29,889 continuous decision variables.

The uncertain parameter that is considered in the model is the
cost for processing the waste at the 44 different plants, which
correspond with the legislation development and local conditions
(such as the demand for heat, etc.). To appropriately capture the
nature of the inherent uncertainty, 1000 possible scenarios for the
waste treatment costs were constructed to be used within the
optimization. The resulting optimization model had almost 30
million variables. The total number of constraints that depend on
scenarios was 36,307, meaning that the optimization model had
over 36 million constraints.

5. Optimization method

Because of the enormous number of variables of the considered
optimization model, a specialized optimization method had to be
employed. The particular block angular structure (see Birge and
Louveaux, 1997) of this two-stage stochastic optimization prob-
lem is very well suited for the so-called Benders decomposition
algorithm. This algorithm was originally developed as a method of
solving large mixed integer optimization problems and it is thor-
oughly described by K�udela et al. (2017). The variant of the algo-
rithm that was used to solve the optimization problem further
utilized the warm-start cuts developed by K�udela and Popela
(2017). The method works by decomposing the optimization
problem into two different ones, namely the master problem and
the subproblem. In the considered case, the master problem con-
sists of all the first-stage variables, constraints that contain only the
first-stage variables (constraints Eq (6) and Eq (7)) and a part of the
objective function with only the first-stage variables. An additional
continuous variable is attached to the master problem and is used
as a link between the master problem and the subproblem.

The subproblem then includes every other variable and con-
straints Eq (2)-Eq (5). The algorithm progresses by alternating be-
tween solving the master problem and solving the subproblem,
where the value of the first-stage variables is being fixed (i.e. the
first-stage variables appear as constants in the subproblem).
Depending on the solution of the subproblem, the master problem
is augmented by the so-called feasibility and optimality cuts until
an optimality criterion is met and the solution (the first-stage de-
cision) is declared to be the optimal one (or to be within a specified
optimality gap).

The real strength of the algorithm comes into light when solving

the subproblem. The structure of the optimization model is such
that the subproblem is naturally separable by scenarios, once the
first-stage decisions are fixed. This means that instead of solving
one large optimization problem with 30 million variables, one
needs to solve 1000 problems with 29,889 variables instead e this
can be done with the help of modern solvers and equipment in a
reasonable time frame.

To further take the advantage of modern solvers, the concept of
lazy constraints, proposed by IBM (International Business Machines
Corporation) that develops the CPLEX solver (CPLEX, 2019), was
utilized. Instead of solving the mixed-integer master problem
completely for each newly generated optimality or feasibility cut,
the cut-generation is moved to be within the solution procedure of
the master problem. This is achieved by using the lazy cuts e each
time a new incumbent solution for the mixed-integer master
problem is found, the subproblems are solved and a depending on
the result, new cuts are added (the incumbent is rejected), or the
solution is deemed optimal (the incumbent is accepted). A flow-
chart describing the algorithm is depicted in Fig. 2.

The optimization was carried out for 7 different values of l to
obtain a set of advantageous and diverse trade-off decision. To test
the computed optimal first-stage decision on building the transfer
station network, a new set of 10,000 scenarios was generated. On
these new scenarios, the transfer station network was fixed, and
the optimization was carried out only with respect to the opera-
tional decision (transportation and waste treatment), which was
done separately for each scenario. This evaluation is based upon a
principle called out-of-sample stability (King and Wallace, 2012).
Using this method, it was found that the objective function values
from the optimization were less than 1% off from the results of the
evaluation (suggesting that the 1000 scenarios used for optimiza-
tion were “enough” to obtain out-of-sample stable solutions). The
computations took about 1 h for each value of l.

The optimization model and the decomposition algorithmwere
programmed in the high-performance dynamic language JULIA
(Bezanson et al., 2017) with the JuMP package for mathematical
optimization (Dunning et al., 2017), that is very well suited for
large-scale scientific computing. The solution of the mixed-integer
master problem was obtained using a branch-and-cut method
(with the aforementioned lazy cuts), calling the CPLEX 12.6.3 solver

Fig. 2. A flow chart describing the Benders decomposition with lazy constraints.
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(CPLEX, 2019). The MIP gap parameter was set at 1.5%, which was
decided to be sufficiently low for this application. The individual
subproblems in the second stage were solved by the primal-dual
simplex method, calling the GUROBI 7.5 solver (GUROBI, 2019).
This combination of solvers and algorithms achieved the best
overall performance e the scheme reached the 1.5% optimality gap
for the problem formulation with 1000 scenarios within 24 h for
each considered value of the scalarization parameter l. The com-
putations were carried out on an ordinary computer (3.2 GHz i5-
4460 CPU, 16 GB RAM).

6. Results and discussion

The results of the computations for 7 different values of l are
summarized in Table 2 e the mean and standard deviation (Std) for
both objectives and the number and total capacity of transfer sta-
tions is presented. The trade-off between the overall costs and the
total travelled distance, based on the value of the scalarization
parameter l, is best exemplified by the Pareto frontier graph in
Fig. 3. The decisions based only on one of the objectives (corre-
sponding to l ¼ 0 and l ¼ 1) are rather “extreme” to be used in as a
support for decision making. Instead they serve as very useful
reference points for comparing the possible trade-offs. A very
important feature of the results is the “very steep” and “very
shallow” slopes of the graph near the extreme values of l (close to
the single-objective optimal decisions). This means that for a very
small compromise in one objective, large gains can be achieved in
the other objective. This can be clearly seen, for example, on the
solution for l ¼ 0:05, that is just very marginally worse in terms of
costs than the decision that focuses solely on costs (for l ¼ 1,
results for this setting were basically the same as the ones obtained
by K�udela et al. (2018)) but has 8.7% lower total travelled distance.
For practical purposes, the best trade-off solutions seem to be ob-
tained between l ¼ 0:001 and l ¼ 0:03. For l ¼ 0:03, the costs are
only 0.3% higher than the best possible and the total distance
travelled is 42.2% higher than the best possible. For l ¼ 0:001, the
costs are 3.97% higher than the best possible and the total distance
travelled is 1.35% higher than the best possible.

Another interesting aspect of the decision is the variability in the
values of the two objectives. The more “focus” is shifted towards
one of the objectives, the lower are the standard deviations in this
objective and the higher are the standard deviation in the other
objective. This can be clearly seen in Fig. 4. For l ¼ 0, the resulting
plan was the same for all the considered scenarios which means
Std ¼ 0. It is caused by the considered random variable, which was
the cost of waste treatment at the different facilities. Thus, the only
objective was to use the operating decisions (transfer and treat-
ment) with least amount of total travelled distance.

The planning decisions on the placement and capacity of the
transfer stations are rather similar, ranging between 75 and 90 for
the number of stations, and between 4.25$106 t to 5.06$106 t in

terms of the installed capacity. This signifies that the use of the
transfer stations is preferable for both objectives. There is, however,
no apparent simple relationship between the optimal number/ca-
pacity of the built transfer stations and the values of l, which in-
dicates that the optimal decisions are rather complex (as opposed
to a straightforward “higher l means more capacity” or similar
ones). Many of the optimal decision for placement of the transfer
stations for different values of l overlap, which can be seen in Fig. 5
(with l ¼ 0, focusing on distance), Fig. 6 (with l ¼ 0:01, describing
a trade-off between distance and costs), and Fig. 7 (with l ¼ 1,
focusing on costs). These places can be seen as the best potential
candidates for the construction of transfer stations, regardless of
the particular objective.

The operating decision, however, depend on the value of l to a
much higher degree. As can be seen in Fig. 5, Fig. 6, Fig. 7, and, in
more detail, in Fig. 8, the transport of waste from different mu-
nicipalities to transfer stations and waste treatment plants natu-
rally divides the map into (mostly unconnected) areas of influence.
These areas change just slightly depending on the values of l,
where the biggest differences are caused by decision on building
additional/different transfer stations, illustrated in Fig. 8. Addi-
tionally, the areas of influence also depend on the particular sce-
nario, as the flow on both of the transport networks can vary (but
the layout of transfer station network for a selected value of l re-
mains fixed).

The decision that depends on the desired trade-off between the
overall costs and total distance travelled the most is the transport

Table 2
The results of the evaluation with 10,000 scenarios.

l Total cost Total travelled distance Stations

Mean (in EUR) Std (in EUR) Mean (in km) Std (in km) number
built

Capacity (in t)

0 273.13$106 6.036$106 5.006$106 0 90 5.06$106

0.001 270.18$106 5.909$106 5.074$106 0.108$105 84 5.02$106

0.01 263.67$106 5.468$106 5.901$106 2.519$105 75 4.45$106

0.03 260.63$106 5.238$106 7.119$106 6.571$105 83 4.25$106

0.05 260.04$106 5.196$106 7.543$106 7.533$105 81 4.38$106

0.25 259.99$106 5.157$106 8.131$106 8.953$105 79 4.43$106

1 259.86$106 5.158$106 8.267$106 9.084$105 79 4.68$106

Fig. 3. Pareto frontier describing the trade-off between cost and distance for different
values of l.
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Fig. 4. Histograms of total travelled distance and total cost for different values of parameter l. Mean values are denoted by a dashed line.

Fig. 5. A map showing the results for a baseline scenario. l ¼ 0:
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from the selected transfer stations to the waste treatment plants.
For lower values of l (exemplified in Figs. 5 and 6), this transport is
much more regionally focused, preferring the nearby waste treat-
ment plants that have more expensive treatment costs. For higher
values of l (Fig. 7) the solution shifts towards the utilization of
much more of the further placed and the foreign waste treatment
plants that offer lower waste treatment costs.

The results suggest that each municipality has its preferred
“transport destination” e either a transfer station or a waste
treatment plant that the municipality utilized for most scenarios. In

Fig. 6. A map showing the results for a baseline scenario. l ¼ 0:01:

Fig. 7. A map showing the results for a baseline scenario. l ¼ 1:

Fig. 8. A close-up on the map (western part) showing the transport only on the first
network. The map naturally decomposes into areas of influence. l ¼ 0 (left) and l ¼ 1
(right).
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Fig. 10, the percentage utilization of the most used transport
destination for the municipalities is depicted for l ¼ 0:01. Over
34% of the municipalities had a singular transfer destination that
did not change over the 10,000 scenarios. For 86% municipalities,
the most used transfer destinationwas used at least 91% of the time

e or, to rephrase, the claim: “This municipality uses the same
transfer destination in at least 91% scenarios”, was true for 86%
municipalities. For 97.5% municipalities, the most used transfer
destination was used at least 70% of the time. For the municipal-
ities, this analysis can serve as a foundation for their support of the

Fig. 9. Histograms of waste processing and transportation in processing plant in “Most”.
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plan to build a particular transfer station.
An additional perspective can be gained by analysing the effect

of choosing l on individual waste processing plants. In Fig. 9 are the
histograms for the transportation and processing of waste in the
processing plant in a municipality called “Most”. This municipality
is the capital city of the “Most District” located in the northwest of
the Czech Republic. It has approximately 67 thousand inhabitants,
and the waste processing plant located there has a capacity of
150 kt. As the value of the parameter l decreases and the optimal
waste processing plan gets more locally focused, the utilization of
the processing plant in “Most” increases. This can be clearly seen in
the histogram of amount of processed wastee for l ¼ 1 the plant in
“Most” is not used in almost 20% of the scenarios, while for l ¼ 0:01
the plant is always in use. The percentage of times the plant runs at
full capacity also increases from almost 40% for l ¼ 1 to over 50% for
l ¼ 0:01. However, the increase in the utilization of the plant
naturally increases the traffic from both the normal network and
from the transfer stations. The overall effect on the traffic situation
in individual municipalities should be carefully analysed.

7. Conclusions

Decision making in an uncertain environment is always a deli-
cate task and requires proper handling and careful consideration. In
this paper, a mathematical model for an optimal transfer station
grid is developed, taking into account the uncertain development
in the waste processing costs, caused by the unknown future
development in legislation and technology. The multi-objective
nature of the model provides a ground for evaluation of the ad-
vantages and disadvantages of the trade-off between the environ-
mental aspects and the economic viability attained by the different
solutions.

A case study demonstrating the applicability and scalability of
the model is presented. This study describes in high detail
(considering over 6,000 municipalities) the mixed municipal waste
management situation in the Czech Republic. The results show a

range of viable option and strategies for the planning andmanaging
the transfer station grid.

Because of the large scale of the resulting model, a suitable
optimization algorithm was needed to process and solve the
problem. The Benders decomposition algorithmwith the utilization
of lazy constraints and warm start cuts was chosen, as it is highly
scalable and relatively straightforward to implement. A high-level
description of the algorithm was presented.

From the macro-level perspective, the mathematical model can
be used for the assessment of the optimal strategies (both tactical
and operational), exemplified in Figs. 3, Fig. 4, and Fig. 10. It also
provides means for the micro-level analysis of the impacts of the
selected strategies on the individual municipalities and waste
processing plants.

However, the most difficult task is still left for the specific de-
cision maker (possible investors, municipalities and/or stake-
holders from the field of waste management). The proposed results
serve as the support and recommendation. The optimal trade-off
probably lies between values 0.001 and 0.03 of the scalarization
parameter l. For l equal to 0.03, it is possible to save 1.148 mil of
travelled kilometres with only 0.77 mil EUR as extra costs. It cor-
responds with establishment of 83 transfer stations with total ca-
pacity 4.25 mil tones. There can be suggested locations for transfer
stations, which are robust both with regards to the objective
functions and uncertainties. These transfer stations can represent
the first step for stakeholders in supporting sustainable waste
management. The consideration of the environmental and eco-
nomic aspects of the different solutions must be further examined
in a much broader context. Another factor that could improve the
model in the future is the addition of more decision stages,
providing the possibility to plan the opening/closure of the transfer
station alongside with the development of the waste processing
infrastructure. Also, it is possible to merge the transfer station
planning model with a model for the planning of the waste pro-
cessing infrastructure, which would offer a more holistic view.
However, such a model is likely to cause severe tractability/
computational issues, that need to be addressed by the develop-
ment of appropriate algorithms.
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ABSTRACT 
The Quadratic Assignment Problem (QAP) is a classical NP-
hard combinatorial optimization problem. In the paper will be 
presented suitable metaheuristic algorithm HC12. The algorithm 
is population based and uses a massive parallel search of the 
binary space which represents the solution space of the QAP. 
The presented implementation of the metaheuristic HC12 
utilizes the latest GPU CUDA platform. The results are 
presented on standard test problems from the QAP library.* 
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1 INTRODUCTION 
The NP-hard quadratic assignment problem (QAP), in its 
Koopmans and Beckmann form [1], can be described as follows: 
The problem is structured on a complete directed graph with  
nodes and  arcs, together with a set of  facilities, that have to 
be assigned to the nodes. The indices  correspond to the 
nodes, the indices  correspond to the facilities,  is a 
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given (directed) distance from node  to node ,  is 
a flow from facility  to facility , and  is a cost of assigning 
facility  to node  By using binary variables  if facility 

 is assigned to node , and 0 otherwise, the QAP can be stated 
as the following 0-1 optimization problem: 

  (1) 

  , (2) 

, . (3) 

Several directions for enriching the QAP formulation have been 
proposed – among the most notable of these are the multi-
objective formulation [2] and stochastic formulation [3]. 

2 ALGORITHM HC12 
The binary HC12 algorithm [4] is a stochastic heuristic 
searching algorithm which belongs to the class of pseudo global 
search methods. The basic step of the algorithm is a generation 
of a neighborhood of the current solution, which serves as a base 
for the new population. The method of generating the 
neighborhood is the pivotal characteristic of HC12. The 
paradigm of the algorithm is the search of the optimal solution 
in the binary (Hamming) space, that encodes the solution. In this 
context, it is a parallel approach to genetic algorithms, where the 
solution is encoded as a binary vector. The best individual of the 

th generation (or iteration) is chosen as the base for the 
following ( ) generation. The approach is depicted in Fig. 1. 

3 RESULTS AND DISCUSSION 
The HC12 algorithm is extremely suitable for parallel 
implementation. In the presented experiments, it was 
implemented for HPC computations on NVIDIA RTX 2080 
(8GB). Even the larger memory requirements of the QAP 
problems, not more than 6GB were used. The implementation 
searches for the best solution in multiple runs (restarts of the 
algorithm). The effectivity of the algorithm (in regard to the 
number of found optimal solutions) can be determined as a 
success rate (the ration of runs that ended in an optimal 
solution). 
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Figure 1: The scheme of HC12 iterations. 
 
A rather interesting insight is provided by the dependence of the 
number of used swaps on the number of found optimal 
solutions. More swaps also result in a higher computation time. 
There appear to be “optimal” number of swaps for the given 
problem (the number of swaps that results in the most successful 
runs). 
 

 
Figure 2: An influence of swap operator to convergence 
features of “had20” test problem. 

The computational comparison of HC12 with other state-of-the-
art metaheuristics is done on the standard test problems from the 
QAPLIB library [5].  

The selected metaheuristics are the hybrid teaching-learning 
optimization implemented on a cluster [6], the parallel 
implementation of hybrid algorithms [7,8], and the bee 
algorithm implemented on a CUDA platform [9]. The results of 
the computation and the comparison are reported in Table 1.  

Although the running times of the HC12 algorithm are 
extremely fast (compare to the other heuristics), the robustness 
of the resulting solutions is still rather low and requires 
additional research and tuning. 
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Table 1: Comparison with other results 

* success: The effectivity of the algorithm (in regard to the number of found optimal solutions) is determined as ratio of number of optimal 
solutions to number of algorithms runs. 

problem instance optimal 
solution 

HC12 (GPU implementation) [6] [7] [8] [9] 

swaps success* time [s] APD time APD time APD time APD 
esc16a 68 62 1 0.0014 0 6 0 151.8 0 702 0 
esc32a 130 52 0.001 5.9462 0 72 - - - - 10.77 
had16 3720 64 0.348 0.0288 0 6 0 149.4 0 594 0 
had18 5358 64 0.123 0.1476 0 12 0 183.6 0 618 - 
had20 6922 62 0.067 0.3072 0 18 0 223.8 0 600 - 
rou12 235528 60 0.116 0.0338 0 6 0 87.6 0 90 - 
rou15 354210 50 0.02 0.2378 0 6 0 133.8 0 600 - 
rou20 725522 44 0.001 8.4109 0 18 - - - - 0.25 
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 The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization 
problems and is known for its diverse applications. The QAP is an NP-hard optimization problem 
which attracts the use of heuristic or metaheuristic algorithms that can find quality solutions in an 
acceptable computation time. On the other hand, there is quite a broad spectrum of mathematical 
programming techniques that were developed for finding the lower bounds for the QAP. This paper 
presents a fusion of the two approaches whereby the solutions from the computations of the lower 
bounds are used as the starting points for a metaheuristic, called HC12, which is implemented on a 
GPU CUDA platform. We perform extensive computational experiments that demonstrate that the 
use of these lower bounding techniques for the construction of the starting points has a significant 
impact on the quality of the resulting solutions. 
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1. Introduction 

The NP-hard quadratic assignment problem (QAP) in its Koopmans and Beckmann form (Koopmans & Beckmann, 1957), 
which is notoriously difficult in practice, can be described as follows (Cela, 2013): The problem is structured on a complete 
directed graph 𝐺 =  (𝑉,𝐴) with 𝑛 nodes and 𝑛  arcs, together with a set of 𝑛 facilities that have to be assigned to the nodes. 
The indices 𝑖, 𝑗 ∈  𝑉 correspond to the nodes, the indices 𝑓,𝑔 ∈  𝑁 =  {1, . . . ,𝑛} correspond to the facilities, 𝑏 , ≥ 0 is a 
given (directed) distance from node 𝑖 to node 𝑗, 𝑎 , ≥ 0 is a given flow from facility 𝑓 to facility 𝑔. By using binary 
variables 𝑥 , = 1 if facility 𝑓 is assigned to node 𝑖, and 0 otherwise, the QAP can be stated as the following quadratic 0-1 
optimization problem: 

min 𝑎 , 𝑏 , 𝑥  𝑥 ,∈∈∈∈  (1) 

  s.t.         𝑥 ,∈ = 1  ∀𝑓 ∈ 𝑁  (2) 

 𝑥 ,∈ = 1  ∀𝑖 ∈ 𝑉  (3) 

 𝑥  ∈ {0 , 1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁, (4) 
It is quite well known that the constraint matrix, defined by (2)-(3) is totally unimodular, implying that the optimization of 
any linear objective function over the QAP feasible set is just a relatively easy linear programming problem, known as the 
linear assignment problem (LAP) (Burkard et al., 2012).  
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Despite its rather simple definition, QAP is among the most difficult optimization problems that arise in practice – campus 
planning problem (Dickey & Hopkins, 1972), backboard wiring problem (Steinberg, 1961), hospital layout problem (Helber 
et al., 2016), airport gate assignment (Haghani & Chen, 1998), turbine runner in electricity generation (Laporte & Mercure, 
1988), statistical analysis (Hubert & Schultz, 1976), and optimal placing of letters on touchscreen devices (Dell’Amico et 
al., 2009) have all been modeled as a QAP. There are several other well-known combinatorial optimization problems which 
can be formulated as QAPs with specific coefficient matrices (Cela, 2013) – e.g., the travelling salesman problem, graph 
partitioning and maximum clique, the linear arrangement problem, and packing problems in graphs, to name a few. An 
intriguing feature of the QAP is that even for some problems of size 𝑛 ≤  50, such as sko42 or tai30a from the QAPLIB 
problem library (Burkard et al., 1997), the optimal solution is still not confirmed. Even finding an ε-optimal solution is a 
difficult problem. There are, however, several QAP instances/structures for which the optimal solution is attainable in 
polynomial time (Cela et al., 2018) or which were generated in such a way that the optimal solution is known (Li & Pardalos, 
1992). Furthermore, several directions for enriching the QAP formulation have been proposed – among the most notable of 
these are the multi-objective formulation (Samanta et al., 2018; Sanhueza et al., 2017) and stochastic programming 
formulation (Popela et al., 2016; Matousek et al., 2017). For these reasons, the study of the QAP attracted quite a large 
amount of research from both mathematical programming and heuristics communities. 

In this paper, we show that the approaches from these two communities can be successfully combined. We will utilize the 
lower-bounding techniques for the construction of advantageous starting points for a hill climbing metaheuristic and show 
on extensive computational experiments that starting the heuristic at these points yields significant improvements over the 
usual random starting points. 

The remained of the article is structured as follows: In Section 2, the state-of-the-art in both mathematical programming and 
heuristics approaches to the QAP is reviewed. In Section 3 a suitable metaheuristic algorithm HC12 is described. Section 4 
provides computational comparison of the mathematical programming approaches, and the results obtain from HC12. 
Conclusions and future research direction are summarized in Section 5. 

2. Methods for approaching QAP 

2.1. (Meta)Heuristics 

Because of the computational difficulty of the QAP, myriads of heuristics were proposed to tackle this combinatorial 
problem. Among the first ones were simulated annealing (Burkard & Rendl, 1984), robust tabu search (Taillard, 1991) and 
genetic hybrids (Fleurent & Ferland, 1994) – although these are no longer the most efficient methods, they were able to find 
the best known solutions for some of the QAPLIB instances, that are yet to be beaten or proven optimal. The comparison 
between tabu search and simulated annealing based on a size of the QAP was conducted in (Hussin & Stützle, 2014). A 
local search heuristic called breakout local search enhanced by a Levenshtein Distance metric for checking solutions for 
similarity was described in (Aksan et al., 2017). The state-of-the-art in metaheuristics for the QAP includes population based 
memetic algorithms (Benlic & Hao, 2015), genetic algorithms (Ahmed, 2015), differential evolution (Hameed et al., 2020) 
and particle swarm algorithms (Hafiz & Abdennour, 2016). Hybrid algorithms, combining several heuristics and 
metaheuristics are also very prevalent. A hybrid teaching-learning based algorithm integrating tabu search within a swarm 
intelligence metaheuristic was described in (Dokeroglu, 2015). A memetic algorithm that uses a ternary tree structure for 
its population and the tabu search algorithm, which runs simultaneously, for its local search mechanism was proposed in 
(Harris et al., 2015). A parallel hybrid algorithm with three phases was proposed by (Tosun, 2015) – this algorithm initially 
benefits from a genetic algorithm to obtain a high-quality initial seed on which a diversification mechanism is run. Finally, 
this modified solution is used for a robust tabu search to find a near-optimal result. In (Abdel-Basset et al., 2018) the authors 
describe an algorithm integrating the whale optimization algorithm with a tabu search. A multistart hyper-heuristic algorithm 
on the grid is proposed in (Dokeroglu & Cosar, 2016) – it makes use of different metaheuristics (simulated annealing, robust 
tabu search, ant colony optimization, and breakout local search) and reports computations on a high-performance cluster 
with 368 cores and 736 GB of RAM. 

Since it offers speed-up opportunity that can outperform current multicore processors, (Tsutsui & Fujimoto, 2009) applied 
Graphics Processing Unit (GPU) computation with compute unified device architecture (CUDA) to solve the QAP. In 
(Czapiński, 2013) is proposed a Parallel Multistart Tabu Search (PMTS) algorithm. It is implemented on a highly powerful 
GPU hardware intended for high-performance computing with the CUDA platform. Therefore, PMTS is shown to perform 
competitively with a single-core or a parallel CPU implementation on a high-end six-core CPU. Another GPU based 
algorithm is described in (Mohammadi et al., 2015) – a parallel genetic algorithm, that (as the authors report) can run up to 
30 times faster than its serial counterpart. Finally, the bees algorithm implemented on the CUDA platform is proposed in 
(Chmiel & Szwed, 2016). 

2.2. MIP Reformulations 

One common mathematical programming approach for solving the QAP is to “linearize” it, that is, reformulate it as a pure 
or mixed integer linear programming problem. This was first done in (Gilmore, 1962) by replacing the terms 𝑥 , 𝑥 ,  in the 



R. Matousek et al. / International Journal of Industrial Engineering Computations 13 (2022) 153

objective function by 𝑛  variables 𝑦 , , , = 𝑥 , 𝑥 , . This reformulation was further improved upon in (Adams & Johnson, 
1994), calling it the level-1 reformulation-linearization technique (RLT-1). The reformulated problem than has the following 
form: 

min 𝑎 , 𝑏 , 𝑦 , , ,∈∈∈∈  (5) 

  s.t.         𝑦 , , ,∈ = 𝑥 ,   ∀𝑗 ∈ 𝑉 ∀𝑓,𝑔 ∈ 𝑁  (6) 

 𝑦 , , ,∈ = 𝑥    ∀𝑖 𝑗 ∈ 𝑉 ∀𝑔 ∈ 𝑁  (7) 

 𝑦 , , , = 𝑦    ≥ 0  ∀𝑖 𝑗 ∈ 𝑉 ∀𝑓 𝑔 ∈ 𝑁  (8) 

 𝑥 ,∈ = 1  ∀𝑓 ∈ 𝑁  (9) 

 𝑥 ,∈ = 1  ∀𝑖 ∈ 𝑉  (10) 

 𝑥  ∈ {0,1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁, (11) 
By relaxing the binary constraint (11) (using a LP relaxation), the above formulation can be used to obtain a valid lower 
bound on the QAP (1)-(4). The RLT-1 reformulation was further strengthened by introducing additional 𝑛  variables, called 
RLT-2 in (Adams et al., 2007), and even further with additional n8 variables, called RLT-3 in (Hahn et al., 2012), which for 
the time being is still too large even for modern day computers – for problems of size 𝑛 =  25, the computations needed to 
be done on a server with 384 GB of RAM. A different mixed integer linearization scheme, called the Kaufman-Broeckx 
formulation, was proposed in (Kaufman & Broeckx, 1978) with 𝑂(𝑛 ) additional variables. Although this is the smallest 
QAP linearization, its LP relaxation is known to be usually weak. This relaxation was tightened in (Xia & Yuan, 2006) 
using the Gilmore-Lawler bound (GLB) (Gilmore, 1962; Lawler, 1963) and further enhanced in (Zhang et al., 2013). A 
formulation based in the Kaufman-Broeckx family was used in (Fischetti et al., 2012) to solve (prove optimality) all the esc 
instances (Eschermann & Wunderlich, 1990) (including the one of size 𝑛 =  128). 

2.3. Lower Bounding Techniques 

Exact solution of a QAP typically requires the use of a branch-and-bound framework (Anstreicher, 2003). In practice, the 
lack of efficiently computable, tight lower bounds for the QAP has been the key factor in the problem’s difficulty, as the 
tighter the bound is, the more difficult it generally is to compute. There are various approaches for obtaining lower bounds. 
One of the oldest methods, the Gilmore-Lawler bound (GLB), is still widely used. A comparison of older bounds based on 
linearization of the QAP can be found in (Karisch et al., 1999). A great success in solving previously unsolved QAP 
instances was achieved using the convex quadratic programming bound introduced in (Anstreicher & Brixius, 2001). 

A seminal breaking point in combinatorial optimization was the emergence of semidefinite programming (SDP). The SDP 
bounds for the QAP were first studied in (Zhao et al., 1998). The problem with this relaxation was that it involved a matrix 
variable of order 𝑛 , and can therefore only be solved efficiently by interior point methods for, say, 𝑛 ≤  20. This limitation 
has encouraged research into exploiting group symmetry of the QAP data matrices to obtain smaller and more tractable SDP 
problems (de Klerk & Sotirov, 2012). It has also prompted recent research into SDP relaxations of QAP where the matrix 
variables are of order 𝑛; see (Peng et al., 2010) and (Peng et al., 2015). In both these lines of research the authors were able 
to compute the best-known lower bounds for some QAPLIB instances. As we will use the lower bounding techniques for 
the construction of starting points for our metaheuristic, we will describe these techniques in greater detail. The computation 
of the GLB can be done in the following way: Denote the row vectors of matrices 𝐴 and 𝐵 by 𝑎  and 𝑏 , 𝑖 = 1,2, … ,𝑛,. Let 𝑎  be the vector consisting of the (𝑛 −  1) components of 𝑎 , without 𝑎 , , and let 𝑏  be the vector consisting of the (𝑛 − 1) 
components of 𝑏 , without 𝑏 , . Define a matrix 𝐿 = 𝑙 ,  as follows: 𝑙 = 𝑎 ,𝑏 ,  𝑖, 𝑗 = 1,2, … ,𝑛, 
where ⟨𝑎, 𝑏⟩  is the minimal scalar product, which can be computed by ordering the vector 𝑎 nondecreasingly and 𝑏 
nonincreasingly. The GLB is given by the optimal value of the n-dimensional LAP with cost matrix 𝑙 , + 𝑎 , 𝑏 ,  : 

min 𝑙  , + 𝑎 , 𝑏 , 𝑥   (12) 

  s.t.         𝑥 , ∈ = 1  ∀𝑓 ∈ 𝑁  (13) 
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 𝑥 , ∈ = 1  ∀𝑖 ∈ 𝑉  (14) 

 𝑥  ∈ {0,  1}  ∀𝑖 ∈ 𝑉 ∀𝑓 ∈ 𝑁  (15) 

which requires only 𝑂(𝑛 ) computational time. 

The second type of the QAP lower bounds are the eigenvalue bounds. These use the fact that the set of permutation matrices Π  can be characterized as: Π = 𝒬𝓃 ∩ ℰ𝓃 ∩𝒩𝓃, 
where 𝒬𝓃  is the set of orthogonal matrices, ℰ𝓃  is the set of doubly stochastic matrices and 𝒩𝓃  is the set of matrices with 
positive elements of size 𝑛 × 𝑛. 
The QAP can then be equivalently formulated as: min∈ 𝑡𝑟 (𝐴𝑋𝐵𝑋 ), 

where tr(·) is the trace of a matrix. The first eigenvalue bound that uses this QAP formulation was introduced in (Hoffman 
& Wielandt, 2003) and is based on the relaxation of the feasible region: min∈𝒬𝓃 tr (𝐴𝑋𝐵𝑋 ) = ⟨λ(𝐴), λ(𝐵)⟩ , 

where 𝜆(·) denotes the vector of eigenvalues of the matrix. This bound can be computed with very little effort but tends to 
be extremely weak. The improvement of this bound was done in (Hadley et al., 1992) and is called the Hadley-Rendl-
Wolkowitz (HRW): Let 𝑢  be a vector of all ones and let 𝑉 be an 𝑛 × (𝑛 − 1) matrix with 𝑉 𝑢 = 0 and rank(𝑉)  =  𝑛 − 1. Then 

{𝑋 ∈ ℛ𝓃×𝓃:𝑋𝑢 = 𝑋 𝑢 = 𝑢 } = {1𝑛 𝑢 𝑢 + 𝑉𝑀𝑉 :𝑀 ∈ ℛ(𝓃 )×(𝓃 )} 

which can be used to reparametrize the trace formulation as: tr(𝐴𝑋𝐵𝑋 ) = 𝑡𝑟 (𝑉 𝐴𝑉)𝑋(𝑉 𝐵𝑉)𝑋 + 2𝑛 tr(𝐴𝐽 𝐵)𝑋 − const 
where 𝐽 = 𝑢 𝑢  is a matrix of all ones, and use the eigenvalue bound to obtain the improved HRW bound: ⟨𝜆(𝑉 𝐴𝑉) 𝜆(𝑉 𝐵𝑉)⟩ + LAP 2𝑛 𝐴𝐽 𝐵 − const (16) 

The third type of the QAP lower bounds are based on a convex quadratic programming relaxation of the trace 
reparameterization shown above. (Anstreicher & Brixius, 2001) used the above-mentioned parametrization and showed that 
the following convex quadratic optimization problem gives a lower bound on the QAP: 

min vec(𝑋) 𝑄vec(𝑋) + ⟨λ(𝑉 𝐴𝑉) λ(𝑉 𝐵𝑉)⟩  (17) 
  s.t.         𝑋𝑢 = 𝑋 𝑢 = 𝑢   𝑋 ≥ 0, (18) 

where 𝑄 = (𝐵⊗𝐴) − 𝐼 ⊗ 𝑉𝑆𝑉 − 𝑉𝑇𝑉 ⊗ 𝐼  
and 𝑆 and 𝑇 can be obtained from the spectral decomposition of 𝑉 𝐴𝑉 and 𝑉 𝐵𝑉. The last type of the QAP lower bounds 
we consider are based on a SDP relaxation developed by (Peng et al., 2015): Let (𝐵 ,𝐵 ) be a minimal trace matrix splitting 
of the matrix 𝐵 and compute a decomposition 𝐵 = 𝐵 𝐵 . Let 𝐵 = 𝐵 + 𝐵  the SDP relaxation model of QAP based on 
minimal trace matrix splitting is the following: 

min tr(AY) (19) 
  s.t.         𝑌 = 𝑌 − 𝑌   𝑌 = 𝑌 + 𝑌   (20) 

 𝐼 𝐵 𝑋𝑋𝐵 𝑌 ⪰ 0 𝐼 𝐵 𝑋𝑋𝐵 𝑌 ⪰ 0  (21) 

 diag(𝑌 ) = 𝑋diag(𝐵 )  𝑌 𝑒 = 𝑋𝐵 𝑒  (22) 
 diag(𝑌 ) = 𝑋diag(𝐵 )  𝑌 𝑒 = 𝑋𝐵 𝑒  (23) 

 𝑋min 𝐵 ≤ 𝑌    ∀𝑖 ≠ 𝑗 (24) 

 𝑌  ≤ 𝑋max 𝐵   ∀𝑖 ≠ 𝑗 (25) 

 𝑋min 𝐵 ≤ 𝑌    ∀𝑖 ≠ 𝑗 (26) 
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 𝑌  ≤ 𝑋max 𝐵   ∀𝑖 ≠ 𝑗 (27) 

 𝑋min 𝐵 ≤ 𝑌    ∀𝑖 ≠ 𝑗 (28) 

 𝑌  ≤ 𝑋max 𝐵   ∀𝑖 ≠ 𝑗 (29) 

 𝑋min 𝐵 ≤ 𝑌    ∀𝑖 ≠ 𝑗 (30) 

 𝑌  ≤ 𝑋max 𝐵   ∀𝑖 ≠ 𝑗 (31) 

 ‖ 𝑌  :‖  ≤ 𝑋 ‖ 𝐵  :‖   ∀𝑖 (32) 
 ‖ 𝑌  :‖  ≤ 𝑋 ‖ 𝐵  :‖   ∀𝑖 (33) 
 ‖ 𝑌  :‖  ≤ 𝑋 ‖ 𝐵  :‖   ∀𝑖 (34) 
 ‖ 𝑌  :‖  ≤ 𝑋 ‖ 𝐵  :‖   ∀𝑖 (35) 
 𝑋 ≥ 0 𝑋𝑒 = 𝑋 𝑒 = 𝑒 (36) 𝐵  denotes the matrix consisting of all the off-diagonal elements of 𝐵, i.e., 𝐵 = 𝐵 −diag(𝑏 , 𝑏 , … , 𝑏 ), max(𝐵) (or min(𝐵))denotes the vector whose 𝑖-th component is the maximal element (or minimal 

element) in the 𝑖-th row (denoted by 𝐵 ,:) of 𝐵. 

In order to obtain a starting point (in our case, a starting permutation) for the upcoming heuristic, we use a projection of the 
matrix obtained from the lower bounding schemes to the space of permutation matrices: Let 𝑋 be a matrix obtained from 
the computation of the lower bounds. The “closest” permutation matrix 𝑋 to 𝑋 can be computed by solving the following 
problem: 

min 𝑋 , − 𝑋 ,  (37) 

  s.t.         𝑋 , = 1 𝑋 , = 1  ∀𝑖 ∀𝑗  (38) 

 𝑋  ∈ {0 ,1}  ∀𝑖 ∀𝑗, (39) 
The problem above can be reformulated into an equivalent problem using the fact that 𝑋 ,  is binary: 

min 1 − 2𝑋 , 𝑋 ,  (40) 

  s.t.         𝑋 , = 1 𝑋 , = 1  ∀𝑖 ∀𝑗  (41) 

 𝑋  ∈ {0,1}  ∀𝑖 ∀𝑗, (42) 
which is a simple LAP. 

2.4 HC12 algorithm  

The binary HC12 algorithm, described in detail in (Matousek & Zampachova, 2011), is a stochastic heuristic searching 
algorithm which belongs to the class of pseudo global search methods. The basic step of the algorithm is a generation of a 
neighborhood of the current solution, which serves as a base for the construction of a new (improved) population. The 
method of generating the neighborhood is the pivotal characteristic of HC12. The paradigm of the algorithm is the search 
of the optimal solution in the binary (Hamming) space, that encodes the solution. In this context, it is a parallel approach to 
genetic algorithms, where the solution is encoded as a binary vector. The best individual of the 𝑖th generation (or iteration) 
is chosen as the base for the following (𝑖 +  1) generation. The approach is depicted in Fig. 1. The binary vector of the 
current solution is called a kernel a is denoted with an index “ker” (e.g., 𝑎 ). The newly generated neighborhood creates 
a set of 𝑐 new binary vectors 𝑎  with the same length as the vector 𝑎 . These new vectors can be viewed as a population 
and represented by a matrix 𝐴 = (𝑎 , … , 𝑎 ) . The degree of locality/globality of the optimization depends on the particular 
way the new population 𝐴 is generated. The goal of the search is to find optimal parameters 𝑥 (43) with respect to the 
define objective function 𝑓(𝑥) on a parametric space 𝐷 ∈ 𝑁. Because of the binary representation, the parametric space is 
defined by a mapping Γ:  {0,1}  → 𝐷. An important implementation detail of the mapping Γ is the translation of the binary 
vector from the Gray code into direct binary; afterwards, there is a problem-based decoding of the binary vector (0-1 
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problem, integer problem, or mixed integer problem). The following relationship is used 𝑥 = Γ(𝑎) to denote the optimal 
solution as follows: 𝑥 = argmin ∈ f(𝑥)  (43) 𝑎 = argmin ∈{  } 𝑓 Γ(𝑎)  (44) 
 

Over this binary representation is defined the neighborhood relation, that describes the neighborhood s for each feasible 𝑎  as points 𝑎 ∈ 𝑠(𝑎 ). The choice of the neighborhood function s determines the behavior and character of the HC 
algorithm (Fig. 1). 

 

Fig. 1. An schematic example of the progress of the binary HC algorithm 

The HC12 algorithm is very effectively parallelizable. Using the neighborhood function 𝑠 (45) on a binary vector 𝑎 , the 
population 𝐴  is generated. The set of possible neighborhood functions is denoted by 𝐻 (46). 𝑠: 𝑎 → 𝐴    i, e,  𝑠: {0 1} → ({0 1} )  (45) 𝐻 = {𝑠  𝑠  …  𝑠 } (46) 
 

The number 𝑐 of newly generated vectors in the population A0 depends on the chosen neighborhood function 𝑠  and on the 
length 𝑛 of the binary vector 𝑎  – it is computed as 𝑐 = . For the realization of the transformations from the set 𝐻 a 
system of matrices 𝑀 is defined. The matrix 𝑀 corresponding to the function 𝑠  will be called a matrix of the 𝑘-th order and 
denoted by 𝑀 . Matrix of the 𝑘-th order (𝑀 ) is a matrix whose rows represent all points of the Hamming metric space that 
are distance k from the origin (zero vector of length 𝑛): 𝑀 = (0 , 0 , ⋯ 0 , ) 

𝑀 = ⎝⎛
1 , 0 , 0 , ⋯ 0 ,0 , 1 , 0 , ⋯ 0 ,⋮   ⋱  0 , 0 , 0 , ⋯ 1 , ⎠⎞ 

𝑀 = ⎝⎛
1 , 1 , 0 , ⋯ 0 ,1 , 0 , 1 , ⋯ 0 ,⋮   ⋱  0 , 0 , ⋯ 1 , 1 , ⎠⎞ 

⋮ 𝑀 = (1 , 1 , ⋯ 1 , ) 
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Using the 𝑘-th order matrices, the function 𝑠  can be effectively computed 

as: 𝑠 :𝐴 = 𝑎 ⊕𝑀  

 

Fig. 2. An example of neighbourhood generation for 4-bit binary string using transformations H = {s0,s1,s2} and matrixes 
M0,M1,M2, i.e. utilization in algorithms HC1, HC2 and their union HC12 

From the practical point of view (because of the combinatorial expansion), only the transformations 𝑀 ,𝑀 , and 𝑀  are 
used. The algorithm HC12 encodes in the last digit of its name the utilized transformations (upto order 2). The general 
paradigm of the HC12 algorithm is implemented using several input parameters: fun (indicator of the objective function 𝑓), 
nRun (the number of runs/restarts of the algorithm). The value nRun depends on the difficulty of the problem. The section 
of rows 6 to 10 are the HC12 algorithm itself. This part is very well (row 8) and well (row 9) parallelizable. The computations 
in row 8 contain the conversion from the Gray code into direct binary, implicitly. The main focus of this paper is on row 5 
of the algorithm. How does one select a good starting solution? One possibility is to start at a random solution with the hope 
that after a sufficiently large number of tries, one does get a “good enough” solution. The other possibility is to start from a 
solution that is obtained by some heuristic. In this case, the heuristic in question entails the computation of the lower bound 
for the QAP (by one of the methods described earlier) and the projection of the obtained lower bound solution on the space 
of permutation matrices, by solving (40)-(42). The implementation of the HC12 algorithm for the QAP was described in 
(Matousek et al., 2019). As noted earlier, the optimization problem in (1)-(4) can be interpreted as a search over the space 
of permutation matrices 𝑋 ∈ Π . From the problem structure of the QAP it is clear that swapping arbitrary columns of a 
(feasible) matrix 𝑋 always results in a different feasible matrix (and swapping the rows of the matrix has the same effect). 

 

 

 

Algorithm 1 The HC12 algorithm (Pseudo code of the general paradigm). 
1:   fun,nRun ← inputs 
2: 𝑀 ← (𝑀0,𝑀1,𝑀2)𝑇  
3: 𝑓𝑏𝑒𝑠𝑡 ← ∞ 
4:  for i = [1 : nRun] do 
5:        𝑎𝑜𝑝𝑡  ← random / heuristic 
6:        repeat 
7:               𝑎𝑘𝑒𝑟 ← 𝑎𝑜𝑝𝑡  
8:               𝐴 ← 𝑎𝑘𝑒𝑟 ⊕𝑀 
9:               𝑎𝑜𝑝𝑡 ← argmin𝑎∈{0,1}𝑛 𝑓 Γ(𝑎)  

10:        until 𝑎𝑜𝑝𝑡 = 𝑎𝑘𝑒𝑟  
11:        𝑓𝑏𝑒𝑠𝑡 (𝑖) ← 𝑓 Γ 𝑎𝑜𝑝𝑡  
12:        𝐴𝑏𝑒𝑠𝑡 (𝑖, : ) ← 𝑎𝑜𝑝𝑡  
13: endfor 
14: 𝑖, 𝑓𝑚𝑖𝑛 ← min𝑖 𝑓𝑏𝑒𝑠𝑡 (𝑖) 
15: 𝑎𝑚𝑖𝑛 ← 𝐴𝑏𝑒𝑠𝑡 (𝑖, : ) 
16: 𝑥𝑚𝑖𝑛 ← Γ(𝑎𝑚𝑖𝑛 ) 
17: return {𝑓𝑚𝑖𝑛 ,𝑎𝑚𝑖𝑛 , 𝑥𝑚𝑖𝑛 } 
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4. Results and discussion  

The computational experiments were carried out on 53 symmetrical QAP instances from the QAPLIB. For these instances 
the GLB (12)-(15), HRW (16), convex quadratic (17)-(18), and semidefinite (19)-(36) bounds, and their projections (40)-
(42) were computed. For the computation of the convex quadratic (AB) and semidefinite (PE) bounds, and for the 
computation of the LAP for the projection, the corresponding optimization problems were implemented in JuMP 
environment in JULIA language and the MOSEK solver was used to obtain the solutions. The results from these 
computations are summarized in Table 1. For one of the instances (tho150), the AB and PE formulations were too big to 
handle. These computations were carried out on Intel Xeon E5530 2.40GHz CPU with 16GB of RAM. The HC12 algorithm 
was implemented for HPC computations on GPU CUDA 7.x (i.e., NVIDIA RTX 2080, 8GB), where not more than 6GB 
were used for any of the QAP instances. From Table 1 we can see that, at least in general, the more complicated formulations 
(convex quadratic and semidefinite) produce better (higher) lower bounds, but not necessarily better (lower) starting point 
values, when judged solely on the resulting projection. The trade-off is that these more complicated formulations need quite 
a lot more computational resources (judged by the computational time) and are only feasible for instances up to n = 100. 
Also, every method produced the best lower bound and best projected value for at least one problem instance. It should be 
noted that the lower bounds are not only useful for constructing possible starting solutions for heuristics, but also help to 
judge the closeness of the solution obtained by the heuristic to the true optimum. This is especially important in situation, 
where the is otherwise no information about what the optimal value of the QAP instance might be. Next, we used the 
projected values from the lower bounding techniques as the starting points for the HC12 metaheuristic and run it 1,000 times 
for each problem instance. The best results of these simulations (the solution with the lowest objective value out of the 
1,000) are reported in Table 2. We also include the results from simulations that used random permutations as the starting 
point (again 1,000). Similarly, to the results of the lower bounds, there is not a clear winner, as for each of the methods 
(even for the random start) there are instances where it produced solutions that were better than the ones from the other 
methods. However, we can compare each of the bounding methods with the random start to see if there is significant 
difference. This comparison is summarized in Table 3 – we can see that even the “worst” performing lower bounding 
technique (HWB) was significantly better that random start, beating it in 30 of the 53 instances. The “best” performing 
lower bounding technique was the most complicated semidefinite formulation (PE), which was better than random start in 
41 of the 52 instances. We can also see that the GLB method performed a bit better than the much more complicated convex 
quadratic (AB) one. Similar pattern can be observed for the median results reported in Table 4. The main difference is that 
the random start was never the best scoring method, while each of the lower bounding methods were the best in at least 6 
instances. The comparison of the lower bounding method with random start for median results summarized in Table 5 shows 
even bigger difference than the one for best (minimum) results – the “worst” lower bounding technique (HWB, again) was 
better than random start in 41 of the 53 instances, and the “best” one (PE, again) was better in every one of the 52 instances. 
The GLB and AB methods perform similarly well. From these results, it is clear that starting a heuristic from a carefully 
chosen points leads to an increase in quality of the resulting solutions. The choice of the technique for constructing these 
starting points mainly depends on the computational resources at our disposal. While for the QAP the semidefinite (PE) 
formulation produced the best behaving starting points, it was also the most computationally demanding method, requiring 
the use of advanced convex optimization algorithms or the use of powerful solvers. In contrast to this, the GLB method 
produce starting points that are almost as good as the PE one, but the computational requirements for GLB are negligible. 

 

5. Conclusion  
In this paper we have studied the effects of using the lower bounding techniques for the QAP as for the generation of starting 
points for the HC12 heuristic, that subsequently tried to find the optimal solution for the QAP. We have shown through 
extensive numerical computations that this utilization of the lower bounding techniques significantly improves the values 
of the resulting solutions. Out of the four compared lower bounding techniques, the best overall results were obtained by 
using the semidefinite relaxation method, which was also the most computationally demanding one. When the computational 
resources, or the access to high quality semidefinite optimization solvers are limited, the GLB bound can serve as an 
excellent surrogate – although the resulting solutions are not as good, the computational requirements are negligible. 

Future research will focus on extending the multicriteria and stochastic QAP instances. Also, the evaluation of various other 
heuristics that can use the starting points could be interesting, as different methods could benefit more (or less) from starting 
from an already decent point. Lastly, we expect to work on the evaluation of the starting solutions for other NP-hard 
optimization problems. 
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Table 1  
Lower bounds (LB), values of the projections (PV), and computational time (T) of the four considered QAP lower bounding 
techniques for selected QAPLIB problems (BKW – best known value).  Best results (highest for LB and lowest for PV) are 
emphasized in bold. 
  GLB  

(Gilmore, 1962) 
HRW  
(Hadley et al., 1992) 

AB  
(Anstreicher & Brixius, 
2001) 

PE  
(Peng et al., 2015) 

Instance BKW LB PV T [s] LB PV T [s] LB PV T [s] LB PV T [s] 
chr12a 9552 724 44232 0.001 0 25638 0.001 0 23246 0.095 8499 25752 1.136 
chr12b 9742 7146 25580 0.001 0 26712 0.001 0 27088 0.107 7340 41170 1.317 
chr12c 11156 7976 18784 0.001 0 31608 0.001 0 30876 0.089 9832 40438 1.052 
chr15a 9896 5625 50174 0.001 0 25958 0.001 0 25880 0.253 7441 46976 2.515 
chr15b 7990 4653 54254 0.001 0 38470 0.001 0 19008 0.256 5166 30798 2.870 
chr15c 9504 6165 44602 0.001 0 26144 0.001 0 35936 0.260 8808 43370 2.207 
chr18a 11098 6779 89486 0.001 0 38778 0.001 0 51800 0.331 9077 78282 4.383 
chr18b 1534 1534 4640 0.001 0 2372 0.001 0 3922 0.338 1534 4156 2.580 
chr20a 2192 2150 9778 0.001 0 7742 0.001 0 6904 0.489 2156 10302 5.814 
chr20b 2298 2196 10430 0.001 0 6418 0.001 0 7386 0.497 2237 10320 7.654 
chr20c 14142 8601 79430 0.013 0 63268 0.001 0 63350 0.511 8825 69124 7.588 
chr22a 6156 5924 17622 0.003 0 10178 0.001 0 10588 0.815 5964 10316 8.907 
chr22b 6194 5936 13486 0.002 0 9530 0.001 0 11744 0.995 6015 10264 7.664 
chr25a 3796 2765 18964 0.002 0 14186 0.001 0 13062 1.444 3244 11708 17.67 
had20 6922 6166 7550 0.001 6625 7460 0.001 6671 7184 0.519 6778 7486 4.486 
kra30a 88900 68360 120000 0.004 63717 117490 0.001 68467 111970 10.52 73983 118920 34.27 
kra30b 91420 69065 118720 0.005 120990 140040 0.001 68876 122440 3.782 68737 127900 20.88 
kra32 88700 67390 121620 0.007 59735 119450 0.002 64591 117010 4.780 72297 119540 29.96 
nug18 1930 1554 2402 0.002 1663 2250 0.001 1703 2320 0.303 1753 2278 2.937 
nug20 2570 2057 3080 0.002 2196 2940 0.001 2253 2884 0.481 2338 2972 4.191 
nug21 2438 1833 3198 0.002 1979 2914 0.001 2051 3030 0.627 2215 3266 5.777 
nug22 3596 2483 4598 0.002 2966 4448 0.001 3074 4346 0.816 3284 4312 9.638 
nug24 3488 2676 4222 0.035 2960 4170 0.001 3024 4272 1.378 3178 4066 7.517 
nug25 3744 2869 4728 0.003 3190 4634 0.001 3267 4534 1.521 3404 4496 8.902 
nug27 5234 3701 6246 0.003 4493 6586 0.001 4604 6378 2.495 4820 6548 18.64 
nug28 5166 3786 6470 0.003 4433 6310 0.001 4538 6208 2.705 4732 6274 15.07 
nug30 6124 4539 7706 0.003 5266 7342 0.001 5360 7270 3.702 5608 7664 25.51 
scr15 51140 44737 70154 0.002 10355 75950 0.001 12478 77786 0.299 46015 83280 1.339 
scr20 110030 86766 203736 0.001 16113 172306 0.001 22714 193250 0.474 92426 193396 5.518 
sko42 15812 11311 19522 0.008 13830 19088 0.002 14029 18748 18.23 14612 18492 121.7 
sko64 48498 32522 57316 0.030 43890 56376 0.003 44513 56214 126.2 45467 56766 623.7 
sko72 66256 44280 75860 0.048 60402 75772 0.004 61069 75632 222.4 61497 76082 1209 
sko81 90998 60283 105932 0.061 82277 104844 0.005 83433 103642 466.3 85795 103954 2757 
sko90 115534 75531 132996 0.083 105983 131398 0.006 107171 131794 1448 109260 131646 4585 
sko100a 152002 98953 171886 0.091 139365 170880 0.009 140946 172554 2847 144091 171294 9946 
sko100b 153890 99028 174226 0.100 141251 173878 0.007 143138 174290 3055 145783 174950 10745 
sko100c 147862 95979 169888 0.101 135011 167142 0.007 136773 170340 3306 140146 169792 8920 
sko100d 149576 95921 172024 0.091 136979 167642 0.007 138736 169774 2928 140072 171152 10162 
sko100e 149150 95551 171360 0.093 136996 168732 0.007 138711 168640 3090 139277 169914 9688 
sko100f 149036 96016 169768 0.093 136860 170008 0.007 138661 169090 3634 140885 169564 10627 
ste36a 9526 7124 14866 0.006 0 16112 0.001 0 17454 9.257 7731 20690 60.95 
ste36b 15852 8653 47768 0.007 0 42034 0.001 0 37398 8.375 12930 51936 60.06 
ste36c 8.239e6 6.393e6 2.191e7 0.006 0 2.119e7 0.001 0 1.952e7 8.193 6.546e6 1.775e7 101.4 
tai25a 1.167e6 962417 1.457e6 0.002 956657 1.310e6 0.001 967207 1.366e6 1.758 958027 1.411e6 12.89 
tai50a 4.9386e 3.854e6 5.838e6 0.017 3.840e6 5.680e6 0.002 3.870e6 5.613e6 67.49 3.842e6 5.667e6 253.0 
tai60a 7.205e6 5.55e6 8.481e6 0.27 5.537e6 8.398e6 0.004 5.575e6 8.464e6 82.67 5.544e6 8.216e6 841.2 
tai80a 1.349e7 1.032e7 1.570e7 0.065 1.030e7 1.568e7 0.005 1.035e7 1.573e7 413.5 1.031e7 1.556e7 3213 
tai100a 2.105e7 1.582e7 2.403e7 0.101 1.579e7 2.348e7 0.007 1.585e7 2.347e7 1667 1.552e7 2.347e7 6460 
tho30 149936 90578 195698 0.003 119255 193756 0.001 124217 200194 4.067 131588 198154 27.20 
tho40 240516 143804 298906 0.007 191042 303704 0.002 197661 319004 13.45 210210 313114 109.9 
tho150 8.133e6 4.123e6 9.703e6 0.226 7.350e6 9.756e6 0.013 – – – – – – 
wil50 48816 38069 53942 0.014 45731 53420 0.003 46194 52938 40.64 46901 53754 281.4 
wil100 273038 210949 293908 0.095 260827 293206 0.007 262584 291630 2591 264724 294948 11078 
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Table 2  
Best (minimum) results from the simulations.  If the BKW is confirmed optimal, it is highlighted in bold.  Also, in bold is 
the method that produced the best solution for the given instance. 

Instance BKW Rand GLB HRW AB PE 
chr12a 9552 9552 9552 9552 9552 9552 
chr12b 9742 9742 9742 9742 9742 9742 
chr12c 11156 11186 11156 11156 11156 11156 
chr15a 9896 10094 10010 9980 10106 9978 
chr15b 7990 8626 8210 9096 8458 8452 
chr15c 9504 10118 9504 10426 9940 10002 
chr18a 11098 11682 11682 12396 12004 12424 
chr18b 1534 1538 1534 1534 1538 1534 
chr20a 2192 2480 2532 2592 2398 2402 
chr20b 2298 2612 2608 2598 2674 2618 
chr20c 14142 14610 14988 15636 17274 14876 
chr22a 6156 6408 6342 6354 6456 6336 
chr22b 6194 6522 6526 6534 6410 6352 
chr25a 3796 5062 4678 5056 4970 4230 
had20 6922 6924 6928 6922 6956 6922 
kra30a 88900 93460 92480 93850 93460 92300 
kra30b 91420 95020 94570 94690 93620 92380 
kra32 88700 91660 92420 92270 92650 92320 
nug18 1930 1958 1936 1950 1938 1938 
nug20 2570 2598 2614 2590 2602 2598 
nug21 2438 2458 2452 2472 2450 2452 
nug22 3596 3628 3610 3628 3628 3610 
nug24 3488 3552 3554 3582 3546 3528 
nug25 3744 3806 3788 3800 3760 3762 
nug27 5234 5298 5298 5328 5294 5304 
nug28 5166 5314 5284 5288 5272 5260 
nug30 6124 6272 6260 6316 6254 6220 
scr15 51140 51140 52340 51140 51140 51140 
scr20 110030 111078 111938 110802 112660 110772 
sko42 15812 16304 16282 16290 16106 16172 
sko64 48498 50090 49904 49932 49970 49942 
sko72 66256 68298 68182 68264 67902 68140 
sko81 90998 93684 93492 93968 93840 93148 
sko90 115534 119630 119064 119078 119092 118446 
sko100a 152002 157426 157034 156934 156116 156820 
sko100b 153890 159060 158002 158456 158220 158184 
sko100c 147862 152742 152592 153186 152476 152374 
sko100d 149576 154708 154340 153896 153978 154144 
sko100e 149150 153880 154522 153930 154010 154536 
sko100f 149036 154284 153994 153788 153766 153558 
ste36a 9526 10234 10126 10052 9790 10266 
ste36b 15852 17786 17140 17112 16724 17770 
ste36c 8239110 8701576 8678652 8738822 8695554 8578694 
tai25a 1167256 1194194 1177180 1188890 1188248 1187984 
tai50a 4938796 5148702 5119448 5131652 5130768 5132594 
tai60a 7205962 7486562 7506384 7499212 7434242 7427410 
tai80a 13499184 14034018 14027470 13966388 14050896 13993668 
tai100a 21052466 21951138 21932812 21957694 21893240 21932070 
tho30 149936 154134 156170 153558 154874 152020 
tho40 240516 251428 249370 248116 247260 251034 
tho150 8133398 8511942 8461186 8454432 – – 
wil50 48816 49504 49472 49652 49434 49470 
wil100 273038 278428 277210 277730 277230 277458 

 
Table 3 
Comparison of the lower bounding methods with Rand – best (minimum) results. 

 GLB HWB AB PE 
Rand better 12 19 13 7 
Rand worst 37 30 33 41 
Rand equal 4 4 6 4 
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Table 4 
Median results from the simulations.  If the BKW is confirmed optimal, it is highlighted in bold. Also, in bold is the method 
that produced the lowest median value for the given instance. 

Instance BKW Rand GLB HRW AB PE 
chr12a 9552 12531 11866 11550 12798 12130 
chr12b 9742 13170 10570 11628 11548 11886 
chr12c 11156 14221 13060 14139 13518 13355 
chr15a 9896 14691 13886 13850 13625 14264 
chr15b 7990 13505 12334 13637 12490 12142 
chr15c 9504 15445 14303 15812 14518 14675 
chr18a 11098 19074 18159 18664 17565 17237 
chr18b 1534 1779 1730 1760 1776 1734 
chr20a 2192 3480 3374 3406 3280 3359 
chr20b 2298 3455 3384 3468 3453 3272 
chr20c 14142 25957 23068 24678 27073 23338 
chr22a 6156 7168 7007 7016 7144 6962 
chr22b 6194 7218 7086 7227 7078 7059 
chr25a 3796 6819 6068 6677 6520 5687 
had20 6922 7008 7002 7018 6982 7000 
kra30a 88900 99285 98410 100070 97930 97340 
kra30b 91420 100360 100945 100275 100695 100145 
kra32 88700 98365 98360 98435 98340 98260 
nug18 1930 2038 2022 2010 2018 2012 
nug20 2570 2728 2708 2708 2704 2714 
nug21 2438 2596 2562 2570 2548 2560 
nug22 3596 3789 3738 3878 3740 3734 
nug24 3488 3754 3731 3744 3689 3670 
nug25 3744 4002 3950 3930 3920 3940 
nug27 5234 5588 5544 5532 5497 5486 
nug28 5166 5546 5492 5492 5462 5460 
nug30 6124 6562 6490 6524 6518 6474 
scr15 51140 57428 56850 56240 56604 56613 
scr20 110030 125945 124260 122999 121845 122096 
sko42 15812 16854 16728 16830 16661 16663 
sko64 48498 51228 50996 51092 50894 50853 
sko72 66256 69782 69362 69625 69278 69267 
sko81 90998 95591 95186 95379 95093 94751 
sko90 115534 121745 121200 120730 121122 120980 
sko100a 152002 159834 159447 159059 158770 159425 
sko100b 153890 161739 160704 160686 160100 160450 
sko100c 147862 156070 155364 155557 154906 155008 
sko100d 149576 157353 156497 156886 156012 156377 
sko100e 149150 157467 156798 156325 156646 156178 
sko100f 149036 156510 155907 155665 155841 155841 
ste36a 9526 11375 11134 11126 11062 11192 
ste36b 15852 21794 20978 20601 20783 20899 
ste36c 8239110 9523806 9564108 9602558 9566412 9411506 
tai25a 1167256 1227125 1223279 1226160 1223803 1226389 
tai50a 4938796 5266951 5249145 5255063 5235616 5234108 
tai60a 7205962 7629342 7632746 7622290 7617218 7592056 
tai80a 13499184 14235086 14239312 14251040 14249678 14214487 
tai100a 21052466 22265769 22209784 22277072 22202771 22230955 
tho30 149936 162522 163144 162024 161934 159821 
tho40 240516 262386 259343 259822 258655 262188 
tho150 8133398 8647360 8609647 8594449 – – 
wil50 48816 50434 50269 50544 50092 50126 
wil100 273038 280670 280037 279836 279480 279705 

 
Table 5 
Comparison of the lower bounding methods with Rand – median results 

 GLB HWB AB PE 
Rand better 5 12 5 0 
Rand worst 47 41 47 52 
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