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Preface

Always do your best. Your best is going to change from
moment to moment; it will be different when you are
healthy as opposed to sick. Under any circumstance,
simply do your best, and you will avoid self-judgment,
self-abuse and regret.

Don Miguel Ruiz

Optimization is understood as a process of finding the best option from a set of possible
options. Everybody solves several optimization tasks on a daily basis without knowing
it: setting the time of an alarm, planning a public transport route from home to work,
packing bought items to a backpack in a store, choosing a proper gear at a right time
when driving the car etc.

One can be satisfied with a solution that is offered to us more or less randomly, or
one can pursue the optimal one. The search for the optimal solution should not shadow
the genuine purpose of the activity: e.g. one can search for the optimal connection so
long that he misses the appointment. But if properly used, optimization can make a lot
of things easier, save human and natural resources, save enormous amounts of money, or
improve or even save lives.

The basis for the research described in this thesis originally stemmed from my passion
to evolutionary optimization. For me, it was love at first sight. I remember how amazed
I was by the simplicity of evolutionary algorithms on one hand and their power on the
other hand. The field of applicability of evolutionary algorithms seems to be limitless.
The math hidden by the evolutionary algorithms is really simple - approximately on a
high school level. Therefore, optimization methods are attractive for a very large number
of users.

I would like to thank to my parents and siblings for giving me all the love. I miss my
dad, especially thinking of what knowledge we could share together. I would like to thank
to my family: wife Iva, son David and other kids (sorry, I do not know your names right
now) for giving the purpose to my life and work.

I have to acknowledge my present and former colleagues namely Martin Štumpf, Vláďa
Šeděnka, Martin Marek, Mı́la Čapek, Vlasta Koudelka, Zbyněk Raida, Jarda Rýmus,
Peter Kovács, Pavel Hazdra, Viktor Adler, Vı́tek Losenický, Michal Pokorný and many
others for kind help, valuable discussions and all the encouragements. Also, I have to
praise all my students for giving me the valuable feedback and bringing the new points
of view to me.
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Chapter 1

Introduction

With a massive increase of personal computer power a majority of design engineering
tasks transferred from laboratory to computer aided design (CAD) programs. The CAD
programs enable to perform thorough analysis of virtual prototypes in a more comfortable
way than it is possible with conventional real prototypes. The advantages of the virtual
prototyping are obvious:

� lower initial costs,

� decreasing design cycle times,

� decreasing manpower needed,

� decreasing waste of material resources,

� automation of the design processes.

The last item from the aforementioned list goes hand in hand with a massive progress of
optimization methods. Optimization can be viewed as any process of finding and compar-
ing feasible solutions of a specified problem until the best solution is assigned. Optimiza-
tion methods are nowadays used in almost every field of engineering e.g. economics, civil
or mechanical engineering, bio-medicine etc. including the domain of electromagnetics
(EM).

With the increasing complexity of engineering devices, the number of design variables
i.e. degrees of freedom grows. Accordingly, the number of possible combinations for
e.g. parametric analysis of a designed device grows exponentially beyond the limits of
nowadays computational resources. Therefore, new effective methods are inevitable for
solving these design problems that belong to the family of NP-hard problems [70].

According to “No-free-lunch” theorem [198], there simply does not exist one universal
method for solving of all kinds of engineering problems. According to this theorem, various
optimization algorithms have to be compared on a large sample of problems so that one
can say that one algorithm outperforms the other. Therefore, it is almost impossible to
select the best algorithm for a specific problem a priori.

Also, the design procedures take different points of view on the device under con-
sideration. These viewpoints can be e.g. price, performance, stability of parameters,
resilience to faults, dimensions etc. Some of these objectives can be contradictory which
disables to design a device satisfying all the requirements at the same time. The so-called
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2 CHAPTER 1. INTRODUCTION

multi-objective optimization methods enable to reveal the trade-off among the individual
objectives [45].

Moreover, some of the design problems force the designer to select a complexity of the
device (e.g. to select a number of transmitters to cover a specific area with a broadcasting
signal, to select a number of elements of an antenna array, to select a number of clusters
when classifying a set of data points etc.) and then search for the optimal values of
corresponding design variables. It is very ineffective to process the search for optimal
design variables for all the possible dimensions and then select an optimal solution (in
terms of the dimension and and values of the design variables). Therefore, these problems
require optimization algorithms that are capable to handle variable number of dimensions
within a single run.

Organization of the thesis is as follows. Various possible formulations of the optimiza-
tion problems including single-objective, multi-objective and with a variable number of
dimensions are defined in Chapter 2. Chapter 3 briefly reviews the selected state-of-the-
art evolutionary optimization algorithms. Chapters 4, 5, and 6 review contributions of
the author to the single-objective, multi-objective and a variable number of dimensions
optimization research, respectively. These chapters include reprints of the most important
peer-reviewed journal and conference papers by the author. Then, Chapter 7 describes
teaching experiences of the author and Chapter 8 briefly covers the author’s engagement
to research projects. Finally, Chapter 9 concludes the thesis.



Chapter 2

Optimization Problem Formulations

2.1 Single-objective Optimization

A general single-objective optimization problem (SOOP) is defined:

min
x

f(x)

s.t. x ∈ Ω,

gj(x) ≤ 0,

j = 1, 2, . . . , J

(2.1)

where f is the so-called objective (fitness) function that should be either minimized or
maximized. Symbol x denotes the decision space vector composed of allN design variables
xn (some times called as degrees of freedom, DOF). Usually, the feasible space Ω is a N -
dimensional subspace formed by a lower limit xn,min and upper limit xn,max for every
variable from the decision space vector. Finally, there can be up to J constraint functions
that further delimit the feasible space of the optimization problem. An example of one-
dimensional (N = 1) problem constrained by inequality x ≥ xk is shown in Fig. 2.1. The
dashed curve denotes the objective function for the full feasible space Ω, while the solid
curve denotes the constrained part of the objective function.

Without loss of generality, we will consider only minimization objective functions in
the remainder of the text. The maximization objective function can be easily transferred
to a minimization one by multiplying it by −1. This procedure has no impact on the
position (xopt) of the optimal (minimal or maximal) solution as shown in Fig. 2.1.

The result of the SOOP is one decision space vector xopt having the minimal (or
maximal) value of the objective function f(xopt). Therefore, this approach is applicable
to problems where no conflicting objectives are considered: e.g. solution of the inverse
imaging problem.

2.2 Multi-objective Optimization

The next class of optimization problems applies multiple (usually conflicting) objectives.
Then, the optimization problem is called as a multi-objective one (MOOP) and is defined

3



4 CHAPTER 2. OPTIMIZATION PROBLEM FORMULATIONS

Figure 2.1: Objective function for maximization/minimization constrained one-
dimensional optimization problem.

as:
min
x

f(x) = {f1(x), f2(x), . . . , fM(x)}

s.t. x ∈ Ω,

gm(x) ≤ 0,

m = 1, 2, . . . ,M,

j = 1, 2, . . . , J

(2.2)

Here, meaning of all the symbols remains the same as in case of SOOP in (2.1). The only
difference is, that up to M objective functions are minimized at the same time. With
MOOP, every solution can be viewed in the so-called decision space (using values of the
decision space vector x) or in the so-called objective space (using values of the objective
functions f). A traditional example of the multi-objective problem can be e.g. choice
of the transport vehicle from a viewpoint of the traveling time and price. As shown in
Fig. 2.2, none of the possibilities is better than any other in both the objectives i.e. the
minimal time and price. But knowing the shape of the trade-off among the individual
objectives brings an extra information to the designer.

The relation between the decision and the objective space is usually highly non-linear
as indicated in Fig. 2.3. The non-linearity is based on the shape of the objective and
constraint functions. The solution of the MOOP is the so-called Pareto front. It is
depicted in Fig 2.3 with the red curve. It can be viewed as a collection of all trade-off
solutions in the objective space. It forms a curve for two-objective problems, a curved
plane for three-objective problems etc. There are two goals for the MO algorithms: 1)
to find a set of non-dominated solutions that is as close as possible to the true Pareto
front, and 2) distribute the set of non-dominated solutions so that the true Pareto front
is covered uniformly.

The Pareto front is called as a set of Pareto-optimal solutions when viewed in the deci-
sion space. The Pareto front is framed by its extreme solutions that are the best according
to individual objectives (please refer to Fig. 2.3 and red circles). Symbol x(f1,opt) assigns
the best solution according to objective function f1. Symbol xw denotes the worst possi-
ble solution. Finally, xu denotes the Utopian (best) solution formed by the best values of
individual objective functions. It is highlighted with a blue marker in the objective space.
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Figure 2.2: Choice of the traveling vehicle as a multi-objective problem: price vs. time
[82].

Figure 2.3: Decision space (left) and objective space (right) of the two-objective opti-
mization problem.
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Table 2.1: The dominance relations.
Relation Symbol Interpretation

strictly dominates x1 ≺≺ x2 x1 is better than x2 in all objectives
dominates x1 ≺ x2 x1 is not worse than x2 in all objectives and

better in at least one objective
weakly dominates x1 � x2 x1 is not worse than x2 in all objectives
incomparable x1||x2 neither x1 � x2 or x2 � x1

indifferent x1 x2 x1 has the same value as x2 for all objectives

Figure 2.4: Principle of dominance explained on a two-objective optimization problem.

However, it clearly resides outside of the feasible area in the objective space (gray area)
and therefore it cannot be found in the decision space and therefore is infeasible.

There is plenty of aggregating techniques that transform a multi-objective (MO) prob-
lem to a single-objective (SO) one e.g. Weighted Sum Method, Rotated Weighted Metric
Method (see [45]). These methods suffer to deliver high-quality Pareto-front results as
shown e.g. in [87]: these methods cannot find solutions on concave parts of the Pareto
front and fail to distribute the solutions uniformly along the whole Pareto front. There-
fore, pure multi-objective solvers are necessary.

Most of the pure multi-objective optimization algorithms utilize the principle of dom-
inance [107]. Two solutions x1 and x2 can be compared according to dominance. The
possible results of the comparison are summarized in Table 2.1. Mostly, multi-objective
algorithms use the simple or weak dominance relation to compare possible solutions.

According to the definition of dominance relation in Table 2.1, every solution domi-
nates a part of the objective space according to values of its objective functions. This
phenomenon is shown in Fig. 2.4. There, four solutions are displayed with different colors.
Dashed lines mark the subspace that is dominated by the corresponding solution. Based
on positions of individual solutions, we can state that solution x1 strictly dominates x4.
Further, solution x3 dominates x4. Solutions x1 and x3 are mutually non-dominated
(incomparable). The same holds for the pair x2 and x4. It is obvious, that all the feasible
solutions dominate the worst solution xw but are dominated by the Utopian solution xu.

When working with a set of solutions P = {x1,x2, . . . ,xP}, it is necessary to select
the mutually non-dominated solutions that are the candidates for the Pareto front. The
non-dominated sorting algorithm is therefore the corner stone of every multi-objective
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Figure 2.5: Non-dominated sorting: different orders of non-dominated sets.

algorithm. All the solutions can be sorted to non-dominated sets of consecutive orders
as shown in Fig. 2.5. There, solutions with the same color build the set of specific order.
Every solution from the non-dominated set of the second order is dominated by at least one
solution from the set of the first order and so on. Within the set of one order, solutions are
mutually non-dominated. However, extreme solutions according to individual objective
functions and then less crowded solutions are preferred to maintain diversity of candidate
solutions.

The effectiveness of the non-dominated sorting is crucial factor for the speed of MO
algorithms. Therefore, lot of efforts has been put into improvement of non-dominated sort-
ing algorithms starting from naive and slow ones [171] and [46] with computational com-
plexity O(MN3) and O(MN2), respectively. The efficiency can be improved to O(MNN)
(where N is the number of non-dominated solutions in the population of N solutions) us-
ing the so-called Arena’s principle introduced in [181]. Next, authors in [129] improve the
efficiency of the sorting to O(MNN1/2). This complexity can be further improved with
the help of the hierarchical sorting in [17].

2.3 Optimization with Variable Number of Dimen-

sions

In general, optimization tasks require to set a priori the complexity of a model approxi-
mating a designed device. It means, that a fixed number of variables is searched by the
optimization algorithm. Plenty of design problems start with a question: “How many of
... is necessary to ...?” These tasks need a precise estimation of number of variables of the
model to be done a priori by some experienced designer. Another option is to formulate
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Figure 2.6: Solutions with different dimensions for VND optimization.

the task as a problem with a variable number of dimensions (VND):

min
x

f(x, N) = {f1(x, N), f2(x, N), . . . , fM(x, N)}

s.t. x ∈ Ω,

gm(x) ≤ 0,

m = 1, 2, . . . ,M,

j = 1, 2, . . . , J,

N = N1, N2, . . . , ND

(2.3)

The VND task formulation is the same as for MO task (2.2), except the fact, that some
of or all the objective functions depend on the decision space vector x and on its size N
at the same time. The dimension of the decision space vector N can be selected from the
list of feasible dimensions {N1, N2, . . . , ND} where D is the number of feasible dimensions
for the modeled device. It should be noted, that feasible dimensions are usually multiples
of some number specifying how many items with the specified number of design variables
are used. Therefore, the list of feasible dimensions does not contain consecutive integer
values, usually.

There is a large number of representative examples of VND problems. Designing some
broadcasting network covering a specified area is clearly a VND problem because the
optimal number of transmitters (and their position and power) is not known a priori [48].
The similar behavior is evident for a composite laminate stacking problem [114], a short
cantilever design [101], the high-dimensional data clustering [185], the cancer marker
identification [135] etc.

The optimization with variable number of dimensions allows to share information be-
tween solutions x that have different number of dimensions as indicated in FIg. 2.6. The
main idea of VND optimization is that the information about good values of individual
decision space variables can be shared across different dimensions.

Consider the broadcasting network design problem. Every transmitter introduces three
new design variables (two for a position on a map and one for a transmitting power).
The objectives of the design is to cover a specified area without any overlaps between
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Figure 2.7: The broadcasting network design example: a) initial N = 9 solution, b)
“improved” N = 9 solution (no VND), and c) N = 12 solution (using VND).

mutual transmitters and outside of the area that should be covered. Let’s assume that
we work with a “good” candidate solution, that utilizes 3 transmitters (i.e. N = 9 design
variables) as shown in Fig. 2.7 a). Now, if we try to cover the whole area with use of
three transmitters, we have to adjust the positions and power of individual transmitters
a lot. However, a better coverage with lower overlaps and without a large adjustment of
variables corresponding to the transmitters from the “good” candidate solution can be
achieved by adding a fourth transmitter (see Fig. 2.7 b) and c)).





Chapter 3

State-of-the-art Algorithms

Conventional optimization methods like Steepest Descent method, Newton method, Con-
jugate Gradient method etc. [169] are based on the knowledge of gradients of objective
functions. These can be replaced by the finite differences when needed. Nevertheless, the
knowledge of gradients is not possible in case of problems with objective functions deter-
mined by results of CAD-based analysis tools. Moreover, the conventional gradient-based
methods rely on a qualified initial estimation. If the initial guess is far from the global
minimum or simply at the bad position not so far (in the domain of the other attractor),
then these methods tend to end in a local minimum.

The main factors for a massive usage of evolutionary optimization algorithms (EA)
are:

� no need of gradients,

� no need of initial guess,

� robustness,

� simplicity of use and modification.

It is fair to mention the drawbacks of the evolutionary optimization methods in com-
parison to the conventional gradient-based methods that are mainly:

� slower convergence rate,

� higher computational demands,

� randomness of the process.

A pseudocode for a general evolutionary algorithm (regardless if single-/multi-objective
or even VND) is shown in Algorithm 1. It accepts inputs defining the problem to be solved
i.e. set of objective and constraint functions f and g, decision space limits Ω. Next, a
set of algorithm parameters S is defined. In general, S contains P as a number of agents
(solutions) and I as a number of iterations to be proceeded. The remaining elements of
S depend on the type of the algorithm.

The general EA starts with a random or pseudo-random generation of initial positions
for all P agents. Then, every agent is “awarded” by objective functions f . Then, positions
of all agents are updated iteratively until any of the stop conditions is fulfilled. Usually,
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12 CHAPTER 3. STATE-OF-THE-ART ALGORITHMS

Algorithm 1: Pseudocode of a general evolutionary optimization algorithm.

1 function generalEA (S,f , g,Ω);
Input : Settings parameters S, objective functions f , constraint functions g,

decision space limits Ω
Output: Set X = {x1,x2, . . .xP} : ∀xp ∈ Ω

2 Generate random vectors x ∈ Ω
3 Compute f(x)
4 while Stop condition not met do
5 Update x
6 Check new x ∈ Ω
7 Compute new f(x)
8 i = i+ 1

9 end

maximal number of iterations I is one of the stop conditions. Other commonly used stop
condition is that the algorithm finds a solution reaching specific values of the objective
functions.

We have decided to describe here three state-of-the-art algorithms, that have also
variants for multi-objective problems and problems with a variable number of dimensions.
Namely we describe Genetic Algorithms [78], Particle Swarm Optimization [100] and
Differential Evolution [172].

It should be noted here, that the canonical versions of the algorithms are only briefly
introduced in this thesis. There exists an enormous number of modifications of the selected
algorithms, their problem-oriented modifications and hybridized versions. We kindly refer
the reader to the referenced papers.

3.1 Genetic Algorithms

Genetic algorithms (GA) have been introduced by Holland and Goldberg in [60]. It is
based on the idea that only high-quality and beneficial genes of some species survive
to next generations i.e. the basic idea of the evolutionary theory published by Charles
Darwin in [41].

Single-objective Genetic Algorithm

Description of a conventional single-objective GA (SOGA) can be found in [78]. In GA,
every variable xn is coded in form of a binary number of selected length bn. It means that
GA works with a discrete decision space whose density increases with the increase of bn
values. All binary values of a single solution x build together the so-called chromosome.
A set of P chromosomes is one generation denoted as X .

A pseudocode for a generalized GA is summarized in Algorithm 2. It starts with a
random generation of P individuals that are awarded with objective functions values.
The SOGA then proceeds with a iteration loop, where the parent population Xp is first
selected using the tournament selection or roulette selection. Both the selection methods
are illustrated in Fig. 3.1. With the tournament selection, random pairs of agents are
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selected and then compared according to the objective function value. The agent with a
better value of the objective function proceeds to the mating pool. The roulette selection
works so that a probability value ξ is given to a p-th solution proportional to its quality
of objective function. The probability for the maximizing objective function f is

ξp =
fp∑P
p=1 fp

, (3.1)

while for the minimization objective function f :

sp =

∑P
p=1 fp

fp
,

ξp =
sp∑P
p=1 sp

.

.

(3.2)

Then, a random number from interval 〈0, 1〉 is generated P -times to assign solutions that
belong to the mating pool. Both the selection methods may leave out the best solution
from the mating pool. Therefore, the so-called elitism strategy is applied and selected
number of solutions with the best value of objective function are automatically taken to
the mating pool.

Algorithm 2: Pseudocode of a generalized genetic algorithm.

1 function GA (S,f , g,Ω);
Input : Settings parameters S, objective functions f , constraint functions g,

decision space limits Ω
Output: Set X = {x1,x2, . . .xN} : ∀xn ∈ Ω

2 Generate random vectors x ∈ Ω
3 Compute f(x)
4 while Stop condition not met do
5 Select the mating pool Xm from parents Xi
6 Create set of offsprings Xo
7 Mutate individuals
8 Evaluate fitness for Xo
9 Pick individuals for new generation

10 i = i+ 1

11 end

After the mating pool is selected, the recombination operations are applied to create a
set of offspring solutions Xo. The conventional recombination operations are the crossover
and the mutation operators. Figure 3.2 illustrates these two operations. The crossover is
controlled by the probability of crossover parameter. If set to 0, no crossover is performed
and the offspring population is the exact copy of the parent population. If set to 1, then
all the offspring solutions are generated with a help of the crossover. During the crossover,
random pairs are selected from the mating pool, these solutions are cut on a randomly
selected position and two offspring solutions are generated so that both the offspring
solutions have a corresponding part from both the parents. The mutation is applied to
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Figure 3.1: Tournament and roulette wheel selection for parent generation selection of
GA.

Figure 3.2: Crossover (top) and mutation (bottom) operators for the genetic algorithm.

all the offspring solutions with a priori selected probability of mutation. When applied, a
randomly selected bit from the offspring chromosome is reverted.

After the recombination stage is completed, the parent set Xi and offspring set Xo are
combined and the best solutions build the parent set Xi+1 for the next iteration. The
crossover should force the algorithm to search for the solutions with the better parts
from the parents chromosomes, thus, enhancing the convergence rate of the algorithm.
On the other hand, the mutation operator prevents the algorithm to get stuck in the
local optimum. The user of GA can balance the exploration/exploitation ability of the
algorithm by selecting the mutation and crossover probability.

Multi-objective Genetic Algorithm

The most famous and probably the most used multi-objective optimizer is the Non-
dominated Sorted Genetic Algorithm (NSGA-II) introduced in [46]. It follows all the
strategies as introduced for the SOGA i.e. it follows the pseudocode as in Algorithm 2.
The only difference is the strategy to pick individuals for new generation Xi+1. The
selection is made by a two-stage sorting as illustrated in Fig. 3.3.

First, the non-dominated fronts of consecutive orders F1,F2, . . . are revealed until the
number of agents in the advanced fronts is greater or equal than number of agents P .
Then, the last advanced front has to be further sorted based on the so-called crowding
distance metric [46]. It is applied on the advanced front that cannot be included to the
parent set for the next generation Xi+1 because the maximal number of solutions would
be exceeded. The crowding distance for sorting the solutions within a one non-dominated
set is computed according to [46]:
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Figure 3.3: Two stage sorting of combined parent and offspring set for the NSGA-II [46].

dImj = dImj +
f
Imj+1
m − f I

m
j−1
m

fm,max − fm,min

, (3.3)

where d denotes the crowding distance, and Imj denotes the solution index of the j-th
member of the set F sorted in ascending order according to values of m-th objective
function. Value d = 0 is assigned to all solutions from set F at the beginning of the
procedure. The extreme solutions with indexes Im1 and Im|F| are automatically assigned
with a large value, so that they are always preferred by the crowding distance metric.
The crowding distance selection (see Fig. 3.3) takes first the solutions with a larger value
of the crowding distance.

Settings for the NSGA-II algorithm remains the same as for the SOGA (see Section 3.1).
The trade-off between exploration and exploitation of the decision space of the algorithm
can be set via parameters probability of mutation and probability of crossover, respec-
tively. The most important parameter for the convergence rate is the binary precision for
individual variables. Further, the speedup of the convergence rate can be achieved by a
proper choice of mating pool selection (e.g. tournament or roulette wheel selection) and
by the multi-point crossover [112]. The success-rate of these techniques is usually very
problem-dependent.

Genetic Algorithm with Variable Number of Dimensions

Many authors in the domain of optimization with a variable number of dimensions name
the modified VND algorithms as Variable Length Genom Algorithms (VLGA). Genetic
algorithms have been used very often to solve VND problems. Nevertheless, most of the
authors add a so-called header to the decision space vector. This header has length N
(the number of decision space variables). Individual entries of the header are equal to
zero - variable is in not used, or one - variable is used.

Authors in [47] introduce the so-called static (these variables are mandatory for the
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decisions space vector) and dynamic part (these variables can be included/excluded based
on the complexity of the model) of the chromosome. The crossover operator is applicable
only in certain positions (according to the binary precisions of individual design variables).
Authors in [170] and [113] introduce an integer or real-valued additional string to the
chromosome, respectively. This string then specifies the affiliation of genes with decision
space variables.

Ting et al. [184] divides the genome with variable length into the sub-strings according
to model parameters. Then, crossover positions are available on the level of whole variables
and on the level of individual bits of variables. Although most of the authors of VLGA
handle the variable number of dimensions by modifying the crossover operator, authors
in [59] change the mutation operator. There are four mutation operators that can change
the length of the chromosome: growth, shrink, swap, and replace mutation.

Major part of the VLGAs are devoted to single-objective optimization applications.
From the aforementioned works, only [184] solves a multi-objective task (namely the
transmitter placement problem). Another multi-objective applications are e.g. [161] where
the multi-dimensional clustering problem is solved and [58] where sorting of unsigned
permutations by reversals is performed.

3.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is another example of evolutionary algorithm [142].
It was originally introduced by Kennedy and Eberhart in 1995 [100].It mimics a behavior
of swarm of individuals (usually bees) that searches for the best feeding position. The in-
dividual agents trace information about places that were visited and share the information
about quality of the visited places within the whole swarm.

Single-objective PSO

A comprehensive review of a single-objective PSO algorithm (SOPSO) can be found
in [163]. The generalized SOPSO pseudocode is presented in Algorithm 3. As other
evolutionary algorithms, it starts with a random generation of positions for individual
particles. Then, every particle has its own velocity vector, that is crucial for the update
of the position. The velocity is generated randomly within a velocity subspace Π. Usually,
a portion (1/3 or 1/10) of the search domain is used for the generation of the initial random
velocity e.g.:

vn,max − vn,min = 1/3(xn,max − xn,min). (3.4)

In every iteration i, the particles change their respective position xp according to:

xp(i) = xp(i− 1) + ∆tvp(i) (3.5)

where δt is the time step (δt = 1 for most of the cases), p denotes the index of particle
from the swarm of size P and i stands for the iteration number. The velocity is then
updated according to:

vp(i) = wvp(i− 1) + c1r1[pbp − xp(i)] + c2r2[gb− xp(i)] (3.6)

Here, w is the so-called inertia weight chosen by user from interval 〈0, 1〉 (or sometimes
linearly decreasing with increasing iteration i from wmax = 0.9 to wmin = 0.4 [16]). Then,
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Algorithm 3: Pseudocode of a generalized particle swarm optimization algo-
rithm.
1 function PSO (S,f , g,Ω);

Input : Settings parameters S, objective functions f , constraint functions g,
decision space limits Ω

Output: Set X = {x1,x2, . . .xN} : ∀xn ∈ Ω
2 Generate random agents x ∈ Ω
3 Generate random velocities v ∈ Π
4 Compute f(x)
5 while Stop condition not met do
6 Update velocities vi

7 Update positions xi

8 Apply boundary conditions for xi /∈ Ω
9 Evaluate fitness for xi

10 Update personal and global best
11 i = i+ 1

12 end

Figure 3.4: Velocity update for the PSO algorithm [10].

c1 and c2 stands for a cognitive and social learning factor, respectively. They are both
usually set to c1 = c2 = 1.5. Random numbers r1 and r2 are generated from a uniform
interval 〈0, 1〉 for every single velocity update. Vector pbp stands for the personal best
of the p-th particle (position of the p-th particle with the best value of the objective
function). Finally, gb denotes the global best position - the position with the best value
of the objective function visited by any of the particles from the whole swarm.

As shown in Fig. 3.4, the particle is driven by the velocity update formula to partly
remain in the totally random initial direction, and partly, it is forced to research the area
of personal and global best more in detail. However, the corresponding pb and gb com-
ponents of the velocity vector are multiplied by random number to preserve the algorithm
to evaluate very similar solutions. Users can control the exploration and exploitation of
the algorithm by setting the values for the inertia weight, and learning factors. While
large values of w and c1 favor the exploration, a large value of c2 forces the algorithm to
exploit the area of the current best solution gb.
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Figure 3.5: Boundary conditions for the PSO algorithm: a) reflecting, b) absorbing, and
c) invisible.

After the position update (3.5) particles can reside outside of the feasible decision space
Ω. Then, one of the following boundary conditions has to be applied:

� reflecting,

� absorbing,

� invisible.

The boundary conditions are illustrated by Fig. 3.5. The reflecting condition reflects the
solution from the updated position x∗

p(i) according to (3.5) back to the feasible space
Ω according to violated boundary (x1,min in case of Fig. 3.5). In case of the absorbing
boundary, the new position of the particle xp(i) is fixed to reside on the violated boundary.
The invisible boundary condition does not change the position of the particle that is
outside the feasible space. Instead, the objective function is worsened significantly (e.g.
f(xp(i)) = ∞). Than, the particle is pulled backt into Ω in the next iterations with the
velocity update formula (3.6).

Multi-objective PSO

There is a large number of PSO modifications for multi-objective problems. Nice overview
of these modifications can be found in [159]. Multi-objective Particle Swarm Optimization
(MOPSO) algorithm follows exactly the pseudocode of the simple SOPSO algorithm (see
Algorithm 3). The only change is in the velocity update step (3.6) that changes to:

vp(i) = wvp(i− 1) + c1r1[pbp − xp(i)] + c2r2[gbp − xp(i)] (3.7)
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Figure 3.6: Selection of the global bast solutions gb from the external archive members
e.

Here, a different global best position gbp is selected for every p-th particle. The global
best candidates are saved in the so-called external archive E . The external archive is
update at the end of every iteration i. It has to be pruned according to crowding distance
in case too many non-dominated solutions are found in the combined parent/offspring
sets (see Section 11).

There exist two ways how to assign the global best from the external archive:

� based on the Euclidean distance,

� randomly.

With the selection based on the Euclidean distance (in the decision space), the algo-
rithm tends to premature convergence (in case of the multi-objective optimization to
non-dominated sets of orders higher than 1) i.e. the local optimums are researched by
a large portion of particles. On the other hand, random selection slows the convergence
rate significantly. Therefore, the combination of both the approaches is usually the best
option. This approach is illustrated in Fig. 3.6. There, global best is selected randomly
for three solutions (x2, x3, and x5) and the global best is selected based on the minimal
Euclidean distance from the external archive members e1 - e5 for two of the solutions (x1

and x4). As the process of gb selection is partly random, some external archive members
can be selected for more solutions (e3 is selected for both x3 and x4) while some external
archive members are not assigned at all (e.g. e1).

Users of MOPSO can set the ratio between randomly selected and based on the Eu-
clidean distance with the settings parameter rgb ∈ 〈0, 1〉. If rgb = 0, all global best values
are selected based on the Euclidean distance, if rgb = 1 all the global best values are
selected randomly. According to our experience, it is better to set larger values rgb > 0.75
to the ratio rgb to ensure robustness of the MOPSO algorithm.

PSO algorithms with Variable Number of Dimensions

Surprisingly low number of authors presented works that employ PSO algorithm and its
modifications to problems with a variable number of dimensions. Although authors in [74]
does not solve a VND problem, an important contribution to the VND algorithms can be
found there. Additional therm to the velocity update formula is introduced. It is called
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as “ebest” and is composed of random parts from previous global best positions, that
are saved by the modified PSO algorithm. It brings the idea that global optimum can be
composed from pieces of individual local optimums.

In [115, 143], modifications to conventional PSO algorithm are made so that VND
problems can be solved. The problem with different sizes of the particle xp and the global
best solution gb is solved so that a random size between sizes of xp and gb is selected.
Multi-Dimensional PSO has been introduced in [103]. The dimension of every particle xp

is driven by a separate single-variable PSO algorithm. Therefore, the variable is switched
on/off by the auxiliary PSO algorithms. Dimension Adaptive PSO has been introduced
in [202]. Dimensions of individual particles is controlled by a discrete header that is
controlled by a discrete variable PSO algorithm. The size of the particle is selected based
on the so-called chord-length parametrization in [37]. Further, authors in [201] introduce
the Improved Variable-Length PSO algorithm to select the number and optimal values
of neurons in a hidden of an artificial neural network. The velocity update formula is
changed to preserve the same sizes for xp, pbp, and gb components. The architecture of a
convolutional neural network is selected by an improved PSO algorithm in [192]. In [185],
authors fill in the missing components for components of the velocity update formula are
taken randomly from other solutions with a higher dimension.

3.3 Differential Evolution

Differential evolution (DE) is an evolutionary optimization algorithm introduced by Storn
and Price in [172]. The single-objective version of DE and modifications made to DE to
solve multi-objective problems and VND problems are briefly introduced in the following
sub-sections.

Single-objective Differential Evolution

There is plenty of variants of the DE algorithm for single-objective problems [39]. A
variant assigned as DE/rand/1/bin is described here more in detail. Two basic operations
are used to modify the solutions: a mutation and a crossover. Its pseudocode of DE is
summarized in Algorithm 4.

The mutation operation creates a new random vectors according to:

vp,n(i+ 1) = xr1,n(i) + F [xr2,n(i)− xr3,n(i)] (3.8)

where p is the index of the agent, n is the index of the variable, r1, r2, and r3 are three
mutually different indexes of agents that are also different from p. Further, i denotes the
number of iteration and F is the user-defined scaling factor (F = 1.5, usually).

The new trial vector up(i) is then generated by the crossover operation between the
previous position of the p-th agent xp(i) and from the new “mutated” vector vp(i):

up,n(i+ 1) =

{
vp,n(i+ 1) if randb(n) ≤ CR | n == rnbr(p)
xp,n(i) if randb(n) > CR & n 6= rnbr(p)

(3.9)

Here, randb(n) denotes the random number from interval 〈0, 1〉. CR stands for the user-
defined crossover rate (CR = 0.1 usually). Next, rnbr(p) is the index of component of
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Algorithm 4: Pseudocode of a generalized differential evolution algorithm.

1 function DE (S,f , g,Ω);
Input : Settings parameters S, objective functions f , constraint functions g,

decision space limits Ω
Output: Set X = {x1,x2, . . .xN} : ∀xn ∈ Ω

2 Generate random agents x ∈ Ω
3 Compute f(x)
4 while Stop condition not met do
5 Perform mutation for every agent x
6 Create trial vectors u using crossover
7 Evaluate fitness for trial vectors u
8 Update positions of agents x
9 i = i+ 1

10 end

the p-th agent, that is taken from newly mutated vector vp(i + 1) automatically. This
maintains the diversity among agents because at least one component of the trial vector
up(i+ 1) is new (taken from the randomly created vector).

After the trial vector is created for every agent, the objective function is computed for
them. The position of p-th agent is updated as follows:

xp(i+ 1) =

{
up(i+ 1) if f(up(i+ 1)) < f(xp(i))
xp(i) else

(3.10)

In other words, the new position of xp(i + 1) is updated to the trial vector up(i + 1) if
the objective function value is better than at previous position xp(i).

The main advantage of the DE algorithm is that it keeps the diversity among individual
agents very well. That influences the robustness of the algorithm positively. Other ad-
vantage is that only two user-defined parameters are required to be set by users. A better
exploitation can be achieved with lower values of the scaling factor F while exploration
is preferred when larger values of the crossover rate are used.

Multi-objective Differential Evolution

The most used multi-objective variant of the differential evolution is the so-called Gen-
eralized Differential Evolution (GDE3) introduced in [109]. This method extends the
conventional SODE algorithm. A modification is needed for the selection of new position
of the agents - see (3.10). If the new trial solution up(i+ 1) and xp(i) are non-dominated
then both the solutions are accepted for the next iteration.

The overall number of agents cannot grow uncontrollably. If the population exceeds the
number of agents P at the end of iteration i, then the set of non-dominated solutions have
to be pruned. It is accomplished with use of the crowding distance metric as described in
NSGA-II algorithm (see Section 11). As described in the GDE3 paper [109], the selection
rules are more complex in case of the multi-objective constrained problem.
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Differential Evolution with Variable Number of Dimensions

Only three papers implementing the DE algorithm for problems with a variable number
of dimensions can be found in open literature up to date (03/2020). In [204], author
presents the so-called Variable-length DE algorithm to solve the automatic circuit design
problem. The circuit consists of a fixed part, where only component values are searched
and a non-fixed part, where the number of components, their connection and values are a
subject of search. The agents with a mutually different sizes for the mutation operation
according to (3.8) are either truncated (if they are too long) or filled with zeros (if they
are too short). If the crossover is applied to two vectors with different sizes then they are
truncated to the size of the smaller one, which favors the agents with a lower number of
design variables.

Authors in [168] implement the so-called Variable Length Crossover Differential Evolu-
tion to automatically design the fuzzy neural network architecture. However, the crossover
operation modification is valid only for the problem under interest. That makes it im-
possible to use the algorithm for other problems. Finally in [128], modified DE algorithm
is used for the image classification. Nevertheless, the algorithm uses a header called as
“masker” that contains ones and zeros that determines if some variable is used or not.



Chapter 4

Single-objective Optimization

The single-objective optimization is a field of interest for the optimization research for
more than 50 years. There exists a large number of elaborate algorithms, that are dedi-
cated to specific problems. The main contribution of the author is in the application of
some algorithms to solve EM problems. In [27], we have applied the genetic algorithm to
search for the optimal feeder position of the patch antenna.

A conference paper [86] applies the DE algorithm to find a position of a lightning stroke
source based on the voltage measured on the over-head transmission line above a perfect
electric ground. This method was further extended in [83] (see the reprint reprinted
version in Section 4.1) so that it accounts also the finite losses of the ground under the
transmission line. Also, this paper [83] shows that CMA-ES algorithm outperforms GA,
PSO and DE in the efficiency of the lightning stroke localization.

We have used the PSO algorithm to search for the optimal position and value of the
decoupling capacitor on a printed circuit board in [94] to suppress the unwanted signals
between ports on the board. This approach was held fully in time-domain.

Another important contribution of the author is the Fast Optimization ProcedureS
(FOPS) software tool available at http://http://antennatoolbox.com/fops. Author
of the thesis is the initiator and principal author of the tool, not the main programmer.
This tool is written in MATLAB and enables to solve single-objective, multi-objective
and VND optimization problems. User can define an own problem or the tool can be
used to compare various methods on a gallery of testing benchmark problems. The full
documentation to the tool can be found in [127]. The main features of the FOPS tool are
described in the journal paper [126].
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4.1 Lightning Stroke Localization – A Time-Domain

Approach Based on Evolutionary Optimization

Originally published as:
Kadlec, P., Marek, M., Štumpf, M.: Lightning Stroke LocalizationA Time-
Domain Approach Based on Evolutionary Optimization. In IEEE Transac-
tions on Electromagnetic Compatibility, 2020.

Abstract

In the present paper we analyze a localization problem based on evolutionary optimiza-
tion algorithms and an analytical EM-field-to-line coupling model. A computationally
efficient, analytical model for calculating time-domain lightning-induced voltages serves
as the forward solver in the optimization process. The model takes into account electric
permittivity and conductivity of a lossy ground. The inverse problem is solved with the
aid of a single-objective global optimization algorithm. It is demonstrated that the Co-
variant Matrix Adaptation - Evolution Strategy algorithm shows the best performance
among considered state-of-the-art algorithms. The influence of other problem parame-
ters, e.g. the size of the search space, the fluctuation of the return-stroke pulse width and
amplitude, and the presence of noise, on the localization error is discussed. While the
growing size of the search domain has a significant impact on the convergence properties
of the optimization process, this is not the case for the signal distortion, whose influence
can be virtually neglected.

Introduction

Among stages of lightning stroke phenomena the return stroke is potentially the most
critical one with regard to the electromagnetic (EM) susceptibility of overhead trans-
mission lines [8, 38, 73, 156]. EM pulses caused by strokes cover the frequency spectrum
from low tens of Hz to hundreds of MHz [38, 121]. These signals can be observed on
power-delivery transmission lines at distances up to several kilometers from the lightning
strike point [141]. In the event of an electric power system failure, with its potentially
drastic consequences for industry, medical care and households, a matter of paramount
importance is to locate and evaluate the cause of the failure, in view of designing the ap-
propriate protection system [99]. Accordingly, developing an efficient and reliable return
stroke localization methodology is the main objective of this work.

The majority of localization techniques is based on the principle of Time of Arrival
(TOA) [55, 120, 194]. These systems employ at least three sensors to detect a change of
an EM quantity induced by the lightning event. The time difference between the events
from every two sensors defines a hyperbola representing the set of potential lightning strike
points. The stroke position is then determined as the intersection of two or more such
hyperbolas. The data from at least four uncorrelated sensors are necessary to perform
a precise localization [136]. A system based on ToA can also work with other than EM
signals e.g. acoustic signals [6, 14]. An intriguing idea in this respect is the use of data
recorded by mobile phones of several users as proposed in [77]. Another category of
lightning localization systems is based on the principle of Magnetic Direction Finding
(MDF) [30, 182, 188]. Such MDF-based systems consist of two orthogonal loop antennas
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measuring the magnetic field caused by the stroke event. The difference of magnetic field
peak values determines the vector pointing towards the stroke location. The data from
at least two antenna systems must be used to determine the stroke position precisely.
The last group of localization methods relies on image processing [61, 123]. Since such
systems mostly process the large amount of image data from satellites, they are mostly
implemented on Field-Programmable Gate Array (FPGA) circuits [111,137].

In a previous work [86], a return stroke localization methodology based on the analyt-
ical EM-field-to-line coupling model (see [176]) applying to the perfect ground has been
introduced. In that initial study, the inverse problem is solved by combining the DE (Dif-
ferential Evolution) global optimization algorithm [149] with the closed-form analytical
model serving as the forward solver. In the present paper, we extend the methodology by
accounting for a finite ground permittivity and conductivity using the analytical model in-
troduced in [177]. On top of this, a comparative study investigating the use of four global
optimization algorithms, namely, DE [149], the Particle Swarm Optimization (PSO) [163],
Genetic Algorithm (GA) [78] and the Covariance Matrix Adaptation–Evolution Strategy
(CMA–ES) [69] is presented and thoroughly discussed. Namely, the influence of problem
parameters including the size of the search space, the fluctuation of pulse parameters, the
noise level and the presence of an echo in the voltage response, on the localization error
is discussed.

Problem Description

The goal of the optimization process is to find the location of the lightning return stroke
described by r = xsix + ysiy. A vertical electric dipole (VED) source modeling a section
of the return stroke is located at a height h > 0 above the ground plane at z = 0. Its
pulse shape can be described by a sum of two pulses of the type [141]

i(t) =
I0
η

(t/τ1)
n

1 + (t/τ1)n
exp(−t/τ2) (4.1)

where the amplitude correction factor η reads:

η = exp[(−τ1/τ2)(nτ2/τ1)1/n] (4.2)

where t > 0 is the time coordinate, I0 is the amplitude of the pulse and τ1 and τ2 denote
the front time and decay constants, respectively. The pulse signature used throughout this
work is composed of two pulses shown in Fig. 5.26 (pulse 1: I0 = 10.7 kA, τ1 = 0.25µs,
τ2 = 2.5µs, and n = 2, pulse 2: I0 = 6.5 kA, τ1 = 2.1µs, τ2 = 230µs, and n = 2).
Such a pulse shape mimics well real lightning return strokes [36].

To localize the point in the problem configuration (see Fig. 5.25), we employ a right-
handed Cartesian system with the originO and the three orthogonal base vectors {ix, iy, iz}.
The transmission line of length L > 0 is located at a height z = z0 > 0 above a homo-
geneous ground described by its (scalar and real-valued) electric permittivity ε1, electric
conductivity σ1 and permeability µ0. The transmission line is placed in the homogeneous,
isotropic and loss-free free-space, whose EM constitutive properties are defined by per-
mittivity ε0 and permeability µ0. The EM wave propagates here at the wave speed given
by c0 = (ε0µ0)

−1/2.
The lightning stroke localization is formulated as a single-objective two-dimensional

optimization problem. The objective function compares the measured (target) voltage
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Figure 4.1: Current pulses forming the lightning stroke [86].

Figure 4.2: The lightning stroke localization problem description.
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response V1,m at end 1 of the transmission line with the one simulated (computed) by the
forward solver denoted as V1,s [86]:

min f(r) =
N∑
i=1

[V1,m(i)− V1,s(i, r)]2

subject to r ∈ Ω
(4.3)

where N is the total number of time samples (i goes from 1 to N) and Ω is the feasible
region for the stroke position r. Equation (6.17) is designed to minimize the squared
error between the target and the computed voltage response time samples. The model
applied to calculating the both voltage responses: V1,m pertaining to the desired return
stroke position, and V1,s pertaining to the (trial) position returned by the optimization
algorithm, is described in Appendix 4.1 (see Sec. 4.1). Unless otherwise stated, we assume
that the voltage responses V1,m(i) and V1,s are synchronized precisely.

Forward Solver Description

We apply the analytical time–domain coupling model based on the Cooray–Rubinstein
formula (see e.g. [26]) which has been recently introduced in [176] and [177]. The analytical
method has been validated in [177] against results of other numerical methods presented
in [66] and [153]. For the sake of brevity, only the equations necessary for calculating the
voltage response V1,s are summarized here and in Appendix 4.1. The formulas apply to
the stroke located above the origin at r = {0, 0, h} and to the transmission line occupying
{x1 ≤ x ≤ x2, y = y0, z = z0}. In the solution procedure, a straightforward linear
transformation is performed whenever the stroke’s location is changed.

The voltage response can be decomposed into two parts:

V1,s(t) = V 0
1,s(t) + ∆V1,s(t) (4.4)

where superscript 0 denotes the voltage response applying to the perfect ground and
∆V1,s(t) is the correction term accounting for the finite ground permittivity and conduc-
tivity [177]

∆V1,s(t) 'Z(t) ∗t ∂tj(t) ∗t [M(x1, y0, z0 + h, t)

−M(x2, y0, z0 + h, t− L/c0)]
(4.5)

where ∗t denotes the continuous time-convolution operator and ∂t is the time derivative.
Next, the voltage response pertaining to the perfect ground can be found from [176]

V 0
1,s(t) ' −Q(x1|x2, y0, h− z0, t)

+Q(x1|x2, y0, z0 + h, t)

+ V(x1, y0, t)− V(x2, y0, t− L/c0)
(4.6)

for {0 < z0 < h} and

V 0
1,s(t) 'Q(x1|x2, y0, z0 − h, t)

+Q(x1|x2, y0, z0 + h, t)

+ V(x1, y0, t)− V(x2, y0, t− L/c0)
(4.7)
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for {z0 > h}. Please refer to Appendix 4.1 for the computation of undefined quantities in
(4.5)-(4.7).

The computational approach described above incorporates real electrical parameters
of the ground under the transmission line, namely relative permittivity and electric con-
ductivity. Using this computational tool extends the localization system proposed in our
previous work [86].

In case that a more complex transmission line is considered the applied forward solver
can be replaced by any other method, including numerical ones without affecting the
optimization procedure. However, the use of an alternative solver may lead to an increase
of the computational time.

Numerical Examples

In the numerical experiments that follow, we consider a transmission line of length L =
1.0 km located at {−L/2 ≤ x ≤ L/2, y0 = 0, z0 = 8.0 m} above a lossy ground described
by ε1/ε0 = 10 and σ1 = 0.01 S/m. In every single optimization run, the position of stroke
is generated randomly in domain Ω that is defined as a rectangle occupying {−2L < x <
2L,L/100 < y < L}. Owing to the problem symmetry (with respect to the transmission
line), the half-plane left to the transmission line is assumed only. The problem with
ambiguous stroke positions can be solved by using the data from sensors at the ends of
two different non-parallel and non-crossing transmission lines. The optimization process
is then executed separately for every transmission line which produces two sets of two
stroke locations with the correct one being present in both the sets of solutions. The
accompanying increase of the computational time can be handled by parallelizing the
data processing.

The length of the TD voltage response is {0.0 ≤ c0t/L ≤ 2.5} at 1200 samples. The
simply vectorized MATLAB code for the voltage response is executed approximately in
0.13 s on a standard PC with an AMD Ryzen 7 1700X platform and 32 GB of RAM.
The computational time could be further reduced by using a proper code optimization,
the use of Python or C language etc. However, this is out of the scope of the paper.
Statistical data presented in this study are based on 100 repetitions for every algorithm
and parameters combination.

The complexity of the optimization problem as defined by Eq. (6.17) is shown in
Fig. 4.3. The objective function is overall very flat with a very thin needle-shaped global
minimum and plenty of local minimums and maximums. Nevertheless, the difference
between the global minimum value and those in local minimums is more than three
orders of magnitude. Also, the problem is two-dimensional only, which indicates that
it can be solved efficiently and reliably in a reasonable time. The performance of four
different global optimization algorithms and the influence of several problem parameters
is discussed in the following subsections.

Optimization Algorithms Comparison

As can be observed in Fig. 4.3, the objective function consists of a high number of local
minimums and maximums, which prohibits from using efficient gradient-based algorithms.
Therefore, four global state-of-the-art algorithms are applied to solve the problem: GA
[78], PSO [163], DE [149], and CMA-ES [69]. A detailed description of the algorithms
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Figure 4.3: Values of the objective function for all possible return stroke locations in
domain Ω. The stroke’s location was associated with the peak observed at {L/3, L/3}.

settings is summarized in Tables 4.2-4.5 in Appendix 4.1. To get a fair comparison,
all algorithms use 30 agents and 50 iterations, so that the number of fitness-function
evaluations is still the same.

The results are summarized in Table 4.1 which contains the average, standard deviation,
minimum, and maximum values of the localization error defined by

ε = ||r − rs|| (4.8)

where r denotes the stroke location found by the optimization algorithm and rs is the
true stroke event location. Another observed metric is the so-called percentage success
rate that is defined as:

SR = 100(Ns/N) (4.9)

where N is the total number of trial runs, and Ns is the number of successful runs. A run
is considered as successful if the localization error ε drops under 3.0 m.

Results for individual algorithms are presented also in the form of conventional box
plots in Fig. 4.4. Here, the red line marks the average value, the blue bottom and top edges
mark the 25-th and 75-th percentile, respectively, and red markers denote the so-called
outliers (7 % of data that are the most abnormal according to the normal distribution of
probability).

The algorithm CMA-ES clearly outperforms the other algorithms. It achieves the
best values in all the observed metrics. Remarkably, as shown in the column CMA-ES* of
Table 4.1, the CMA-ES algorithm achieves comparable or even better results with respect
to DE and GA with only a quarter of fitness function computations (400 compared to
1500).

The reason behind such an outstanding performance of the CMA-ES algorithm is in
the noisy shape of the objective function (see Fig. 4.3) for which this algorithm works very
well, which can be demonstrated by various comparative studies (e.g. [68,189]). This high
performance can be explained by the mechanism that CMA-ES uses for the creation of
its new trial positions. It produces them using the multi-dimensional normal distribution
that is distorted according to the covariance matrix computed from the previous trial
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positions with an emphasis on the best solution. Consequently, every part of the search
domain can be explored with a great detail, but the algorithm prevents from getting
stuck in the local minimum, especially for the later iterations of its run. Algorithm CMA-
ES achieves the outstanding search rate SR = 98 [%] with the worst localization error
only ε = 3.74 m. Only the algorithm PSO achieves an acceptable result of the search
rate SR = 85 %, while the other two - DE, and GA - end up with SR = 10 % and
SR = 4 %, respectively. Results of the comparative study shown in Fig. 4.4 indicate that
all the considered algorithms achieved different levels of the localization error for the fixed
computational resources (see εavg and εmin in Tab. 4.1). Algorithms PSO, DE, and GA
can solve the problem as well, but at the expense of a much longer computational time
to reach the same localization error level as for CMA–ES.

The localization methodology has been improved (1) by incorporating the influence
of electric conductivity and permittivity, and (2) by employing the CMA–ES algorithm.
Consequently, the average localization error decreased to εavg = 0.16 m compared to
εavg = 1.34 m, which was achieved in Ref. [86] assuming the idealized PEC ground model.
The overall search rate increased to SR = 98 % compared to SR = 78 % from [86].
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Figure 4.4: Box plots of the stroke localization error obtained for different optimization
algorithms.

Table 4.1: Comparison of the return stroke localization error for different optimization
algorithms. Simulation denoted as CMA-ES* used less agents 20 and iterations 20.

Algorithm CMA-ES DE GA PSO CMA-ES*

εavg [m] 1.64× 10−1 8.29 9.83× 101 1.15 9.44
σε [m] 5.84× 10−1 5.11 7.94× 101 1.86 1.01× 101

εmin [m] 3.07× 10−5 4.44× 10−2 1.95× 10−3 4.13× 10−3 2.76× 10−1

εmax [m] 3.74 2.56× 101 4.00× 102 1.01× 101 6.26× 101

SR [%] 98 10 4 85 21
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Influence of Problem Parameters

At first, we add the Additive White Gaussian Noise (AWGN) to the measured voltage
response V1,m. The box plots for SNR = {10, 15, 20, 25, 30} (in dB) are shown in
Fig. 4.5. Here we can observe that the average error decreases slightly with the growing
SNR values. Also, the search rate enhances very slightly with the growing SNR as
SR = {94, 97, 96, 98, 98} (in %) for the corresponding SNR values. A small variation of
the localization error with the growing noise level implies a good stability and robustness
of the proposed methodology.
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Figure 4.5: Box plots of the stroke localization error for the target response corrupted by
AWGN with different SNR (CMA–ES algorithm).

Next parameter whose influence will be studied is the size of search domain Ω. We shall
limit our analysis to rectangular domains Ω. Namely, we consider a rectangular domain
of a height h = w/2 and a width w > 0, the latter is taken to be a multiple of L. As can
be seen in Fig. 4.6, the size of Ω has to be chosen thoroughly since it has the dominant
impact on the success rate of the localization. Our methodology seems to be applicable
to domains with approximately up to w/L = 5 (εavg = 0.38 m). Increasing its dimensions
further, the localization error grows very quickly (the average value for w/L = 10 reaches
εavg = 73.3 m). A better performance could be achieved at the expense of an extended
computational time, as more agents and iterations would be needed. It is evidenced by
the convergence plots for different w/L sizes in Fig. 4.7. The convergence of localization
error ε based on number of objective function computations nf . The localization error
ε < 3 m can be reached under approximately 1000 objective function computations for
sizes w/L <= 5. It would be necessary to use approximately 4000, and 8000 nf to achieve
the same level of localization error for w/L = 10 and w/L = 20, respectively.

The measured response can be corrupted also by echo signals. Echo signal Ve represents
a reflected signal arriving at the observation point from the stroke location. The echo
signal is, in fact, an attenuated and delayed copy of the primary (direct) signal Vd. Their
sum is observed at the location of interest. An example of such a combination of the
primary signal with the echo is shown in Fig. 4.8. The echo was attenuated 10-times with
respect to the primary signal and its delay is c0t = 200 m. The influence of the presence
of echo to the optimization results can be observed in Fig. 4.9. Here, a histogram of
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Figure 4.6: Box plots of the stroke localization error obtained for different sizes of the
search domain Ω.
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Figure 4.7: Convergence plots of the localization error ε vs. the number of objective
function computations nf for different search domain sizes Ω (expressed by the w/L
ratio). Red dashed line marks the SR limit ε = 3 m.
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the localization error ε for the measured signal V1,m with (Vd + Ve) and without (Vd) the
echo signal are compared. As can be seen, the error rate remains almost unchanged. The
search rate is very high for the both scenarios: SR = 98 % for the primary signal only and
even higher, i.e. SR = 99 % for the voltage response with the echo signal. The presence of
the echo signal does not change the strong initial part of the voltage response. Therefore,
the optimization algorithm can deduce the correct stroke position from the early-time
response. The remaining corrupted part of the response increases the objective function
value for the correct position, but also for fault positions.
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Figure 4.8: Sum of primary wave voltage response Vd with the reflected echo response Ve.
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Figure 4.9: Histogram of localization error when the voltage response of a direct wave Vd
and a wave with the reflected echo Ve is used.

The pulse parameters defined in Sec. 5.2 (see Fig. 5.26) used for the computation of
voltage response Vs were experimentally set to model actual return stroke pulses [141]. The
robustness of the localization methodology against fluctuations of the pulse parameters
is a very limiting factor. Therefore, we examine here the effect of the variable pulse
width and pulse peak amplitude (see Eq. (6.24)) as used to calculate the ”measured”
voltage response Vm on the method’s error. The stability of the localization error to the
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Figure 4.10: The stroke localization error obtained for different pulse width ratio ξ and
pulse peak amplitude ratio ν values.

pulse parameters fluctuation is shown in Fig. 4.10. The pulse width change is expressed
by means of parameter ξ, that is defined as the ratio of the width of i(t) as used for
calculating Vm at the level of i(t) = 8 kA and the width of i(t) as used for calculating Vs
at the same current level. This implies that if ξ = 1.0, the same pulse for Vm and Vs is
used. The parameter ν denotes the pulse peak amplitude ratio. It is defined as the ratio
of the peak value of i(t) used for calculating Vm and the amplitude value of i(t) used for
calculating Vs. This means that if ν = 1, the same pulses are used for calculation of Vm
and Vs. As can be seen in Fig. 4.10, the localization error does not grow significantly
with the change of the pulse amplitude. On the other hand, the error increases with the
change of the pulse width. Anyway, the localization error remains below three meters
throughout the entire range of the considered ξ and ν values.

Conclusion

In this paper, a fast lightning localization technique based on evolutionary optimization
algorithms and a closed-form TD analytical model for calculating lightning-induced volt-
ages on an overhead transmission line has been described. It has been demonstrated that
the incorporation of the ground electric permittivity and conductivity improves the pro-
posed localization system. The localization problem was defined as a causation inverse
problem and the analytical coupling model based on the Cooray–Rubinstein formula was
used as a forward solver. The solution of the inverse problem was obtained with the help
of four global optimization algorithms. Our comparative study clearly proved that the
CMA-ES algorithm is the most suitable candidate for solving the localization problem.
The influence of other problem parameters has been investigated, namely, the influence of
the level of noise added to the voltage response, the presence of the echo signal in the mea-
sured voltage response, the size of the return stroke search domain, and the fluctuation of
the return stroke pulse width. Based on the results of this work it can be concluded that
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only the size of the search domain reduces the success rate of the CMA–ES algorithm
significantly.

Appendix 1: Voltage Response Computation

The space-time function M(x, y, z, t) used in (4.5) is computed:

M(x, y, z, t) = (1/2πR)N (x, y, z, t)H(t−R/c0) (4.10)

with H(t) being the Heaviside step function and

N (x, y, z, t) =(c0 + x)−2[c0t(c0t+ 2x)− xR

− R(c20t
2 − x2) + c0t(y

2 + z2)

R + c0t
]

(4.11)

in which

R = R(x, y, z) =
√
x2 + y2 + z2 (4.12)

In Eq. (4.5), j(t) (in A ·m) represents a traveling current pulse

j(t) = i(t− h/v) exp(−h/λ)∆h (4.13)

where i(t) is the current pulse defined by Eq. (6.24), ∆h > 0 is the spatial step for
integration along the stroke channel height. The velocity of the stroke inside the channel is
v = 1.30× 108 m/s and λ = 2 km. The time-domain surface impedance Z(t) is computed
from

Z(t) = ζ1{δ(t)− (χ/2)[I0(χt/2)− I1(χt/2)]H(t)} (4.14)

where I0,1(t) are the scaled modified Bessel functions of the first kind, ζ1 is the wave

impedance corresponding to the “high-frequency limit” of the surface impedance Ẑ(s)
(see [177])

ζ1 =
√
µ0/ε1 (4.15)

and
χ = σ1/ε1 (4.16)

For the PEC ground response as computed by (4.6) and (4.7), we used

Q(x1|x2, y, z, t) = ζ0∂tj(t) ∗t [F(x2, y, z, t− L/c0)
−F(x1, y, z, t)]

(4.17)

and
F(x, y, z, t) =[z/4π(y2 + z2)]

× P(x, y, z, t)H(t−R/c0)
(4.18)

with

P(x, y, z, t) =1/Rc0t

[
xc0t− x2

− R(c20t
2 − x2) + c0t(y

2 + z2)

R + c0t

+
c20t

2(y2 + z2)

R2

] (4.19)
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Furthermore, in Eq. (4.6) and (4.7) we substitute

V(x, y, t) = U(x, y, h− z0, t)− U(x, y, h+ z0, t) (4.20)

for {0 < z0 < h} and

V(x, y, t) = 2U(x, y, 0, t)− U(x, y, z0 − h, t)
− U(x, y, z0 + h, t)

(4.21)

for {z0 > h}, where
U(x, y, z, t) = ζ0∂tj(t) ∗t G(x, y, z, t) (4.22)

in which
G(x, y, z, t) = (1/4π)

[
(c20t

2 − x2 − y2)−1/2

− zc0tR3
]
H(t−R/c0).

(4.23)

Appendix 2: Optimization Algorithms Settings

For the meaning of individual parameters used in following tables please refer to [125].

Table 4.2: Settings of the Genetic Algorithm.
PC [−] PM [−] BP [−] TS [−] nCP [−]

0.9 0.7 20 2 1

Table 4.3: Settings of the Particle Swarm Optimization Algorithm.
W [−] C1 [−] C2 [−] BT [−]

[0.9, 0.4] 1.5 1.5 ’Reflecting’

Table 4.4: Settings of the Differential Evolution Algorithm.
F [−] PC [−]

0.2 0.2

Table 4.5: Settings of the Covariance Matrix Adaptation - Evolutionary Strategy Algo-
rithm.

µ [−] αc [−] BT [−]

15 2 ’Reflecting’



Chapter 5

Multi-objective Optimization

The multi-objective optimization of EM problems was the main concern of the Ph.D. the-
sis of the author [81]. The dissertation was dedicated to extension of the Self-organizing
Migrating Algorithm to handle multi-objective problems. The new algorithm was called
as Multi-objective Self-organizing Migrating Algorithm (MOSOMA). The main contribu-
tions of the thesis were summarized in form of two book chapters: [92] summarizes the
algorithm and [91] shows results of the algorithm on various design problems. The MO-
SOMA was then applied to design of various types of layered filters (a low-pass, band-pass
and band-stop filter) and the design of the Yagi-Uda antenna in the journal paper [90]
(see the reprinted version in Section 5.1). The results of the MOSOMA algorithm on
these design problems are compared to other state-of-the-art algorithms (MOPSO and
NSGA-II).

A conference paper [84] presents a multi-objective optimization of the testing pulse
for a time-domain shielding effectiveness of thin metal sheets (please see the reprinted
version in Section 5.2). The MOPSO algorithm is used to search for optimal values of
pulse parameters (namely the rise time, the pulse rising power and the ringing frequency)
to alter the test sensitivity according to specific requirements. Results show the theoretical
level of the test adjustments and the influence of the individual pulse parameters to the
shielding-effectiveness.

37
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5.1 Multi–objective self–organizing migrating algo-

rithm applied for design of electromagnetic com-

ponents

Originally published as:
Kadlec, P., Raida, Z.: Multi–objective self–organizing migrating algorithm
applied for design of electromagnetic components. In IEEE Antennas and
Propagation Magazine, 55(6), pp. 50-68, 2013.

Abstract

Real life design problems of electromagnetic components are usually highly non-linear.
These problems can be efficiently solved with stochastic global optimization algorithms.
This paper deals with an application of a novel Multi-objective Self-organizing Migrat-
ing Algorithm (MOSOMA) to the design of two electromagnetic components: layered
dielectric filters and Yagi-Uda antennas. Optimization of dielectric filters considers two
objectives: minimization of reflection in the pass band and its maximization in the stop
band. Band-pass, low-pass and band-stop filters having seven dielectric layers are opti-
mized here. An option for treatment of both continuous parameters and discrete ones and
dealing with optimization constraints without any change in the optimization algorithm
is briefly discussed. Yagi-Uda antenna optimization deals with two-objectives: maximiza-
tion of gain and minimization of relative side-lobe level, while impedance matching is
considered as a constraint for the proposed designs. Yagi-Uda antennas are analyzed
using 4NEC2 software based on the method of moments. Co-operation of Matlab opti-
mization script and 4NEC2 software in a non-interactive mode is explained. Results for
four- and six-element antennas are presented. Results of both the problems are compared
to results from available references.

Introduction

Since almost every optimization problem can be viewed from more than one side, impor-
tance of efficient multi-objective optimizers grows. These algorithms are able to find so
called Pareto front of solved problem. This set is built by solutions that are optimal from
the viewpoint of all the objectives at the same time. Pareto front expresses the trade-off
between individual objectives.

The aggregation methods (summation of weighted objectives) suffer with various prob-
lems [45]. Mostly, aggregation of multiple objectives into one large fitness function brings
a problem of proper settings of weights for individual objectives. Consider, you have to
set the weights a priori which is almost impossible without a good experience with a
solved problem. For example assuming these weights to be equal (we do not prefer any
of the objectives), optimization process usually does not find a solution from the middle
of the Pareto front as expected, but the proposed solution prefers one of the objectives
significantly [45]. Next, individual objectives have to be normalized with their maximum
value to keep all the entries of the aggregated function in the same scale. Finding of
maximum for individual objectives is again an optimization task. Moreover, most of the
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aggregation methods are not able to find solutions from the concave part of the Pareto
front as shown in [87].

On the contrary, searching for so called Pareto front of the problem with multiple ob-
jectives gives the user some additional knowledge about limits and dependencies of the
considered objectives and enables to choose carefully the final solution of the problem.
This approach gives a designer chance to take into account the true importance of indi-
vidual objectives. The final solution can be then selected according to extra information
about the solved problem either manually or by a machine. With knowledge of the Pareto
front, the chosen trade-off solution then truly respects your preferences for particular ob-
jectives (weight of individual objectives is selected according to the shape of the found
Pareto front). On the contrary, in case of the methods aggregating all the objectives, you
dont know, if the weights for particular objectives (you have to select a priori before the
start of optimization) respect the true trade-off between objective function values of the
found solution (just a single one).

Multi-objective self-organizing migrating algorithm (MOSOMA) is one of the most re-
cent multi-objective optimizers. Two-objective version of MOSOMA has been introduced
in [88]. In [89], MOSOMA has been extended so that it is able to solve efficiently prob-
lems with any number of objectives. MOSOMA has shown very good performance on
various mathematical benchmark problems [88, 89] where results of various convergence
metrics are compared with commonly used multi-objective algorithms NSGA-II [46] and
SPEA2 [211] MOSOMA achieves at least comparable results in all watched metrics.

Following two paragraphs try to explain the differences between previous papers con-
cerning MOSOMA and this one. Paper [87] has compared pure multi-objective algorithm
MOSOMA with conventional aggregating methods on benchmark problems to justify the
derivation of pure multi-objective optimization method based on self-organizing migration.
Almost the whole paper [89] was focused on extension of MOSOMA to solve problems
with more than two objectives. Functionality of our approach has been shown on design
of dielectric filters. The filter design has been considered as a three-objective problem (re-
flection minimization in the pass-band, reflection maximization in the stop-band and total
length minimization). Then, MOSOMA has been employed for control of time domain
adaptive beam-forming of slot antennas array in [155]. As it was a joint paper covering
much larger area than EM multi-objective optimization MOSOMA application could not
been discussed in appropriate detail.

This paper deals with application of generally working (within the meaning of objective
space size) algorithm MOSOMA for design of EM components: dielectric filters and Yagi-
Uda antennas. First, the run of the algorithm is described especially from the programing
point of view (Matlab scripts of the algorithm can be downloaded for free from authors
website). Then, practical issues arising during the design process like constraints handling
and working with decision space built by continuous and discrete variables at the same
time are discussed. Also co-operation of our optimization algorithm with external EM
solver is explained here.

Venkatarayalu et al. formulated the optimization of widths and relative permittivities
of individual layers of a filter as constrained two-objective problem in [191] where authors
proposed a new evolutionary algorithm (MOEA) for its solution. Goudos et al. used
a multi-objective algorithm based on swarm intelligence (MOPSO) for the solution of
band-pass, low-pass and band-stop filter design [62].

The optimal design of Yagi-Uda antenna is a challenging problem for various authors
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from the 20-th century. Cheng [31] put a lot of efforts to the application of gradient
based methods to the search of optimal lengths of elements and their spacing. Cheng
observed that gain of Yagi-Uda antenna is described by a highly non-linear function
and therefore, the solution provided by gradient based methods strongly depends on
an initial guess. Therefore, lot of authors tried to apply global optimization methods:
Jones and Joines employed the single-objective binary-coded genetic algorithm (GA) [79].
Baskar et al. [18] used comprehensive learning particle swarm optimization (CLPSO). All
previously mentioned authors solved the Yagi-Uda design problem as a single-objective
task using one aggregated fitness function composed of individual objectives considering
gain, relative side lobe level and impedance matching. Nevertheless, several variants of
Yagi-Uda antennas were optimized as a constrained two-objective problem (maximization
of gain and minimization of side lobe level as objectives and impedance matching as a
constraint) in [190] by Venkatarayalu et al. Kuwahara considered the impedance matching
as a third objective instead of constraint in [110].

In this paper, properties of the multi-objective optimization are briefly reviewed to be
introduced to readers. Then, basic principles of MOSOMA are described and an illustra-
tive run of MOSOMA on a simple benchmark problem is derived. Finally, experimental
results of the application of MOSOMA to both the design problems are discussed and
compared with solutions obtained by other authors.

Multi–objective optimization

Optimization can be understood as a process of finding and comparing feasible solutions
of a solved problem until the best solution is found. Quality of the solutions is expressed
by means of an objective function. Usually, the solved problem has to be described by
more than one objective (e.g. price, robustness, reliability, size of some device, etc.).
If the objectives are conflicting, optimization leads to a set of so–called Pareto-optimal
solutions that represent a trade-off among all objectives.

The multi-objective optimization problem can be formulated as follows:

min
x

Fm(x)

s.t. x ∈ Ω,

gj(x) ≤ 0,

m = 1, 2, . . . ,M,

j = 1, 2, . . . , J

(5.1)

where M denotes the number of objective functions Fm, N stands for the number of
decision variables, x is the vector of decision variables for individual solution, xn,min and
xn,max are lower and upper bounds for the n-th variable from the N -dimensional decision
space. The symbol J stands for the number of constraint functions gj. Every proposed
solution x defined in the decision space (see Figure 5.1) can be represented in the objective
space by means of values of the objective functions. Constraint functions gj divide the
objective space into a feasible and an infeasible subspace.

Operation of almost every stochastic multi-objective optimization algorithm is based
on a principle of dominance. The principle of dominance compares two solutions from the
viewpoint of all objectives at the same time [45]:
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Figure 5.1: Pareto optimal solutions depicted in the decision and objective space.
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Solution x1 is said to dominate the other solution x2, if both conditions 1
and 2 are met:

1. Solution x1 is no worse than x2 in all objectives.

2. Solution x1 is strictly better than x2 in at least one objective.

Such a comparison can end with two different results: either one solution dominates
the other (it is at least the same or better in all objectives) or both the solutions are
non-dominated (any solution is better in all objectives).

The principle of dominance is observed in the objective space (see Figure 5.2). We have
here a setQ consisting of five solutions. The dashed lines mark out regions in the objective
space that are dominated by a corresponding solution. The solution x1 dominates the
solutions x2 and x3, the solution x4 dominates the solution x5. The solutions x1 and
x4 are non-dominated. These two solutions build a non-dominated set (front) P of the
first order. The solutions x2, x3 and x5 are also non-dominated and build a front of the
second order.
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Figure 5.2: Principle of dominance in two-dimensional objective space.

Obviously, if the researched set Q contains all possible solutions from the whole objec-
tive space, then non-dominated set contains all the Pareto-optimal solutions PF of the
problem. Therefore, the concept of dominance can be used for an effective classification
of proposed solutions from the viewpoint of multiple objectives.

The process of finding a non-dominated set P is crucial for a fast convergence of
every multi-objective optimizer. Intuitively, the comparison of the whole set of so-
lutions Q for evaluating the dominance is ineffective. Therefore, a continuously up-
dated algorithm for assigning the set has been proposed in [46]. Its pseudocode is de-
picted in Figure 5.3 and the working Matlab code can be found at http://www.urel.
feec.vutbr.cz/ kadlec/?Downloads:MOSOMA.

Every multi-objective optimizer is aimed to reveal the whole Pareto front. This task
contains two contradictory minor goals. First, members from the found set P should be
as close to the true Pareto front PF as possible. On the contrary, members from P should
be distributed along the whole Pareto front uniformly. Following both these goals is very
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Figure 5.3: Pseudocode of continuously updated algorithm for assigning set P .

important for a proper understanding of trade-offs between objectives of an examined
problem.

MOSOMA

A novel Multi-Objective Self-Organizing Migrating Algorithm (MOSOMA) extends the
single-objective optimization method SOMA (Self-Organizing Migrating Algorithm) [206].
The multi-objective variant of the algorithm was derived in [88, 89]. Here, the main
principles of MOSOMA will be described and then we walk through an example run of
MOSOMA on a simple benchmark problem to illustrate the algorithm from the imple-
mentation point of view.

Algorithm overview

MOSOMA works in both the optimization domains. So called agents (vectors of state
variables) migrate through the N -dimensional decision space and evaluate researched
positions with values of M objective functions. These values are used for a non-dominated
sorting of the whole group of agents. All agents migrate then towards the members of
a so called external archive. So, the migration leads all agents closer to the true Pareto
front as indicated in Figure 5.4. The overall functionality of MOSOMA can be described
by following steps:

� Step 1: Defining controlling parameters of the algorithm.

� Step 2: Generating an initial population, evaluating objective functions.

� Step 3: Choosing an external archive from the current population.
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� Step 4: Migrating agents to the members of the external archive. Evaluating objec-
tive functions for new positions. Updating the external archive. Selecting migrating
agents for the next migration loop.

� Step 5: Testing stopping conditions. If no stopping condition is accomplished, go
back to Step 4.

� Step 6: Choosing a final non-dominated set from the current external archive.

The user can enhance the convergence of the algorithm by felicitous setting of its
controlling parameters. These parameters can be summarized as follows: Q1 denotes the
initial population size, T stands for the number of migrating agents, ST is the number
of steps in one migration, PL denotes a relative length of a path for one migration, PR
means the probability of perturbation and Nex,min stands for the minimal size of the
external archive. The recommended intervals derived on behalf of our experience with
the algorithm are summarized in Table 5.1. These intervals are defined in multiples of N
(the number of optimized parameters) or |Q1| (the initial population size).
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Figure 5.4: Migration of agents towards the external archive [88].

Table 5.1: Recommended values for controlling parameters of MOSOMA.
Parameter Recommended interval
Q1/N 〈5, 12〉
T/N 〈5, 10〉
PL 〈1.1, 1.7〉
ST 〈2, 5〉
PR 〈0.1, 0.4〉

Nex,min/|Q1| 〈1/3, 2/3〉

The procedure of MOSOMA is as follows. First, positions of Q1 agents are randomly
defined by the equation:

xq,n = xn,min + rndq,n(xn,max − xn,min) (5.2)



5.1. MULTI–OBJECTIVE SELF–ORGANIZING MIGRATING ALGORITHM ... 45

where xq,n denotes n-th variable of q-th agent, 〈xn,min, xn,max〉 denotes the feasible interval
for n-th variable and rndq,n is a random number from the interval 〈0, 1〉 with the uniform
distribution of probability.

Then, objective functions are computed for the whole group Q1 so that the non-
dominated sorting can be performed. The non-dominated set P is saved into the external
archive EXT . If the size of the external archive is lower than its minimal size Nex,min de-
fined by the user, the archive is completed with best solutions from the fronts of advancing
orders.

Now, the iterative process of finding the Pareto-optimal solutions is performed within
the maximal MIGS migration loops. During the i-th migration loop, selected agents
migrate towards current members of the external archive. According to our experience, we
should choose the group of migrating agents partly randomly (the premature convergence
is suppressed) and partly from the members of the current EXT (the region of the so far
found best solutions is researched carefully to speed-up the convergence). The migration
procedure is indicated in Figure 5.4.

The positions visited during the i-th migration of the agent xt from T towards the
agent xp from P are calculated by:

TMPt,s = xt(i− 1) + s/ST [xp(i− 1)− xt(i− 1)]PL ∗ PRTVt,s (5.3)

where TMPt,s is the vector specifying s-th position during the migration, and ST defines
the number of steps for one migration (s = 1, 2, . . . , ST ). Parameter PL denotes the
multiple of the distance between agents xt and xp. Parameters PL and ST should be
set such a way so that the migrating agent does not visit the position of the agent from
EXT :

s
PL

ST
6= 1∀s = 1, 2, . . . , ST. (5.4)

So called perturbation vector PRTV has the same size as the vector defining the
position of an individual x and consists of zeros and ones. The vector is defined for each
migration by N randomly generated numbers:

PRTV (n) =

{
1 if rnd(n) > PR
0 if rnd(n) ≤ PR

(5.5)

where PR denotes a probability of perturbation defined by user. The perturbation has a
similar influence on MOSOMA as the mutation for genetic algorithms. The perturbation
protects the algorithm against a bottleneck in the local optimum (e.g. front of advancing
order). The migration in the decision space with the explanation of the influence of the
perturbation can be seen in Figure 5.5.

MOSOMA uses the absorbing boundary condition as defined in classical particle swarm
optimization [163] when the agent visits during the migration places outside the feasible
decision space. If any of the variable xn is lower than xn,min (or higher than xn,max), it is
set the value xn,min (orxn,max ).

Typically, the size of the external archive grows with consecutive migration loops.
This behavior slows the procedure of MOSOMA (T migrating agents migrates towards
increasing number of agents in EXT ). Therefore, three stopping conditions are combined:
the total number of migration loops MIGS, the maximal size of the external archive
Nex,max and the limit for objective functions computations FFC. The algorithm stops
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Figure 5.5: Migration of agent in the decision space with and without influence of the
perturbation (ST = 3, PL = 1.3) [82].

whenever any of these conditions is fulfilled. The detailed pseudo-code of MOSOMA can
be found in Figure 5.6. Usually, final external archive contains much more solutions than
requested by user. Working with too large Pareto-optimal set slows down the final choice
of the trade-off solution, if this is made manually. Therefore, we have to save into final
non-dominated set P those solutions from the EXT that cover the Pareto front uniformly.
The detailed description for two-objective and M -objective variant of this procedure can
be found in [88] and [82], respectively.

Illustrative run of MOSOMA

In this subsection, we will walk through a typical run of MOSOMA when solving a rela-
tively simple benchmark problem. Interested readers can follow up also the codes available
from http://www.urel. feec.vutbr.cz/ kadlec/?Downloads:MOSOMA where three Matlab
scripts can be found: mosoma.m that controls the run of the optimization, crit f.m that
evaluates the proposed solutions with objective functions and NDsort1.m that performs
the non-dominated sorting of current set of proposed solutions as shown in Figure 5.3.
The variables mentioned in this text that are used with the same name in the Matlab
codes are marked with .

We describe here the run of MOSOMA on a two-objective problem having two input
variables:

F1 = x1,

F2 =
1 + x2
x1

.
(5.6)

where x1 can vary within the interval 〈0.1, 1.0〉 while x2 within the interval 〈0.0, 5.0〉.
Both the objective functions are to be minimized.

Settings of MOSOMA are as follows: initial population has Q1 = 5 agents, migration
proceeds in ST = 3 steps on the relative path length PL = 1.3, probability of perturbation
is PR = 0.1 and minimal size of the external archive is Nex,min = 3. The number
of migrating agents is set to T = 3. Two of migrating agents are taken from the initial
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Figure 5.6: The pseudocode of MOSOMA [82].

population (T1 = 2) and position of the third agent is chosen randomly. The optimization
process stops immediately if total number of migration loops MIGS = 10 proceeds,
objective functions are computed 1000-times (FFC = 1000) or size of the external archive
is 10-times higher than total number of expected non-dominated solutions Nex,f .

We start with random generation of five agents according to equation (5.2). Following
the Matlab script mosoma.m, the optimized variables are stored in matrix AGENTS (one
row per variable, one column per agent). Two objectives are evaluated for all the agents
executing the function crit f.m and stored in the matrix F (one row per objective, one
column per agent):

F = crit f(AGENTS);

The positions of the agents and corresponding objective function values are stored in
Table 5.2.

Table 5.2: Positions of randomly generated agents and their objective functions values.
Agent x1(−) x2(−) f1(−) f2(−)
x1 0.60 3.80 0.60 8.00
x2 0.48 1.88 0.48 6.00
x3 0.25 0.25 0.25 5.00
x4 0.70 1.10 0.70 3.00
x5 0.78 4.46 0.78 7.00

Now, we have to determine the current external archive. Most members of this archive
are the non-dominated solutions of the first order (see Figure 2) from the set described
by F. The function NDsort1.m implements approach described in Figure 5.3 for finding
the non-dominated set:
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PSORTED = NDsort1(F(:,1:Q1));

Here, PSORTED are indices of the non-dominated solutions from current set of agents.
If you consider the values of objective functions from Table 5.2 the non-dominated set is
built by two solutions PSORTED = {x3, x4}. Both the agents are saved into the current
external archive EXTARCH. Number of PSORTED elements is lower than minimal size
of the external archive Nex,min = 3. Therefore, the non-dominated sorting of the set F
without agents x3 and x4 has to be performed to determine non-dominated set of the
second order. It contains just a single solution x2 in case of our example which is saved
into the EXTARCH as well. Now, the external archive has the expected minimal size and
contains three agents: EXTARCH = {x3, x4, x2}. In case that number of non-dominated
solutions of the first order would be larger than Nex,min, they would be all saved into the
EXTARCH.

Further, the three migrating agents (T = 3) have to be selected. Two of them are
randomly selected from the current population. Lets assume now, that agents x1 and x2

were chosen. Position of the third one is generated randomly using equation (5.2). In
the Matlab code mosoma.m, positions of these three agents are saved into the variable
MIGRATORS which has the same form as the variable AGENTS.

Now, all the selected agents migrate towards all members of the external archive.
If the distance between two agents from the migrating pair is too low, the migrating
agent travels towards randomly chosen position. Every migration proceeds in three steps
(ST = 3). The temporary positions TMP are computed according to equation (5.3) and
(5.5). The migration of solution x1 towards the first member of EXTARCH - agent x3

- is summarized in Table 5.3. Here, rnd1 and rnd2 are random numbers from interval
〈0; 1〉 that controls the perturbation process (see Figure 5.5) and TMP1, TMP2 and
TMP3 are positions of the agents in the first, second and third step of the migration,
respectively. If any rndn value is lower than probability of perturbation (in our case
PR = 0.10) corresponding variable xn remains the same. This happens in case of the
second variable for temporary position TMP2 in Table 5.3 (rnd2 = 0.08 < 0.10) and
therefore this variable remains x2(TMP2) = 3.80.

Table 5.3: Migration of agent x1 towards agent x3.
Agent x1(−) x2(−) rnd1(−) rnd2(−)
x1 0.60 3.80 - -
x3 0.48 1.88 - -

TMP1 0.45 2.97 0.82 0.24
TMP2 0.30 2.13 0.71 0.08
TMP3 -0.21 1.13 0.96 0.34

Using the same procedure, 27 temporary positions are obtained (3 migrating agents 3
members of the external archive 3 steps per every migration). All these positions have
to be checked, if they remain in the feasible part of the decision space. For example in
Table 5.3, the variable x1 of the temporary position TMP3 is -0.21 that is lower than
the minimum limit for this variable (x1,min = 0.10). Therefore, absorbing condition has to
be applied and the value is set to the value x1,min. Intuitively, if any temporary position
value would be higher than maximum limit, it would be set to x1,max.
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After the boundary condition is applied, objective functions are computed for all
the TMP positions. The new external archive is selected applying non-dominated sort-
ing on a union of the objective values of TMP positions and previous external archive
{TMP1, TMP2, TMP3} ∪ {x3, x4, x2} . Then, selected agents migrate towards all
members of new external archive, objective values are evaluated in temporary positions
and so on until any of the stopping conditions is fulfilled. After this procedure stops, the
last task is to choose defined number Nex,f of final solutions REDUCT from current exter-
nal archive. Objective function values of the final external archive are stored in variable
FINAL. Usually, the final external archive contains much more members than Nex,f (if
this is not true, we have to fill the rest of the REDUCT set with agents from advancing
fronts or be content with lower number of Pareto-optimal solutions than Nex,f ).

Lets assume that MOSOMA stopped with the external archive having 7 agents. They
are depicted as blue crosses in Figure 5.7. Their objective values are summarized in
Table 5.4. Here, the whole set is in ascending order according to values of the first
objective F1 (index i is for the ordered set). The Euclidean distance di between the
neighbors in the ordered set is computed. So, the total length of the found external
archive tot can be computed as a sum of all di:

dtot =

|EXT |−1∑
i=1

di (5.7)

The distance between two ideally placed agents can be then computed:

dideal =
dtot

Nex,f − 1
(5.8)

In our case, the total length of the found Pareto front is dtot = 9.08 and distance between
two ideal neighbors in the ordered set is dideal = 2.27. First, the best and worst agent
according to F1 is saved into the final set REDUCT. Now, we have REDUCT = {x3, x5}.
Then, we have to choose three other agents. We always pick following agent from the
sorted list until the sum of Euclidean distances between neighbors from the first one to
the actual one (having index i) is greater than the ideal length (dideal multiplied by i−1).
When this is satisfied, the i-th agent is saved into the REDUCT set. If the i-th agent has
been saved there already, the (i+1)-st is saved into the final set. Following this procedure
for our example, the final set REDUCT = {x3, x5, x7, x4, x1} will be formed. These
solutions are marked with red plus signs in Figure 5.7. As can be seen here, the set
REDUCT covers the true Pareto front uniformly.

Experiments

This subsection describes a design of two electromagnetic structures: a multilayer di-
electric filter and a Yagi-Uda antenna. Both these problems have been solved with other
optimization techniques. Therefore, results obtained by MOSOMA can be compared with
independent references. All the tests were made so that MOSOMA computes objective
function (the most time consuming part of the whole optimization) maximal same-times
as it was set in other references to keep the comparisons fair. The significant differences
between various global optimization tools presented here may be caused by the fact that
both the solved problems have very large and complicated decision space and the time
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Figure 5.7: Choice of the final non-dominated set (FINAL) from the external archive
(FINAL).

Table 5.4: The migration of agent 1x towards agent 3 x : experiments.
i F1(−) F2(−) agent di(−)
1 0.11 0.96 x3 2.19
2 0.13 7.77 x7 1.50
3 0.16 6.27 x6 0.84
4 0.19 5.43 x4 2.29
5 0.32 3.14 x1 1.89
6 0.78 1.31 x2 0.37
7 0.99 1.01 x5 -

devoted for the optimization was not satisfactory to reach the global optimum. Main
problems faced during the optimization process (implementation of constraints, discrete
input variables etc.) and their solution will be discussed here.

Multilayer dielectric filter

Design of a dielectric filter for microwave frequency bands involves an optimization of a
relative permittivity and a width of individual layers of the filter. Considering the filter
having N layers, 2N parameters are changed during the optimization process. The layered
medium is depicted in Figure 5.8. Here, k0 stands for the wave vector of the impinging
wave, ln denotes width of n-th layer, εr,n denotes relative permittivity of n-th layer, αn is
the incident angle for n-th interface and Rn is the reflection coefficient of n-th interface.
Interface between the first and second dielectric layer is denoted by R2.

Considering homogeneous lossless nonmagnetic materials (σ = 0, µr = 1), generalized
recursive reflection coefficient Rn for n-th interface can be derived [32]:

Rn =
rn +Rn+1 exp(2jknln)

1 + rnRn+1 exp(2jknln)
(5.9)
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Figure 5.8: Description of the layered medium [82].

where the wave vector in the n-th layer can be computed using an equation [32]:

kn =
2πf

c

√
εr,n (5.10)

After few simplifications the reflection coefficient can be derived for TE mode:

rn,TE =

√
εr,n−1(1− sin2 αn−1)−

√
εr,n(1− sin2 αn)√

εr,n−1(1− sin2 αn−1) +
√
εr,n(1− sin2 αn)

(5.11)

and for TM mode:

rn,TM =

√
εr,n(εr,n−1 − sin2 αn−1)−

√
εr,n−1(εr,n − sin2 αn)√

εr,n(εr,n−1 − sin2 αn−1) +
√
εr,n−1(εr,n − sin2 αn)

(5.12)

where the angle of incidence for the n-th layer is defined by:

αn = sin−1(

√
εr,n−1
√
εr,n

sinαn−1) (5.13)

The coefficient between the free space and the first medium denoted R1 expresses then
the reflection properties of the filter.

In [62, 191], two objective functions for the design of a filter with seven layers were
defined:

F1 =
P∑
p=1

[|R1,TE(fp)|2 + |R1,TM(fp)|2],

F2 =
S∑
s=1

[2− |R1,TE(fs)|2 + |R1,TM(fs)|2],
(5.14)

where fp and fs denote the pass and stop frequencies of the filter, respectively, and P and
S stands for the size of used frequency vectors. The objective function F1 minimizes the
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reflection of the layered media in the pass band while the other function F2 maximizes
the reflection in the stop band. Under this definition, Pareto fronts obtained by different
authors cannot be compared because values of objective functions are influenced by the
discretization of the frequency axis. Therefore, we propose a slight modification of the
objective functions:

F1 =
1

P

P∑
p=1

[|R1,TE(fp)|2 + |R1,TM(fp)|2],

F2 =
1

S

S∑
s=1

[2− |R1,TE(fs)|2 + |R1,TM(fs)|2],
(5.15)

Now, both the functions are normalized to the number of examined frequency points and
are fully comparable.

The definition of the optimization problem is fully completed by the formulation of the
constraint functions for the pass band and the stop band [191]:

20 log |R1,TE(fpc)| < −10 dB,

20 log |R1,TM(fpc)| < −10 dB,

20 log |R1,TE(fsc)| < −5 dB,

20 log |R1,TM(fsc)| < −5 dB,

(5.16)

where fpc and fsc denote the pass and stop frequencies considered for constraints, respec-
tively. The constraint limits were selected exactly as in [191] to keep the comparison
between MOSOMA and other references fair.

So called penalty function approach [133] can be used for handling with constraints.
Violation of any constraint has an impact on worsening the objective functions. First,
violation Vj from the normalized j-th constraint function gj for the i-th solution xi is
calculated:

Vj(xi) =

{
|gj,n(xi)| if gj,n(xi) < 0
0 otherwise

(5.17)

Thereafter, objective functions Fc,m considering the violations from all constraint func-
tions are slightly modified to:

Fc,m(xi) = Fm(xi) +Rm

J∑
j=1

Vj(xi) (5.18)

where Rm stands for a penalty parameter, which is introduced to equalize magnitudes of
both addends in the equation (5.18). Since values of both the objective functions should
vary in the interval 0; 2 the penalty operator was set for both the objective functions to
R = 5. This procedure disqualifies the solutions violating any constraint from further
search of the algorithm.

The design of the seven-layer filter evolves the optimization of 14 parameters. The inci-
dence angle was fixed to α0 = π/4 [191]. The width of every layer x1−7 can vary in the in-
terval 〈1; 10〉 mm. The relative permittivity of all layers can be chosen from commercially
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available dielectric materials {1.01, 2.20, 2.33, 2.50, 2.94, 3.00, 3.02, 3.27, 3.38, 4.48, 4.50,
6.00, 6.15, 9.20, 10.20} [191]. MOSOMA works initially only with continuous input vari-
ables. The problem with discrete input variables can be solved using a relatively simple
approach. As we have 15 discrete values, the input variables x8−14 are set from the in-
terval 〈0; 15〉. This interval is divided uniformly into 15 subintervals, each corresponding
to one value of an available dielectric permittivity (e.g. value x8 = 6.35 corresponds to
the seventh value from the list 3.02). The variables are within the algorithm treated as
continuous. Only objective functions are evaluated with the corresponding value of the
relative permittivity.

This procedure brings obviously some shortcomings. If both the agents that participate
on the migration have similar values of the input variable, all steps of the migration can
cause, that the continuous variable does not leave the original subinterval and the same
permittivity is examined again. Another problem is caused by the fact that different
values of the input variable means one value of the relative permittivity. Then, the result
of the migration depends on the initial value of the migrating agent in the subinterval. Let
us consider the equation (5.3) with no influence of perturbation and parameters PL = 1.3
and ST = 3 and two different migrating agents having only one variable xq = 0.1 and
x∗q = 0.99. Now, let them migrate towards the member of the external archive xp = 3.5.
The resulting steps of the migration correspond to different dielectric materials TMP =
{1.62, 3.13, 4.65} and TMP ∗ = {2.51, 4.02, 5.54} . Beside all the shortcomings, the
algorithm is able to solve problems with continuous and discrete variables simultaneously
without any change of MOSOMA program. The only change comprises the evaluation
of objective functions - discrete values are used according to subintervals of the input
variable.

The controlling parameters of MOSOMA were set such a way so that the results can be
compared with results published in [62,191]. The settings are summarized in Table 5.5.

Table 5.5: Settings of MOSOMA parameters for the dielectric filter design.
Par. FFC PL ST Q1 T Nex,min

- 15000 1.3 5 30 20 15

Band-pass filter
The first experiment is aimed to design a band-pass filter for frequencies from 28 GHz

up to 32 GHz. The frequency bands for the filter and for the constraint functions are
summarized in Table 5.6.

Table 5.6: Frequency bands for the band-pass filter optimization.
Band Lower b. (GHz) Upper b. (GHz)
fp 28 32
fs 24; 32 28; 36
fpc 29 31
fsc 24; 34 26; 36

The Pareto front of the optimized problem is depicted in Figure 5.9. Obviously, some
of the Pareto-optimal solutions are violating the constraint functions, because their value
of the objective function is higher than 2. Three solutions are highlighted here: the best
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solution according to the first objective (red marker) and the second (green) objective and
the trade-off solution (blue). Figure 5.10 depicts the frequency behavior of the reflection
coefficients for these solutions. Here, colors correspond to markers in Figure 5.9. The red
solution ideally satisfies the first objective, but the last two constraints are violated. On
the contrary, the green solution meets the second objective but violates first two constraint
functions. Finally, the blue solution respects both the objectives and does not violate any
constraint function.
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Figure 5.9: Pareto front of the band-pass filter multi-objective optimization using MO-
SOMA. The detailed plot depicts the trade-off solutions non-violating the constraints.
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Figure 5.10: Reflection coefficient TE (solid line) and TM (dashed) for three band-pass
filters designed by MOSOMA: red line (the best solution according to F1), green (the best
F2) and blue (trade-off).

The trade-off solution composed of layers having the widths {4.686, 1.995, 4.739, 1.001,
1.003, 1.002, 8.663}mm and relative permittivities {10.20, 1.01, 10.20, 1.01, 1.01, 2.94, 2.35}
was chosen as the final trade-off solution. Figure 5.11 compares its reflection coefficients
with solutions published in [62,191]. The total width of our design is 23.08 mm compared
to 33.44 mm [191] and 21.35 mm [62]. The reflection coefficient for our solution remains
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below -16 dB for the TE mode and -22 dB for the TM mode in the operational band of the
filter. Coefficients RTE and RTM of our design decrease steeper at the boundaries of the
desired frequency band. Results obtained by MOSOMA seem to be better than results
obtained by other global algorithms published in [62, 191], although the same number of
objective function evaluations was made. It shows that MOSOMA converges faster in
this case.
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Figure 5.11: Comparison of the TE (solid line) and TM (dashed) reflection coefficient for
band-pass filter design obtained by MOSOMA (blue), MOEA [191] (green) and MOPSO
[62] (red).

Low-pass filter
The frequency bands for the low-pass filter operating up to 30 GHz and corresponding

to constraint functions frequency bands are summarized in Table 5.7.

Table 5.7: Frequency bands for the low-pass filter optimization.
Band Lower b. (GHz) Upper b. (GHz)
fp 24 30
fs 30 36
fpc 24 28
fsc 32 36

Figure 5.12 depicts the Pareto front obtained by MOSOMA. Again, best solutions
according to the F1 and F2 objectives are marked with the red and green color, respec-
tively. Solutions non-violating constraints are emphasized in the detailed subplot. The
solution chosen for the final design is marked with the blue cross here. This solution is
composed of layers having widths {8.195, 1.489, 1.758, 1.001, 1.001, 1.153, 1.003} mm and
relative permittivities {2.20, 1.01, 10.20, 3.02, 1.01, 10.20, 6.15}. Figure 5.13 compares then
the distinguished solutions from Pareto front at Figure 5.12. We can see, that the red
and blue solutions are similar for the passing band (F1 is just slightly better for the red
one) while the blue one is significantly better in the stopping band. Further, we can see
that the solution best according to F2 reflects almost in the whole frequency band.

Frequency response of the reflection coefficient for the trade-off solution is depicted
again in Figure 5.14. The frequency response is compared here with solutions obtained
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Figure 5.12: Pareto front of the low-pass filter multi-objective optimization using MO-
SOMA. The detailed plot depicts the trade-off solutions non-violating the constraints with
highlighted solution chosen for the design.
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filters designed by MOSOMA: red line (the best solution according to F1), green (the
best F2) and blue (trade-off).
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by algorithms MOEA [191] and MOPSO [62]. The reflection is in the pass band approx-
imately under -20 dB for the TE mode and -18 dB for the TM mode. Obviously, our
solution is better than the solution proposed in [191], because the reflection is lower in
the pass band and higher in the stop band. The solution proposed in [62] exhibits similar
reflection properties, but the total width of the filter is 16.24 mm while the total width
of our filter is 15.58 mm only.
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Figure 5.14: Comparison of the TE (solid line) and TM (dashed) reflection coefficient for
low-pass filter design obtained by MOSOMA (blue), MOEA [191] (green) and MOPSO [62]
(red).

Band-stop filter
The next example considers the design of the band-stop filter for the frequency band

from 28 GHz to 32 GHz. The frequency bounds for the filtering properties and constraint
functions are summarized in Table 5.8.

We have selected the solution composed from dielectric layers having widths {3.090,
5.358, 1.001, 1.000, 5.585, 1.000, 6.020} mm and relative permittivities {2.50, 3.38, 10.20,
2.33, 3.38, 10.20, 2.50}. This solution is marked in Figure 5.15 of the Pareto front obtained
by MOSOMA. Obviously, constraints for the optimization are too strict which causes the
increase of the objective function values of the Pareto-optimal solutions.

Table 5.8: Frequency bands for the band-stop filter optimization.
Band Lower b. (GHz) Upper b. (GHz)
fp 24 30
fs 30 36
fpc 24 28
fsc 32 36

Figure 5.16 compares reflection properties of three distinguished solution: best accord-
ing to F1 (red), best according to F2 (green) and the trade-off (blue). It is obvious, that
both the extreme solutions consider just one of the objectives: the red one passes in the
whole frequency band (just F1 is considered) while the green one stops. Finally, the blue
one considers both the objectives at the same time.
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Figure 5.15: Pareto front of the band-stop filter multi-objective optimization using MO-
SOMA. The detailed plot depicts the trade-off with highlighted solution chosen for the
final design.

The reflection coefficient of this trade-off solution is then compared with solutions
published in [62, 191] in Figure 5.16. The reflection coefficient is very high in the whole
stop band and falls under -15 dB in both parts of the pass band for both the modes.
Reflection properties are comparable for all three algorithms. The total length of our
filter is 23.05 mm compared to 29.25 mm in [191] and 20.53 mm in [62].
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Figure 5.16: Reflection coefficient TE (solid line) and TM (dashed) for three band-stop
filters designed by MOSOMA: red line (the best solution according to F1), green (the best
F2) and blue (trade-off).

Yagi-Uda antenna

The design of the Yagi-Uda antenna requires the optimization of lengths of individual
elements and spacing between them. The Yagi-Uda antenna is depicted in Figure 5.18.
Here, dn stands for the total length of the n-th element and sn denotes the spacing
between the n-th and (n + 1)-st element. Considering N elements, 2N − 1 parameters
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band-stop filter design obtained by MOSOMA (blue), MOEA [191] (green) and MOPSO
[62] (red).

are optimized. Operating frequency was set to 30 GHz as indicated on Figure 5.19.
But all antenna dimensions are presented with regards to the corresponding free space
wavelength λ. The width of every element can vary in the interval 〈0.30; 0.70〉 while the
spacing between neighboring elements can vary within the interval 〈0.10; 0.35〉.
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Figure 5.18: Description of the N-element Yagi-Uda antenna with description of optimized
parameters.

The settings of MOSOMA was made so that it computes objective functions maximal
36000-times and our results can be compared with results published in [18, 79, 110, 190].
The controlling parameters are summarized in Table 5.9.

Two objectives are considered for the optimization of the Yagi-Uda antenna the max-
imal gain and the minimal relative side lobe level [190]:

F1 = −G,
F2 = SLL, (5.19)
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Figure 5.19: Example of 4NEC2 input file for four-element Yagi-Uda antenna analysis.

Table 5.9: Settings of MOSOMA parameters for design of Yagi-Uda antenna.
Par. FFC PL ST Q1 T Nex,min

- 36000 1.3 5 30 20 15

where G denotes the gain and SLL stands for the relative side lobe level of the antenna.
Two constraint functions are defined to ensure a proper impedance matching of the de-
signed antenna [31]:

|50−<Zin| < 5,

|=Zin| < 10, (5.20)

where Zin is the input impedance of the antenna.
The analysis necessary for the computation of objectives was performed by software

4NEC2 based on the method of moments [25]. The software is freely available at the
website: http://home.ict.nl/ arivoors/. The interconnection between the Matlab script
that provides the optimization of input parameters and the 4NEC2 software is described
in Figure 5.20. Information about the analyzed structure has to be saved in an ASCII text
file input.nec in an appropriate format defined in [160]. An example for a four-element
Yagi-Uda antenna with the description of individual entries can be viewed in Figure 5.19.
The software 4NEC2 can be executed from Matlab in a non-interactive mode using the
expression:

! . . . \4nec2.exe . . . \input.nec –I

The results can be read from ouptut.out text file generated by 4NEC2 software in the
folder . . . 4nec2\out.

Four-element design
Radius of all the wires was set to 0.00225 λ [79]. The best Pareto front from ten runs

of MOSOMA is depicted in Figure 5.21. Here, Pareto-optimal solutions are compared
with solutions obtained by MOEA published in [79]. MOSOMA algorithm achieved sig-
nificantly better results because most of the solutions proposed in [79] are dominated by
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Figure 5.20: Connection between optimization script in Matlab and analysis tool 4NEC2.

the solutions obtained by MOSOMA, except of few solutions in a region of the minimum
of the second objective.
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Figure 5.21: Pareto front of four-element Yagi-Uda antenna design obtained by MOSOMA
(black dots) and MOEA 0 (blue dots).

The distinguished solutions from the obtained Pareto front are highlighted in Fig-
ure 5.21. Their radiation patterns are depicted with corresponding colors in Figure 5.22.
The solution depicted in red color represents the maximal gain G = 10.35 dBi. The green
solution corresponds to the minimal level of side lobes (SLL = −54.29 dB), but exhibits
a very poor gain G = 5.64 dBi. The chosen trade-off solution shows a very good gain
G = 10.08 dBi and a satisfactory side lobe level SLL = −11.81 dB.

Parameters of designs depicted in Figure 5.22 are summarized in Table 5.10. Results
obtained by MOSOMA are compared here with the designs proposed in [18, 79, 190].
The design of the Yagi-Uda antenna was treated as a pure multi-objective problem only
in [110, 190], but in [110], the impedance matching is considered as the third objective
function, which disables us to compare these results with ours. In [18,79], two objectives
were aggregated to build one fitness function, which was then solved by single-objective
modifications of genetic algorithms and particle swarm optimization, respectively. Any
of the solutions from all the references is not better in all considered objectives than our
final trade-off solution.
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Figure 5.22: H-plane radiation patterns of chosen solutions from Pareto front obtained
by MOSOMA for four-element Yagi-Uda antenna.

Six-element design
The six-element design has the same settings as the previous four-element problem.

Only the radius of the wire was increased to 0.003369 λ [79]. Pareto-optimal solutions
obtained by MOSOMA are depicted in Figure 5.23. Here, the extreme solutions accord-
ing to both the objectives (the maximal gain G = 12.67 dBi, the maximal side lobe level
suppression SLL = −38.84 dB) are highlighted with red and green markers, respectively.
One trade-off solution has been also chosen (G = 12.65 dBi, SLL = −12.66 dB). Radia-
tion patterns of those three designs are depicted in Figure 5.24. Obviously, the radiation
patterns of the trade-off solution and the best solution according to F1 are almost over-
lapping, but the trade-off solution has a slightly better side lobe level and significantly
better impedance matching.
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Figure 5.23: Pareto front of six-element Yagi-Uda antenna design obtained by MOSOMA
(black dots) with highlighted solutions from Table 5.11.
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Figure 5.24: H-plane radiation patterns of chosen solutions from Pareto front obtained
by MOSOMA for six-element Yagi-Uda antenna optimization.

Conclusions

MOSOMA is a very efficient multi-objective optimizer. MOSOMA can cope both with
continuous and discrete parameters at the same time. Also the constraint functions can
be considered for the solved optimization problem. The implementation of MOSOMA
is easier than genetic algorithms (no binary coding of optimized parameters is needed)
and very similar to particle swarm optimization. In case of investigated electromagnetic
structures, MOSOMA shows a better (or comparable) performance as other commonly
used multi-objective optimizers.

MOSOMA was successfully applied to the design of dielectric filters and Yagi-Uda
antennas. MOSOMA has significantly outperformed the algorithm published in [190] in
four-element Yagi-Uda antenna multi-objective design. In comparison with aggregation
methods that convert a multi-objective problem into a single-objective one, MOSOMA
brings additional information about limits of the considered objectives. The trade-off
solution chosen from the revealed Pareto front is better or comparable in all considered
objectives.
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tiveness: Multi-Objective Optimization of the Test-
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Abstract

In this paper we analyze the shielding effectiveness of a thin-film screen in the time
domain (TD). The excitation pulse is optimized with respect to various definitions of
the TD shielding effectiveness (SE) concerning the peak value, the maximal derivative
and the absorbed energy of the incident and shielded signals. A general approach to set
parameters of the power exponential pulse as a key component of the test (namely the rise
time, the rising power and the ringing frequency) with respect to different requirements
on the device under test is proposed here. Two sample problems are solved using a multi-
objective particle swarm optimization algorithm. Results show the theoretical level of the
test adjustments and the influence of the individual pulse parameters to the SE.

Introduction

The Shielding Effectiveness (SE) belongs to the most important EMC parameters of thin-
film materials. This parameter expresses the ability of the material to reflect, absorb or
redirect the unwanted radiation. In most studies, SE is defined in the frequency domain.
However, in reality, electronic devices are exposed to transient disturbances rather than
harmonic ones. Therefore, the TD SE parameters were defined in [13,28,134]. A statistical
approach combining more observation points for the SE was introduced in [12].

As discussed in [28], some devices are more susceptible to different properties of the
disturbing signal:

1. the peak value of the electric (magnetic) field,

2. the time variations of the magnetic (electric) flux density,

3. the total energy delivered.

The susceptibility of a device to different parameters of the disturbance signal should
be taken into account to ensure the correct choice of a shielding material. Accordingly,
a testing system should be tailored to incorporate the most affecting parameter of the
disturbing signal for the device under test.

The TD shielding properties of thin-film materials can be analyzed by means of various
numerical methods. The transmission-line modeling method [97], the finite difference TD
method [29] and the finite integration technique [124] are among the most popular ones.
These full wave methods suffer from enormous computational demands. Therefore, a
number of analytical methods for the TD shielding effectiveness have been developed in
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recent years. A planar conductive shield in the presence of vertical dipole field sources
is solved by a modified Cagniard technique in [24]. Shielding properties of graphene
materials are examined in [122] by the same technique. An analytical description of the
loop-to-loop signal transfer across a thin metal screen with Drude-type dispersive behavior
is achieved in [178] using the Cagniard-DeHoop (CdH) technique [42].

In this paper we use the CdH method [178] to examine the theoretical limits of in-
dividual TD shielding effectiveness properties (the peak signal level, the time variations
of the signal and the total energy of the signal) for a specific thin-film material. In the
analysis we employ the unipolar power exponential pulse [43] for the field excitation. A
multi-objective optimization [45, Ch. 2] of the excitation pulse is the main contribution
of the paper.

The organization of the paper is as follows: Section 5.2 provides the problem description
including the definition of the TD SE parameters. Section 5.2 reviews the parameters
of the power exponential pulse as it is the main subject of the research. Two numerical
examples for a selected thin-film material are presented in Section 5.2. Finally, Section 5.2
concludes the paper.

Problem Description

The problem description is shown in Fig. 5.25. The problem is defined in a standard
right-handed Cartesian coordinate system with the origin O and (standard) base vectors
{ix, iy, iz}. Consequently, a point in the problem configuration can be defined by the
coordinates {x, y, z}. An infinite metal sheet that is described by its thickness δ and
electrical conductivity σS is placed perpendicular to iz at z = 0. The sheet is surrounded
by the isotropic, homogeneous and lossless medium described by ε0 and µ0. Thus, the
EM wave propagates here with the speed c0 = (ε0µ0)

−1/2 > 0.
There are two loop antennas both parallel to the metal sheet. Symbol LT denotes the

transmitting antenna located at {0, 0, hT > 0} with an area AT and LR is the receiving
antenna located at {0, 0, hR < 0} with an area AR. The system is excited by a planar
pulsed electric current IT (t) in LT , while the open-circuit electric voltage VR(t) is induced
in LR:

VR(t) = Z(t)
(t)
∗ IT (t) (5.21)

where Z(t) denotes the transfer impedance at time t and
(t)
∗ denotes the time convolu-

tion. According to [178], the voltage for the scenario described in Fig. 5.25 is computed
according to:

VR(t) = − ATAR
(hT + hR)4

∂4t IT (t)

2πη0

(t)
∗ t(t2 − T 2)

GL/η0 + 2t/T
H(t− T ) (5.22)

where hT and hR denote the distance from the screen to the transmitting and receiving
antenna, respectively. Symbol ∂t denotes the time derivative, η0 is the free-space admit-
tance η0 = (ε0/µ0)

1/2, T = (hT + hR)/c0 is the travel time of the pulse, and H(t) is the
Heaviside unit step function. Finally, the conductance GL of the screen is GL = δσS.

The TD shielding effectiveness parameters are defined in [13]. The SE parameters are
defined there based on the electric or magnetic field values. The SE as considered in
the present work, applies to the vertical component of the magnetic field through the
voltage induced in the receiving antenna LR (see Eq. (6.19)). The signal is measured
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Figure 5.25: Problem configuration: the thin-film metal sheet with the transmitting and
receiving antennas LT and LR, respectively.

in the absence of (denoted by the superscript in as “incident”) and in the presence of
(superscript s as “shielded”) the thin-film screen.

The first parameter is based on the peak reduction of the electric field. It is called as
the peak value reduction shielding effectiveness :

SEPR = 20 log
V in
R,max(x, y, z, t)

V s
R,max(x, y, z, t)

, (5.23)

where V in
R,max and V s

R,max denote the maximal value of the induced voltage observed within
a finite time window and at the position of the receiving antenna LR.

The next monitored parameter is the reduction of the derivative of the EM transient
field in the shielded region. Hence, the derivative reduction shielding effectiveness is
defined:

SEDR = 20 log
dtV

in
max(x, y, z, t)

dtV s
max(x, y, z, t)

, (5.24)

where dtV denotes the time-derivative of the induced voltage:

dtV (x, y, z, t) = ∂tVR(x, y, z, t). (5.25)

The last parameter is based on the reduction of the energy shielded by the thin-film
screen. Thus, the energy reduction shielding effectiveness is:

SEER = 10 log
E in(x, y, z, t)

E s(x, y, z, t)
, (5.26)

where E stands for the energy of the sampled signal:

E(x, y, z, t) =
I∑
i=1

|VR(ti)|2, (5.27)

where ti is the sampled time and i = 1, 2, . . . , I.
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Figure 5.26: A power exponential pulse (top) and its frequency spectrum (bottom): de-
pendence on the parameter n.

Optimization of Pulse Parameters

The power exponential testing pulse as used for exciting the transmitting antenna LT is
defined in [43]:

IE(t) = Im(t/tr)
n exp[−n(t/tr − 1)]H(t). (5.28)

Here, Im stands for the pulse amplitude, tr is the rise time, n denotes the pulse rising
power. Equation (5.28) defines the envelope of the excitation pulse. It is further mod-
ulated by the harmonic signal with the ringing frequency ω0. Therefore, the total pulse
reads:

IT (t) = IE(t) cosω0t. (5.29)

The most significant parameter of the pulse shape is the rising power parameter. The
influence of n on the pulse envelope shape and its spectrum is shown in Fig. 5.26. The
growing n results in the narrower pulse width and the wider spectrum.

The pulse width tw is related to the rise time and the rising power via

tw = trn
−n−1Γ(n+ 1) expn, (5.30)
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Figure 5.28: The total pulse shape according to change of the angular ringing frequency
ω0 (for n = 6).

where Γ(x) denotes the Euler Gamma function. The pulse width rises with growing tr
and decreases with growing n as shown in Fig. 5.27.

The pulse amplitude Im simply scales the pulse envelope IE. The last parameter of the
testing pulse is the angular ringing frequency ω0. As can be seen in Fig. 5.28, the pulse is
not modulated for the normalized frequencies approximately ω0tr < 1. The combination
of tr and ω0 can significantly increase or decrease the amplitude of the total pulse IT .

The multi-objective optimization problem of the testing pulse is defined as follows:

max
x

fm(x)

s.t. x ∈ Ω,

m ∈ {1, 2, 3}
(5.31)

It means, that the problem can have one, two or three objective functions fm. The
objective functions are simply maximizing (or minimizing) the shielding effectiveness pa-
rameters defined in Section 5.2: SEPR, SEDR, and SEER. Note that any combination of
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objective functions can define a problem (e.g. all functions can be maximized at once, or
one can be maximized while one of the remaining or both of them can be minimized etc).
Therefore, we can write that:

fm =


SEPR, if m = 1 ∧m ∈ S,
SEDR, if m = 2 ∧m ∈ S,
SEER, if m = 3 ∧m ∈ S,

(5.32)

where S is any composition (see e.g. [56]) that can be made of a set of integers {1, 2, 3}.
The decision space vector of the optimization problem (6.17) x consists of three design

variables:

� the rise time tr,

� the pulse rising power n,

� the ringing frequency ω0.

The decision space vectors x = {tr, n, ω0} have to be chosen from a feasible part of
the decision space Ω that is limited by:

tr ∈ 〈0.5, 5.0〉 (in ps),

n ∈ 〈0.0, 30.0〉,
ω0/(2π) ∈ 〈0.1, 10.0〉 (in THz).

(5.33)

Note that only integers for the pulse rising power n ∈ {1, 2, . . . , 30} are considered in the
present study.

Numerical Examples

A standard multi-objective particle swarm optimization algorithm (MOPSO) [159] is used
here for two different testing pulses. The study takes advantage of the implementation
of the MOPSO algorithm available in a toolbox FOPS [127] with following controlling
parameters:

� the number of agents: 50,

� the number of iterations: 100,

� the decreasing inertia weight: from 0.9 to 0.4,

� the cognitive learning factor: 1.5,

� the social learning factor: 1.5,

� the boundary type: reflecting.

For further details on the algorithm and its settings we refer the reader to [127].
The TD SE of a screen with a width δ = 1.0µm made of copper with σS = 58.0× 106 S/m

(see Table 10.2 in [183]) is analyzed. A single computation of the TD SE parameters for
the thin screen takes approximately 0.15 s on a personal computer with an AMD Ryzen
7 1700X platform and 32 GB of RAM. Every problem was repeated 50 times, so that a
stochastic error can be neglected.
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Figure 5.29: The non-dominates solutions for Problem 1 found by the MOPSO algorithm:
trade-off between maximizing SEPR, SEER, and SEER.

Table 5.12: The pulse parameters and the resulting SE values for the extreme solutions
on the Pareto front of Problem 1.

solution
n tr f0 SEPR SEDR SEER

[−] [ps] [Thz] [dB] [dB] [dB]

max SEPR 19.0 0.5 0.4 83.7 77.9 78.2
max SEDR 22.0 5.0 0.6 75.1 83.7 75.3
max SEER 20.0 5.0 1.6 79.9 81.0 80.7

Problem 1: max SEPR, max SEDR, max SEER

Obviously, the most common requirement would be to maximize all the SE parameters
simultaneously:

max
x

f1(x) = SEPR(x) (5.34)

max
x

f2(x) = SEDR(x) (5.35)

max
x

f3(x) = SEER(x) (5.36)

The resulting Pareto front of this problem is displayed in Fig. 5.29. We can see that
the non-dominated solutions form a curved line in the three-dimensional space of the SE
parameters. The most adjustable parameter is the SEPR that varies from app. 75 dB to
app. 85 dB. The peak value of the pulse can be clearly suppressed or amplified by an
appropriate combination of the rise time and the ringing signal frequency f0 = ω0/(2π).
It is also interesting that the solution with the maximal value of SEER resides exactly in
the middle of the Pareto front, equally spaced to the other extreme solutions (maximizing
the other two objectives).

Three extreme solutions maximizing the individual objectives are highlighted by the
cross markers in Fig. 5.29. The pulse parameters for those solutions are summarized in
Table 5.12. Figure 5.30 then displays the resulting pulse shapes: the total pulse containing
the ringing signal IT (solid line) and the pulse envelope IE (dotted).
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Figure 5.30: The testing pulse shapes for trade-off solutions maximizing the parameters
SEPR, SEER, and SEER (see Fig. 5.29). The solid line denotes the total pulse IT while
the dotted one corresponds to the pulse envelope IE.

Problem 2: max SEPR, min SEER

In the second problem we analyze two conflicting objectives: maximize the SEPR asso-
ciated with the peak value of the induced voltage while minimizing the SEER associated
with the amount of energy:

max
x

f1(x) = SEPR(x) (5.37)

min
x

f2(x) = SEER(x) (5.38)

With this problem formulation we prioritize the susceptibility of the device under test to
the peak value of the disturbance source. The expected result should reveal the trade-
off between the two watched objectives and to show the influence of individual pulse
parameters.

The Pareto front (non-dominated solutions) found by MOPSO algorithm are shown in
Fig. 5.31. We can see, that the level of the test susceptibility to a peak value can vary
approximately from 65 dB to 85 dB, while the susceptibility to the energy varies only from
from 65 dB to 80 dB. The trade-off between the two objectives seems to be linear.

The color of the data markers in the individual subplots of Fig. 5.31 manifests the in-
fluence of the individual pulse parameters to the shielding parameters. Both the shielding
parameters increase with the increasing value of the exponent n. The rise time dependence
does not seem to be so straightforward. The SE parameters increase with the decreasing
value of the tr till approximately SEPR = 70 dB. Then, the tr equals to its maximal value
(5 ps) for almost all of the non-dominated solutions having SEPR > 70 dB. The ringing
frequency ω0 influences only the part of the Pareto front with maximal values of the SE
parameters.

Conclusions

The paper describes a multi-objective optimization problem to set parameters of the power
exponential pulse to optimize the TD SE of a metal thin-film screen. The rise time, the
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Figure 5.31: The non-dominates solutions for Problem 2: influence of pulse parameters -
the rise power (top), the rise time (middle), and the ringing frequency (bottom).

pulse rising power and the ringing frequency of the testing pulse are found with the use of
the MOPSO. The trade-off between shielding parameters associated with the peak level,
the maximal time derivative, and the total absorbed energy is studied. The results show
that individual shielding parameters vary significantly with the pulse parameters. The
pulse rising power and the constructive (or destructive) combination of the pulse envelope
with the ringing signal has the decisive impact.
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Chapter 6

Optimization with Variable Number
of Dimensions

The most important contributions of the author can be found in the domain of the opti-
mization with a variable number of dimensions. First, a journal paper [93] introduces a
PSO algorithm modification that enables to solve single-objective VND problems (please
see the reprinted manuscript in Section 6.1). This paper includes also definitions of vari-
ous benchmark problems and metrics to test the quality of VND optimization algorithms.
The VNDPSO algorithm is compared to other algorithms in the paper.

A conference paper [95] applies the VNDPSO algorithm to solve the inverse scattering
problem - namely the reconstruction of the permittivity profile based on the EM wave
going through the layered medium. The reprinted version of the paper is presented in
Section 6.2.

The VNDPSO algorithm was then employed to search for the optimal positions and
values of the decoupling capacitors on a printed circuit board. This contribution was
published in the journal paper [85] The algorithm was asked to search for the number of
capacitors also, which redefines the problem introduced in [94] to its VND version. The
reprinted version of the journal paper is presented in Section 6.3.

Section 6.4 presents a reprinted version of a conference paper [80]. This paper compares
various formulations of the linear antenna array design including single-objective, multi-
objective and VND ones. The objectives of the antenna array design is the minimization
of the side-lobe level, the first-null beam width and number of elements of the array. The
problem formulations are solved using the consecutive variants of the PSO algorithm,
including the multi-objective VND formulation as the most complex one. This approach
seems to be the most effective one by means of the trade-off between the antenna array
parameters quality and number of elements used.

75
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6.1 Particle swarm optimization for problems with

variable number of dimensions

Originally published as:
Kadlec, P., Šeděnka, V.: Particle swarm optimization for problems with vari-
able number of dimensions. In Engineering Optimization, 50(3), pp. 382-399,
2017.

Abstract

Some real-life optimization problems show apart from the dependence on the combination
of state variables also the dependence on the complexity of the model describing the
problem. Changing model complexity implies changing the number of decision space
dimensions. A new method called Particle Swarm Optimization for Variable Number of
Dimensions is developed here. The well-known particle swarm optimization procedure is
modified to handle spaces with variable number of dimensions within a single run. Some
well-known benchmark problems are modified to depend on the number of dimensions.
Novel performance metrics are defined in the article to evaluate convergence properties
of the method. Some recommendations for setting the optimization are made according
to results of the method on the proposed benchmark test-suite. The method is compared
with the conventional swarm strategies able to solve problems with variable number of
dimensions.

Introduction

Optimization became an inseparable part of the design process. Because of the com-
plex description of structures, heuristic methods e.g. PSO (Particle Swarm Optimiza-
tion, see [163]), GA (Genetic Algorithms, see [78]) and SOMA (Self-Organizing Migrating
Algorithm, see [206]) are used extensively. These algorithms can be relatively simply
implemented which makes them very attractive.

For conventional methods, the designer assigns dimensionality of the problem and
an optimizer finds proper decision space vector. In this case, the value of the objective
function in the optimum depends just on its position in the decision space. However, some
problems can introduce another goal for the optimizer to find out optimal dimensionality
as well. With this type of problem, the global minimum value depends on the complexity
of the model also.

Consider a real-life example placement of transmitters to cover some area with TV
broadcasting. The goal is to find optimal number, location and power of transmitters so
that they cover given area with minimal overlap. In that scenario, three decision space
variables per transmitter have to be defined (x, y, power). However, the number of
transmitters is not a priori known. This type of problems will be called as VND (problem
with Variable Number of Dimensions).

The aim of this article is to introduce a modification of the PSO algorithm to solve
VND problems. The PSO is selected because it has been recently successfully used to
solve many problems as described in [145], it works with the continuous decision space
comparing to GA (see [78]) and it can be implemented relatively easy as described in [162].
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Some articles are devoted to problem-oriented changes to the run of the optimization
algorithm: [131, 151, 195, 197]. These methods are not applicable to wider range of prob-
lems. In [138], authors transform the VND problem into a multi-objective problem and
solve it with NSGA-II by Deb [46]. Minimization of the dimensionality is added as another
objective to minimize expected costs. This method requires more complex multi-objective
algorithm and decision making from resulting Pareto-optimal set.

Most of the articles are devoted to modifications of GA. These algorithms are called
VLGA (Variable Length Genome Algorithms). Decraene [47] introduces so called static
(necessary) and dynamic (size is defined by model complexity) part of the chromosome.
The crossover operator is applicable at certain valid positions of the chromosome. Some
authors add another integer ( [170]) or real ( [113]) valued string to the chromosome,
specifying the affiliation of genes with decision space variables. Ting [184] divides the
genome with variable length into the substrings according to model parameters. Then,
crossover is possible on level of substrings and on level of alleles. For most of the authors in
domain of VLGA, it is typical to handle with the VND problem by modifying the crossover
operator e.g. [47,146,152,184]. Only Gheith [59] modifies the mutation operator to solve
container pre-marshalling problem.

Few algorithms can solve VND problem in its natural definition: Immune Weed Opti-
mization (IWO) introduced by Mehrabian [130] and Grouping Coral Reefs Optimization
(GCRO) by Salzedo-Sanz [165]. For both, every agent can be generated with different
decision space size. Nevertheless, individual agents can produce offspring only with the
same decision space size. In fact, it is the same like a nave approach (single run per
dimensionality).

Surprisingly, few efforts have been devoted to modification of PSO. Jamian [74] does not
solve VND problem but adds another term to velocity update formula. The improvement
factor (ebest) is composed randomly from all gbest from previous iterations. Li [114]
and ONeill [143] handle different sizes of particle and gbest. The particle changes its
dimension towards a value randomly generated between its dimension and dimension of
the gbest. Kiranyaz [103] introduced MD-PSO (Multi-Dimensional) where the dimension
of PSO particle is controlled by another single-variable PSO. Yan [202] proposed the DA-
PSO (Dimension Adaptive). Here, the particles dimension is defined by discrete header
controlled by another discrete PSO (see Pugh [150]). In Hu [37], size of the particle is
updated according to chordal length of the velocity components (particle, personal and
global best). In Xue [200, 201], velocity update is changed when dimensions of particle
and gbest are not same.

All previously published modifications of PSO to solve VND problems show deficiency
in convergence properties. First, size of particles remains the same during whole op-
timization which slows down the search, or second, it forces all the particles to follow
dimension of gbest which can lead to premature convergence in non-optimal dimension
of the problem.
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Variable Number of Dimensions Problem

Typical single-objective problem is defined as follows:

min
x

f(x)

s.t. xi,L ≤ xi ≤ xi,U ,

i = 1, 2, . . . , N

(6.1)

Here xi,L and xi,U stand for limits of i-th variable and f is the objective function, N
denotes the total number of variables.

Decision space size N becomes a variable for the VND problem:

min
x, N

f(x, N)

s.t. xi,L ≤ xi ≤ xi,U ,

i = 1, 2, . . . , N,

Nmin ≤ N ≤ Nmax

(6.2)

where Nmin and Nmax stand for minimal and maximal dimensionalities.
This type of problem puts forth another challenge for the optimizer - to search for the

optimal number of the dimensions Nopt. Physical meaning of every variable has to remain
the same for all possible dimensionalities throughout the optimization. Consider the VND
problem having Nmin = 3 and Nmax = 3 (see Figure 6.1). Vector of three variables implies
the only combination x = {x1, x2, x3}. Combinations like x = {x4, x5, x6, x7, x8, x9} or
x{x1, x3} are not valid.

Figure 6.1: Valid and invalid decision space vectors for example with transmitters place-
ment example.

With VND problems, one can find different minima f(xN,opt) for each possible N -
dimensional space. Therefore, the optimizer can be stuck either in a local minimum
caused by the nature of the objective function or by the dimension of the problem.

There are two types of VND problems depending on the position of the minimum of
the N -dimensional space xN,opt:

1. the value of xN,opt,i remains the same for each possible N ,

2. the value of xN,opt,i changes with N .

For example, optimal vectors for N = 1 and N = 2 x1,opt = {x1} and x21,opt = {x2, x2},
x1 for N = 1 is equal to x1 for N = 2 for type 1 and is not for type 2. This behavior can
be used to enhance the convergence rate towards the optimum.



6.1. PSO FOR VND PROBLEMS 79

Description of PSO-VND

The conventional PSO algorithm with linearly decreasing inertia weight (described in
[167]) is modified to handle variable dimensionalities. The developed modification can be
applied to any PSO-based algorithm with improved properties (see e.g. [71, 118, 119]) to
enhance optimization convergence rate. The general flowchart of the method is Figure 6.2.

Figure 6.2: Flowchart of the PSO-VND method.

Initial settings
The following parameters remain unchanged with respect to the conventional PSO

by [167]: P (number of particles), T (number of iterations),w (inertia weight), c1 , c2
(cognitive, social coefficients).

For the purposes of the PSO-VND approach, three new probabilities are introduced:

� p1 adapting N to dimensionality of gbest,

� p2 adapting N to dimensionality of pbest,

� p3 adapting N to dimensionality of the particle.

Dimensionality of the p-th particle Np, initial positions xi and initial velocities vi are
generated randomly using:

xi = xi,L + rnd(xi,U − xi,L) (6.3)

where rnd stands for a random value from uniform interval 〈0; 1〉.It is necessary to ensure
that i) the swarm is diversified maximally and ii) deals with all the possible dimensions
from Nmin to Nmax.

Swarm update
The position of the particles in every iteration t is:

xt = xt−1 + ∆tvt (6.4)

where ∆t denotes the time step (∆ = 1) and the actual velocity vector vt is computed:

vt = wvt−1 + c1rnd(pbestt−1 − xt−1) + c2rnd(gbestt−1 − xt−1) (6.5)
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For VND problem, equations (6.4) and (6.5) can contain vectors with up to three
different dimensions: xt−1 (vt−1), pbestt−1 and gbestt−1. The pseudocode of the swarm
update is depicted in Figure 6.3. Three scenarios can be followed:

1. all the three vectors have the same number of dimensions,

2. any two of them have the same number of dimensions,

3. all three have different number of dimensions.

Figure 6.3: Pseudocode of the swarm update procedure to assign a new size sn for the
particle.

The probabilities p1, p2 and p3 will be employed in cases 2 and 3. The probabilities cor-
respond to three possible vector sizes: p1 to N(gbest), p2 to N(pbestp) and p3 to N(xp).
The unit interval is divided into three parts with lengths corresponding to probabilities
p1, p2, and p3, respectively and compared with the random number. Then, the particles
new number of dimensions corresponds to subinterval the random number belongs to.

After the new number of dimensions for p-th particle Nnew(xp) has been determined,
vectors with size different from Nnew(xp) are temporary modified and equations (6.5) and
(6.4) are applied. If Nnew(xp) is smaller, the last redundant components with indices
Nnew(xp) < iN(xp) are eliminated. If the size of Nnew(xp) is larger, values of the missing
components with indices i so that N(xp) < i ≤ Nnew(xp) are generated randomly using
(6.3). With this approach, the exploration is preferred. If exploitation is to be preferred
indices of the redundant components should be determined according to change of fitness
value in order to prevent destroying valuable parts of the decision space vector. However,
this would require extra fitness function evaluation.



6.1. PSO FOR VND PROBLEMS 81

Balancing exploration and exploitation within a single dimension is controlled by well-
known coefficients w, c1 and c2. However, frequency of changing an agents dimension
can be also viewed as balancing between exploration and exploitation. It is controlled
by setting of p1 (probability to follow gbest). With high value of p1, the exploitation
process is emphasized because all particles are forced to change the dimension according
to gbest. With a small value of p1 the exploration process is emphasized because all
particles follow their own current size or pbest as demonstrated in Figure 6.4.
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Figure 6.4: Influence of p1 coefficient on number of agents following size of gbest during
individual iteration steps, number of agents P = 100, maximum decision space dimension
Nmax = 10.

Setting large values (larger than 0.2) for p1 is not recommended. Then, all the particles
in the swarm would be attracted to follow the number of dimensions for gbest from an
early stage of the algorithm. If all the probabilities p1−3 are set to non-zero values,
the particle can change the dimensionality with a certain probability which is crucial to
protect the algorithm against getting stuck in a local minimum.

According to our experience with the algorithm based on numerous simulations set-
ting the probability parameters so that p3 ≥ 0.6, p1 = 0.5p2 and p1 + p2 = 1 − p3 is
recommended (only p3 selected by user).

Global Best Condition and Dimension Check
This approach is based on the idea that some components of the xN,opt vector may be

the same also for a local minimum having N 6= Nopt. The dimension check is applied only
to a gbest vector that has significantly changed its position. Components of the gbest
vector are evaluated in every possible dimension of the problem hoping that the quality
of the proposed solution will be increased in other dimensions. For N < N(gbest)), some
components are removed from gbest vector. If N > N(gbest)), some components have
to be added. These components can be derived: i) randomly using equation (6.3) or ii)
taken from the values in the repository of the best values for individual dimensions. The
first method is denoted as rand and the second one as best throughout the article.

Convergence Evaluation

In order to evaluate convergence properties of the PSO-VND algorithm, special bench-
marks and metrics have to be proposed to express quality of the VND problem solution.
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Benchmark Problems

Seven VND benchmark problems can be found in [103]. These are modifications of well-
known optimization problems. We will address these problems as follows: KSPH (sphere),
KDEJ (De Jong), KROS (Rosenbrock), KRAS (Rastrigin), KGRI (Griewank), KSCH
(Schwefel) and KGIU (Giunta).

Other nine problems from Ali [9] are reformulated to form new VND problems: SPH1
(Sphere 1), SPH2 (Sphere 2), MMIC (modified Michalewicz), MRAS (Rastrigin), MDPF
(Dixon and Price), MMUM (Multimodal), MDCS (Deflected Corrugated Spring), MALP
(Alpine) and MACK (Ackley). All parameters of the modified benchmark problems are
summarized in Table 1 (please see the original of the manuscript [93]). The optimal
dimensionality is defined by variable Nopt.

Variance of the objective function with dimensionality N expresses complexity of the
problem. Figure 6.5 depicts the local optima values according to the changing number
of dimensions for our new problems. The parameter Nopt is set to 5. Very interesting is
the MMIC benchmark problem where the second smallest value of the objective function
appears for N = Nopt ± 3 instead ofN = Nopt ± 1.

It should be noted that the difference between global and local minimum is not the
only parameter determining the complexity of the problem. Also, a shape of the objective
function influences complexity of the problem.
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Figure 6.5: Comparison of benchmark suite local minima fN,opt for different decision space
sizes. The optimal size for all the problems was set to Nopt = 5.

Evaluation Metrics

The evaluation metrics should numerically express the quality of the found solution so
that solutions from different optimizers or runs can be easily compared. Thanks to non-
linearity of optimization problems, the convergence properties should be viewed in both
the decision and objective spaces.

The Fitness Error metric (FER) was introduced by Liang [117]:

FER = |fbest − fopt| (6.6)
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which is the difference of the minimum objective value found best and the known optimum
fopt. The FER measures the distance in the objective space.

Decision Space Error (DER) is computed as the Euclidean distance from the known
optimal vector xopt to the vector xbest:

DER =

√√√√Nopt∑
i=1

[(xi,opt − xi,best)2] (6.7)

This metric can be evaluated only when size of the xbest is equal to Nopt.
The Success Rate (SR) is a ratio between the number of successful runs Nsucc and total

number of runs Nall (see Auger [15]):

SR =
Nsucc

Nall

100 % (6.8)

For the purposes of this article, a run of the optimizer is identified as successful if
FER(xbest) < 0.01

Determining the optimal number of dimensions can be seen as partial success. The
Dimension Success Rate (DSR) can be computed using equation (6.8) just with the
difference that an optimizer run is considered as successful if the xbest vector is of size
Nopt. Metric SP (Success Performance) tries to measure the time (expressed by number
of FE) necessary to find the optimum. It is defined as the number of function evaluations
performed until the algorithm reaches a fixed level of accuracy. The algorithm can fail to
find the optimum with certain settings. Therefore, the mean success performance (MSP )
has been defined in Auger [15]:

MSP = FEmax
100− SR

SR
+

1

Nsucc

Nsucc∑
k=1

SPk (6.9)

where FEmax is the maximal number of FE per single run, SR denotes the success rate,
Nsucc stands for the number of successful runs and SPk is the number of fitness evaluations
when the algorithm reached the optimum during the k-th successful run.

Experimental Results

The convergence properties of the presented PSO-VND algorithm are evaluated by a large
number of tests on the benchmark suite with different settings (Table 6.1). All the tests
are executed on the whole benchmark suite with Nmax = 10, (Nmax = 100 for chapter
6.1). All the problems have the optimum for dimensionality Nopt = 5, (Nopt = 20, 50 or
80 for chapter 6.1). Every problem has been executed hundred times.

Influence of Parameter Settings

As can be seen in Figure 6.6, the modified Rastrigin function (MRAS) problem seems
to be the most difficult from the test suite. Although the algorithm has revealed the
number of dimensions for almost all runs with different settings, it succeeded to determine
the optimum just in a few cases, despite the fact that it was set relatively very robust
(SR = 13 % and 10 % for SETA.1 and SETA.4 Table 6.2).
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Figure 6.6: Fitness error boxplots for 100 repetitions of PSO-VND set according to
SETB.2.

Table 6.1: Different initial parameter settings for PSO-VND used for simulations.
Sett P (−) T (−) p3(−) DC type Sett P (−) T (−) p3(−) DC type

SETA.1 100 100 0.8 rand SETA.4 100 100 0.7 rand
SETA.2 50 100 0.8 rand SETA.5 100 50 0.8 rand
SETA.3 50 50 0.8 rand SETA.6 100 100 0.1 rand
SETB.1 100 100 0.8 no SETB.3 50 50 0.8 no
SETB.2 100 100 0.8 best SETB.4 50 50 0.8 best

Comparison of the results for settings SETA.2 and SETA.5 shows that it is better
to invest FE to extend the number of iteration loops rather than enlarge the swarm
(see Figure 6.7 ). PSO-VND is usually faster in finding the optimum for SETA.2 than for
SETA.5. This may be caused by the mechanisms that are incorporated into the algorithm
to prevent premature convergence (dimension check and higher value of p3). The faster
convergence rate can be proved by result of Wilcoxon test for the MSP metric presented
in Table 5 (see the table in the original manuscript [93]).

Results for settings SETA.1, 3, 4 and 6 examine the influence of parameters p1−3.
First, one should compare SETA.1 with SETA.4 where p3 reaches higher values (larger
diversity of N). In this case, there is no significant difference in the search rate and in
the convergence rate (SETA.1: DSR = 96 % and SR = 77 %, SETA.4: DSR = 96 %
and SR = 76 %). These results show that PSO-VND is not very sensitive to p3 settings
if chosen from a reasonable interval 〈0.6; 0.9〉. But its performance deceases significantly
when p3 is set to lower values (see Figure 6.8).

Influence of Dimension Check

Dimension check is aimed to enhance the convergence rate of the PSO-VND method. Two
types of Dimension check (DC) are studied here: best and rand variant. The effect of
this method can be demonstrated on results of six different settings: SETA.1 and 2 and
SETB.1-4 (Table 6.2). First, focus is aimed to settings P , T = 100 (SETA.1, SETB.1,
and SETB.2). The highest overall value of dimension search rate was achieved with best
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Figure 6.7: Influence of P (number of particles) and T (number of iterations) parameters
on FER (fitness error rate) of PSO-VND.

Figure 6.8: Influence of p3 parameter (probability to explore decision space with the same
number of dimensions as the current particle) on FER (fitness error rate) of PSO-VND.
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variant of DC (98 %) and second highest for rand DC (96 %).
The best type of DC shows the fastest convergence: overall MSP = 13675 for SETB.2

in comparison to 15833 for SETA.3 (rand) and 28636 for SETB.1 (no DC). The conver-
gence rate for best type of DC is higher for problems where the optimum remains at the
same position with changing N (e.g. MDPF, MMIC).

As can be seen in Table 5 [93], the best variant of dimension check is just slightly
better than the variant rand (SETB.2 vs. SETA.1) but the best variant is significantly
better than no application of the dimension check (SETB.2 vs. SETB.1and SETB.3 vs.
SETB.4). This can be proved by FER boxplots depicted in Figure 6.9.

Figure 6.9: Influence of dimension check type on fitness error rate of PSO-VND.

Comparison with other Conventional Methods

In this subsection, PSO-VND is compared with nave solution of VND problems using
other conventional methods: PSO as described in [167], CMA-ES (Covariance Matrix
Adaptation Evolution Strategy, introduced in [68]), SOMA (Self-Organizing Migrating
Algorithm, [206]), DE (Differential Evolution, [172]) and GA (Genetic Algorithm, [78]).
These metaheuristics were set to be fairly compared with PSO-VND set according to
SETB.2:

� PSO: T = 100, P = 100, c1 = c2 = 1.494, decreasing w 0.9 to 0.4;

� CMA-ES: T = 90, P = 55;

� SOMA: T = 100, P = 100, path length 1.3, number of steps 5, AllToAll;

� DE: T = 100, P = 100, crossover probability 0.3, scaling factor 0.2 0.8;

� GA: T = 100, P = 100, crossover probability 0.8, mutation probability 0.2, tourna-
ment size 2, number of bits per variable 10.

This comparison can be quite tricky. It is necessary to consider that if a VND problem
is solved using conventional approach, the only way is to try every possible N from a
set {Nmin : Nmax}. The conventional optimizer should distribute all the available FE
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uniformly for each possible N . Results for all the metaheuristics are summarized in
Table 6.2.

PSO achieves relatively good value of FER = 7.36E− 01 but the resulting search rate
is only SR = 44 % which is second best among conventional methods but significantly
lower than value SR = 81 % for SETB.2 of PSO-VND. As proved by the Wilcoxon and
T-tests (Table 6.3), it is better to use PSO-VND optimizer rather than searching for every
possible dimensionality using a conventional PSO.

CMA-ES is the best among tested conventional heuristics in SR metric with SR =
52 %. On the contrary, SOMA solves surely only the simplest problems (e.g. SPH2,
MMUM) and achieves the worst overall SR = 28 %, because its AllToAll variant is
strongly oriented on exploration and it has not enough power to search for the global
minimum. As GA works with discrete decision space size, its accuracy is limited by
choice of binary representation. GA is able to solve more complicated problems (MALP,
KDEJ ) more often than SOMA, but so as CMA-ES, GA fails to solve the most compli-
cated problems (MMIC, MRAS, KROS, KRAS, KSCH) every time. The same as for GA
holds more or less also for results of DE, but it achieves slightly better overall search rate
SR = 35 % in comparison with SR = 31 % for GA. Nevertheless, PSO-VND outperforms
all of the conventional algorithms.

Another option to compare results of our PSO-VND method could be to modify con-
ventional PSO so that for problem with Nmax dimensions PSO works with agents of size
Nmax + 1. Then, the last discrete variable of individual agent would control portion of
decision space vector that would be used for evaluation of fitness function. This is similar
approach to those published in [103] and [202]. However, increasing the decision space
size would decrease convergence properties of used optimizer.

Comparison with MD-PSO

According to our knowledge, there is only one benchmark study of stochastic optimizer
able to solve VND type of problems called MD-PSO (see [103]). In the article, results
of two variants are presented: MD-PSO in canonical form and MD-PSO with FGBF
(Fractional Global Best Formation). FGBF routine works similar to our best DC variant.
FGBF forms new potential global best for every possible dimension.

Table 5( [93]) compares results of PSO-VND set with results presented in [103]. Settings
of PSO-VND: P = 160, 320 and 640, T = 5000, p3 = 0.8 once when DC is not applied
and once with best DC variant. PSO-VND with no DC clearly outperforms the MD-
PSO without FGBF in all watched metrics. This is probably caused by the fact, that in
PSO-VND particles can recombine to every possible dimension while in MD-PSO, particle
can change the dimension only by one at current iteration. According to results of MSP
metric, MD-PSO was slightly better on easier problems with larger swarms (e.g. KGIU
and KDEJ for P = 640) while PSO-VND was better on more complex problems (see
e.g. KROS). This behaviour is probably caused by the power of FGBF method for large
enough swarm.

Conclusion

A novel algorithm for solving problems of VND problems has been introduced. The PSO
method has been modified (introducing probability parameters p1-p3) to handle variable
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number of dimensions. A benchmark test suite and metrics have been defined to evaluate
convergence properties. Presented results have shown that the novel method is much more
efficient for solving VND problems than the nave approach using conventional PSO and
other heuristic algorithms (CMA-ES, SOMA, DE and GA). The PSO-VND method was
compared with the only capable PSO-based method. The recommendations for PSO-VND
settings have been derived.

This article can encourage other authors to focus on VND optimization problems. First
of all, new procedures can be derived and other evolutionary algorithms (Differential Evo-
lution, Self-Organizing Migrating Algorithm etc.) can be adapted to choose the optimal
number of degrees of freedom within the optimization run. Also, much more attention
could be paid to derive more complex VND benchmark problems.
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6.2 Solution of an Inverse Scattering Problem Using

Optimization with a Variable Number of Dimen-

sions

Originally published as:
Kadlec, P., Šeděnka, V., Štumpf, M., Marek, M.: Solution of an Inverse Scat-
tering Problem Using Optimization with a Variable Number of Dimensions. In
2017 International Conference on Electromagnetics in Advanced Applications
(ICEAA), 976-979, 2017.

Abstract

The inverse scattering problem applies in many areas of engineering such as biomedicine,
civil engineering, electromagnetic compatibility or geophysics. In this paper, one-dimensional
inverse scattering problem is formulated as an optimization task with variable number of
dimensions. Goal is to reconstruct material properties of a layered medium from its re-
flection coefficient. Then, this problem is solved using PSO-VND algorithm. Its solution
is compared with solutions by conventional approaches: PSO, GA and DE optimizers.
Results show that VND formulation significantly reduces computational time.

Introduction

The inverse scattering problem is a problem of great interest because of its relative ease of
use in industrial and civil engineering, medical diagnostics and buried object detection etc.
The radiofrequency (RF) or microwave (MW) systems have some benefits in comparison
with commonly used systems such as radars or computer tomography: RF and MW
systems are much cheaper and do not burden target with a dose of harmful radiation.
This is paid off by the complex reconstruction of a target object from the— scattered field
which is a nonlinear and ill-posed problem [19]. There are three types of inverse scattering
problem: a) searching for position and simple properties of target body knowing the
detailed information about background material [132], b) searching for shape of target [34],
and c) reconstruction of the material distributions over defined area [180]. Clearly, the
last class of problems is the most challenging one, because it is not known a priori what
the number of homogeneous parts is and what are theirs shapes. In this paper, we shall
tackle a problem of type c).

The inverse scattering problem is well-known from biomedicine applications as a diag-
nostic tool [20, 205]. It is extensively used in civil engineering e.g. for the detection of
inclusions in concrete [186] or for imaging of reinforcement bars in concrete objects [7]
etc. It is extensively used in geophysics for the ground penetrating radar [157] and in
designing shield structures in the field of ElectroMagnetic Compatibility (EMC) [183].

The inverse scattering problem is traditionally approached via iterative solution [44]
or using well-known algorithms based on the Born or Rytov approximations with the
possibility of employing the unique features of 1D problems [32]. In all these approaches,
a unifying concept is the principle of reciprocity a relevant application of which can be
found in [23]. Another efficient way for solving 2D/3D inverse scattering problems is
based on stochastic optimization techniques, which is the main subject of this paper.
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There are plenty of evolutionary algorithms successfully applied to an inverse scattering
problem: e.g. GA (Genetic Algorithms) [33,140], DE (Differential Evolution) [35,132], and
PSO (Particle Swarm Optimization) [166,205]. When applied to type c) inverse problems,
all these methods start with the uniform tessellation of a researched space and then search
for material properties of every space element. For a sufficient resolution, a large number
of elements with the fixed size has to be used which enlarges the— dimensionality of the
optimization problem accompanied with drastic increase of CPU demands.

In this paper, a 1D inverse scattering problem is solved using a recent PSO-VND
algorithm (PSO-Variable Number of Dimensions) introduced in [93]. This algorithm is
able to handle agents (trial vectors) with different sizes. Using VND formulation of
inverse scattering problem enables to tessellate a searched space into parts with varying
sizes and material properties which leads to significant reduction of optimization variables
and savings of CPU resources consequently.

Problem formulation

In this paper we aim at reconstructing the constitutive parameters of a dielectric layered
medium with the material inhomogeneity in the z-axis direction (see Figure 6.10). The
layered dielectric medium is assumed in the AOI (Area Of Interest). Our goal is to
find unknown number of layers, their width and material properties (only non-magnetic
materials with µr = 1, only relative permittivity is searched). The AOI is illuminated by
a plane wave with the known wavelength λ and the unit amplitude while the pertaining
reflection coefficient is being measured. The recursive formula for the reflection coefficient
is used [144]:

Ri =
ρi +Ri+1 exp−2jkili
1 + ρiRi+1 exp−2jkili

(6.10)

where ρi stands for elementary reflection coefficient of i-th layer:

ρi =
ni−1 − ni
ni−1 + ni

(6.11)

where ni is the refractive index (for a wave impinging form a direction perpendicular to
the layers):

ni =

√
εi
ε0

=
√
εr,i (6.12)

where εi stands for permittivity of the i-th layer, ε0 is permittivity of vacuum and εr,i is
the relative permittivity of medium. The phase thickness can be calculated from:

kili =
2πnili
λ

(6.13)

where li denotes the width of i-th layer. Having M layers, reflection coefficient RM+1 is
equal to the elementary reflection coefficient ρM+1.

Optimization methods

Particle Swarm Optimization

The Particle Swarm Optimization is a technique proposed by Eberhart and Kennedy in
1996 [51]. It is inspired by the cooperation of a swarm of particles searching for food.
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Figure 6.10: One-dimensional inverse scattering problem formulation.

New position of a p-th particle from a swarm in iteration i is determined by [163]:

xp,i = xp,i−1 + ∆t ∗ vp,i (6.14)

where size of vector x is N ×1, N stands for number of dimensions, symbol * denotes the
element-vise multiplication, ∆t is a time step (usually 1) and particles current velocity
vp,i is computed using:

vp,i = wvp,i−1 + c1rand(pbestp − xp,i) + c2rand(gbest− xp,i) (6.15)

Here, w denotes the inertia weight (large value enforces exploration), c1, c2 are cognitive
and social learning factor (c2 enforces exploitation), rand denotes a random number from
interval 〈0, 1〉, pbestp is the position with the best value of the fitness function visited
by the p-th particle, and gbest is a position with the best value of the fitness function
visited by the whole swarm.

PSO with Variable Number of Dimensions

Some optimization problems show dependence not only on combination of design variables
but on the number of these variables too. Such problems can be solved using PSO-
VND algorithm whose comprehensive description can be found in [93]. When trying to
transform the conventional PSO to the VND algorithm, attention has to be turned to
the velocity update formula (6.15), where up to three vectors with different sizes (x,
pbest and gbest) can be found. New particles size has to be determined using three
probabilities:

� p1 adapting to dimensionality of gbest,

� p2 adapting to dimensionality of pbest,

� p3 adapting to dimensionality of the particle (x).

When a new dimension has to be determined, random number from interval 〈0, 1〉 is
compared to intervals 〈0, p1〉, 〈p1, p1 + p2〉 and 〈p1 + p2, 1〉 set by the user. The new
dimension is defined by the corresponding interval where the random number belongs to.
A number from first interval means gbest size, second interval means pbest size and the
last one means that the particle keeps the same dimensionality.
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Experiment results

As an experiment, the reconstruction of a permittivity profile of total width 2.5λ0 with
five layers of relative permittivities εr = {1.00, 6.50, 2.20, 1.38, 1.00} and widths l/λ0 =
{0.50, 0.25, 0.50, 0.75, 0.50} was performed. The reflection coefficient response of this
profile on the frequency interval 〈55/70, 55/40〉f0 with 101 samples were known. For
every single algorithm scenario, 500 agents and 200 were run 100-times.

Conventional formulation

Three stochastic algorithms are used for comparison with a solution by PSO-VND: PSO
[163], GA [78] and DE [172]. For conventional stochastic optimizers, the searched inter-
val is tessellated into 10 (the smallest number of intervals in agreement with widths of
individual layers) and 20 uniform subintervals. Then, for every element (see Figure 6.11),
the relative permittivity from an interval εr ∈ 〈1, 10〉 is searched according to the fitness
function (valid also for the VND formulation):

f(x) =
S∑
i=1

[<(Ri(x))−<(Ri,res)] +
S∑
i=1

[=(Ri(x))−=(Ri,res)] (6.16)

where S is the number of frequency samples (101 in this study), Ri(x) is the i-th sample
of the reflection coefficient for a decision space vector x, and Ri,res is the known reflection
response of the system (see Figure 6.12).

ε1 ε2 ε4ε3

kin

R
z

...

...

ε5

l1 l2 l3 l4 l5

Figure 6.11: A VND formulation of 1D inverse scattering problem unknown number of
layers with variable sizes.

PSO was set as follows: decreasing inertia weight from w = 0.9 to w = 0.4, c1 =
c2 = 1.5, reflecting boundary condition: for GA probability of singlepoint crossover and
mutation pc = 0.9, pm = 0.7, respectively, binary precision bp = 20 and tournament
selection; for DE probability of crossover pc = 0.2 and scaling factor sf = 0.2.

PSO-VND formulation

With the VND formulation, the algorithm has to search for the relative permittivity
and width of an unknown number of layers and the start position of the first layer (see
Figure 6.11). Therefore, the size of every particle was an odd number from interval 〈3, 21〉.
The first variable from the decision space vector was the start position of the first layer.

PSO-VND was set in agreement with conventional PSO, i.e. the relative permittivity
was found in the interval εr ∈ 〈1, 10〉 and the width in the interval l ∈ 〈0.1, 1.0〉 × λ0.
PSO-VND special parameters were set as follows: probabilities controlling new size of
particle p1 = 0.03, p2 = 0.06 and p2 = 0.91. No dimension check was applied.
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Results

Results from 100 runs of all algorithms are summarized in Table 6.4. The best reflection
coefficients and permittivity profiles found by individual optimizers are depicted in Fig-
ure 6.12. Despite the best value of the fitness was found by PSO, the PSO-VND clearly
outperforms other algorithms because it achieves better values in watched metrics: mean
fitness function error and success rate (SR). Run of algorithm was considered as successful
if the fitness function value decreased under f = 0.1. Despite not so robust settings (only
100000 fitness evaluations for a problem with up to 20 variables) PSO-VND achieved a
very high success rate 74 %. Only DE was able to come close to the mean value of the
fitness function: 1.81 for DE in comparison with 1.18 for PSO-VND.

Table 6.4: Different initial parameter settings for PSO-VND used for simulations.
alg. layers mean st. d. best worst SR

PSO
10 3.91 5.23 2.5e-29 16.76 2
20 5.00 3.85 1.2e-01 19.35 0

GA
10 2.02 2.65 2.2e-01 13.50 0
20 7.98 5.59 1.9e-01 16.42 0

DE
10 1.81 0.62 3.9e-01 2.94 0
20 6.67 1.25 3.7e+00 9.28 0

VND 1:10 1.18 2.07 4.2e-14 8.2 74

Conclusions

A new approach based on the stochastic optimization has been applied to the 1D inverse
scattering problem. The PSO-VND algorithm has been applied to search for a material
profile from the reflection coefficient. PSO-VND has shown a better convergence in com-
parison with conventional approaches which is caused by its ability to work with particles
having variable dimensions. It enables to regularize the space and decrease the dimension
of the decision space vectors. This leads to significant savings of CPU resources.
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6.3 PCB Decoupling Optimization with Variable Num-

ber of Capacitors

Originally published as:
Kadlec, P., Marek, M., Štumpf, M., Šeděnka, V. : PCB Decoupling Optimiza-
tion with Variable Number of Capacitors. In IEEE Transactions on Electro-
magnetic Compatibility, 61(6), pp. 1841-1848, 2019.

Abstract

The decoupling of modern printed circuit boards introduces a very complex task. Powerful
stochastic optimizers are usually used to determine values and positions of decoupling
capacitors on the board. The number of capacitors used has to be determined a priori by
the user which brings problems with convergence of the optimization process or can lead
to a waste of resources when the noises are to be attenuated to a certain level. In this
paper, an approach based on combination of Time Domain - Contour Integral Method and
Optimization with Variable Number of Dimensions is introduced. The optimizer works
with models having variable dimensions and searches for the optimal one. The approach
is tested on two example power circuit boards with various noise attenuation limits and
constraints on capacitors positions and values.

Introduction

It is indispensable to control and suppress the level of conducted and radiated emissions
produced by switching components on modern PCBs (Printed Circuit Boards). Decou-
pling capacitors are used to compensate voltage dips and spikes caused by unintentional
noise currents, and for voltage disruptions due to intentional current transients caused by
the normal operation of integrated circuits and other switching circuits on the PCB. A
proper modeling of decoupling capacitors on PCBs is a problem of great importance as
proven by a large number of papers tackling it throughout the last twenty years (please
refer to e.g. [49, 53, 104–106, 199, 208]). The automated design of decoupling structures
comprises the search for proper capacitance value and position of one or more capacitors.

The indisputable power and ease of implementation of stochastic global optimization
methods such as GA (Genetic Algorithms) [78], PSO (Particle Swarm Optimization) [51]
or DE (Differential Evolution) [172] lead to their massive use for solving plenty of design
problems from a domain of electromagnetics including the decoupling problem. Usually,
conventional stochastic optimizers work in two modes: 1) the user selects a parametrized
model of designed structure and the optimizer then searches for proper combination of
design variables, or 2) components with selected parameters of an uniformly distributed
set are enabled/disabled by the optimizer. The dimension of the optimization problem is
fixed for both the cases: the optimizer searches for set of real values or for the optimal
combination of logical values in the latter case. The number of design variables or switch-
ing elements defines the dimension of the problem, which has to be assigned by the user
a priori.

The first approach was used in e.g. [11, 96, 98, 148, 179, 187] where authors searched
for the position and values of fixed number of capacitors on various power bus struc-
tures. Quality of the result is here significantly affected by the choice of the parametrized
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model. The fixed model reduces significantly the number of possible realizations before
the optimization and makes demands on user who has to understand the problem very
well.

Authors in [21, 102, 209, 210] use stochastic optimizers (GA in most cases) to en-
able/disable capacitors placed in a regular grid. The limiting factor here is the density of
the grid. A sparse grid decreases the number of possible capacitor positions. On the other
hand, optimization using a dense grid results in exponential growth of the design variables
which strongly deteriorates the convergence of stochastic optimization algorithms.

In recent years, a certain strain has been put on the effectiveness of the automated
design of decoupling structures. Authors in [108] developed an algorithm minimizing the
number of decoupling capacitors needed to meet a predefined impedance characteristics
of a PDN (Power Distribution Network) in frequency domain. Capacitors are allowed
to be placed only to positions of pin ports. A methodology for reducing the number of
decoupling capacitors using a deterministic optimization techniques was published in [193].
Authors in [54] examined the influence of position and the number of decoupling capacitors
on a Ball Grid Array package on a PCB. In [50] authors derived a closed-form solution
to calculate the grid PDN impedance to speed up the decoupling design process. The
prelayout library and equivalent models of decoupling capacitors were published in [203].
Authors in [147] compared different capacitor placement strategies on the gridded PDN
to enhance efficiency of GA-based search strategy.

The problem with the choice of the accurate model dimension can be solved with
the use of the so-called VND (Variable Number of Dimensions) class of optimization
algorithms. These algorithms work with sets consisting of agents that can have different
sizes. That introduces another task for the optimizer - not only the optimal combination
of design variables, but also the optimal dimensionality, that means the appropriate model
complexity. There are many modifications of Genetic Algorithms e.g. [47, 113, 170, 184]
and few modifications of Particle Swarm Optimization algorithm [93, 103]. Those VND
algorithms were successfully used to solve problems introducing the choice of the model
dimension: e.g. the transmitter placement problem [184], the clustering problem [103], or
the inverse scattering problem [95].

In [94], we have shown that the optimal position and value of a single decoupling
capacitor can be found using a conventional PSO algorithm [51] in cooperation with a
TD-CIM (Time Domain - Contour Integral Method) solver [173]. Then, purpose of this
paper is to generalize the design methodology to suppress the noise signals propagating on
a PCB to a certain level. The search for positions and values of a priori unknown number
of decoupling capacitors is driven by the PSO-VND algorithm introduced in [93]. In
comparison to previous publications, we want to propose the general procedure to design
the set of decoupling components with the optimal size, values, and positions directly in
time domain.

Problem Description

The printed circuit board is modeled in this paper by a parallel plate structure that
is depicted in Fig. 6.13. Symbol O denotes the origin of the right-handed Cartesian
coordinate system and any point in the space can be localized using three mutually
orthogonal unit vectors {i1, i2, i3}. The PCB is modeled by two PEC plates with a
shape defined by the closed contour ∂Ω. The top and ground PEC layers lie in the
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planes perpendicular to i3. The PEC layers are separated by the dielectric layer with
the relative permittivity εr and thickness d. The background medium is made up of
a vacuum with the permittivity ε0 and the permeability µ0. The structure is excited
at ’PORT 1’ by an electric current pulse representing the noise signal and the voltage
response is observed at point of interest labeled as ’PORT 2’. The response is affected
by an unknown number N of capacitors. Position of n-th capacitor is defined by a two-
dimensional vector rn = rn,1 × i1 + rn,2 × i2. The value of n-th capacitor is denoted as
Cn.

Figure 6.13: Description of a power-ground structure containing unknown number of
decoupling capacitors.

The aim of the optimization is to attenuate the received voltage response to the required
level L:

min f(N,R, c) = |PV R(N,R, c)− L|

subject to R =


r1

r2

...
rN

 , c =


C1

C2

...
CN


rn ∈ Ω ∀n ∈ {1, 2, ..., N}
N ∈ Γ, C ∈ Λ

(6.17)

where R is a matrix formed by all N capacitors positions of total size [N × 2], c denotes
a vector of all capacitance values. Symbol Γ denotes the list of all possible dimensions N
(according to the minimum and maximum number of capacitors, that can be used) and Λ
stands for the list of available capacitance values. The peak voltage ratio PV R is defined
as follows:

PV R = max
t∈T
|V2,1(N,R, c)|/max

t∈T
|V2,1(0, ∅, ∅)| (6.18)

Here, t stands for time, T is the length of the time window of the excitation pulse (6.24),
and V2,1 denotes the voltage response observed at ’PORT 2’. The peak voltage of the
response with N capacitors is in the numerator while the denominator consists of the
peak voltage measured at ’PORT 2’ with no capacitor present on the PCB.

The formulation of objective function (6.17) favors solutions with PV R close to the
target attenuation value L and penalizes solutions that exceed the target value. The better
attenuation level requires use of more decoupling capacitors, which enhances the costs of
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the final design (price of the components, place on the PCB etc.). The optimum number of
capacitors to meet the target attenuation value can be found by an iterative approach: the
conventional PSO is run for a problem with a fixed dimension and if it does not meet the
target attenuation value, the dimension is enhanced according to one capacitor. On one
hand, this brute-force approach avoids the use of more complex VND algorithm, but on
the other hand it leads to a waste of CPU resources. The amount of waste increases with
number of components needed. This can be proved by the results of the comparative study
concerning the PSO-VND algorithm published in [93]. There, the PSO-VND algorithm
has been tested on a suite consisting of 16 VND benchmark problems by means of the
SR (Search Rate) metric. This metric is defined as percentage of successful algorithm
runs. The algorithm run is considered as successful when it founds the global optimum
with error lower than 0.01. The overall SR of the PSO-VND algorithm raised to 81 %
compared to 44 %, 35 %, and 31 % when conventional PSO, DE, and GA algorithms with
same computational resources have been used. Furthermore, the conventional algorithms
achieved SR = 0 [%] for more complex test problems.

Computational Methods

The Time Domain - Contour Integral Method

The reciprocity theorem of time-convolution type enables to formulate the Time Domain
- Contour Integral Method as described in detail in [174]. In short only, this method
discretizes first the bounding contour ∂Ω ' ∪Nm=1∆Ω[m] and the time axis T = {tk ∈
R; tk = k∆t,∆t > 0, k = 1, 2, . . . , NT}. Here, N denotes number of line segments, ∆t
is the chosen time step and NT stands for the number of time steps. Then, the voltage
response at any position on the circuit’s rim r and time t can be found from:

V (r, t) '
N∑
m=1

NT∑
k=1

v
[m]
[k] T

[m](r)T[k](t) (6.19)

where v
[m]
[k] denotes the unknown voltage expansion coefficient and T [m] is the spatial

triangle function while T[k](t) is the temporal triangle function. The desired voltage
distribution is found upon solving the following system of equations with the aid of the
marching-on in time technique for any time index p:

[
I −Q[0] + L[0]

]
· V [p]

=

p−1∑
k=1

[
Q[p−k] −L[p−k]

]
· V [k] + F [p] (6.20)

A detailed description of Q and I arrays can be found in [173]. The influence of a
decoupling capacitor is accounted for in a separate [N ×N ×NT ] 3D-array L [175, Ch.
7], which makes it possible to change the parameters of capacitors without the need for
re-analyzing the entire structure over again which significantly speeds up the optimization
procedure.
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Particle Swarm optimization with Variable Number of Dimensions

Conventional PSO algorithm introduced in [51] works with a set of P agents called par-
ticles. A particle carries the information about currently tested variables. Every particle
moves in the decision space and shares information about quality of visited positions ex-
pressed by values of specified objective function. The movement of the p-th particle is
determined by:

xp(i) = xp(i− 1) + ∆t · vp(i) (6.21)

where i denotes current iteration index, ∆t stands for time step (usually equal to 1), and
vp(i) is the velocity of the p-th particle in the i-th iteration which is computed:

vp(i) = w · vp(i− 1) + c1 · r1 · [pbestp − xp(i)]

+ c2 · r2 · [gbest− xp(i)]
(6.22)

where w is the so-called inertia weight forcing the particle to continue moving in the
current direction. The inertia weight is chosen from interval 〈0, 1〉. Symbols c1 and c2
denote the cognitive and social learning factor, respectively. The random values r1 and r2
are selected from interval 〈0, 1〉 with a uniform probability distribution. So far the best
position revealed by the p-th particle is denoted pbestp and gbest stands for the best
from all the pbest values within the swarm.

The application of the canonical PSO as described in [51] to the problem with finding
positions of variable number of capacitors would fail. Therefore, the modified version
called PSO-VND as introduced in [93] needs to be used. In general, (6.42-6.43) can
contain vectors with up to three different sizes. Current particle size (xp) can differ from
sizes of pbestp and gbest. Three probabilities p1, p2, and p3 are introduced in [93] to
solve the problem with unbalanced sizes:

� p1 - probability to adapt to dimension of gbest,

� p2 - probability to adapt to dimension of pbest,

� p3 - probability to adapt to dimension of xp.

These probabilities are set so that:

p1 + p2 + p3 = 1 (6.23)

In case of different sizes, the unit interval is divided to three subintervals with sizes
corresponding to chosen p1, p2, and p3 probability values. Then, a random number from
interval 〈0, 1〉 is generated and the dimension to be used is selected according to the
subinterval where the random number belongs to. Particles with sizes bigger than the
selected one are trimmed. Particles with missing parts are filled with random values or
with values previously assigned as improving the objective function value. The selection
mechanism using the probabilities is depicted in Fig. 6.14. The current particle size is
chosen there. Therefore, the last two components of gbest are discarded, and the missing
part of pbestp vector is filled with components from the gbest vector. For detailed
informations about the PSO-VND algorithm we refer the reader to [93].
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Figure 6.14: Selecting a dimension of particles with different sizes using a user defined
probabilities: p1 = 0.2, p2 = 0.1, and p3 = 0.7 in the PSO-VND algorithm.

Numerical Examples

We tested the new approach combining the PSO-VND algorithm with the TD-CIM solver
on two sample structures. Namely, we analyze a rectangular and a irregularly-shaped
circuit with the dielectric slab of thickness d = 0.8 [mm] and relative permittivity εr = 4.5.
For simplicity we assume a non-magnetic material filling with µr = 1. The two shapes
are shown in Fig. 6.15 and are defined using the following points:

� rectangular circuit
[0, 0; 0.15, 0; 0.15, 0.1; 0, 0.1] [m].

� irregularly-shaped circuit
[0, 0; 0.12, 0; 0.12, 0.03; 0.075, 0.03; 0.075, 0.07; 0.15, 0.07; 0.15, 0.1; 0.03, 0.1; 0,
0.07] [m].

Two ports are located at positions r = [0.03, 0.02] [m] (’PORT 1’) and r = [0.12, 0.085] [m]
(’PORT 2’) for the both geometries. They are indicated with the red crosses in Fig. 6.15.
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The structure is excited at ’PORT 1’ with a bell-shaped pulse defined as [173]:

I(t) = A
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(6.24)

where A denotes the pulse amplitude (A = 1 [A]), tw is the pulse width (defined as the
rise time, tw = 0.67 [ns]), and H(t) stands for the Heaviside unit-step function.

The peak voltage ratio as defined by (6.18) for different positions of the decoupling
capacitor with C = 10 [nF] is in Fig. 6.15, also. As we can see there, the minimal possible
PV R value using one 10 [nF] capacitor is approximately 10 [%]. The maximal attenuation
values are achieved for positions close to the source of the noise or for positions in the close
vicinity of the point that should be decoupled. This is in agreement with the observations
published in [105] and [94]. Nevertheless, if we want to further suppress the influence
of the noise signal (to ones or tenths of %), we have to use more than one capacitor,
definitely.

All the tests were carried out on a personal computer with an AMD Ryzen 7 1700X
platform and 32 GB of RAM. A single evaluation of the voltage response took approx-
imately three seconds with our TD-CIM solver in comparison with approximately four
minutes using CST Microwave Studio.

All the optimization tasks were carried out using a FOPS (Fast Optimization Proce-
dureS) software which can be downloaded from www.antennatoolbox.com/fops. The
PSO-VND algorithm was set with the following parameters:

� number of agents: nAgents = 50,

� number of iterations: nIters = 100,

� decreasing inertia weight: w ∈ 〈0.9; 0.4〉,

� cognitive learning factor: c1 = 1.494,

� social learning factor: c2 = 1.494,

� wall boundary: reflecting,

� probabilities: p1 = 0.05, p2 = 0.10, and p3 = 0.85.

The relatively low value of p1 = 0.05 forces particles to maintain their initial dimension.
The dimension of gbest should be adopted only in approximately one case from twenty.
Therefore, the diversity in dimension is favored with this settings. All the presented values
are the best out of ten repetitions of the algorithm run.

www.antennatoolbox.com/fops
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(a) Rectangular circuit.

(b) Irregularly-shaped circuit.

Figure 6.15: The attenuation map for capacitor C = 10 [nF] placed on two sample ge-
ometries. Red dashed curve denotes a circle used for Fig. 6.16 (a) and some optimization
scenarios (capacitors can be placed on the circle only). Dotted line from point A to B
denotes positions used for Fig. 6.16 (b).
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Influence of ESR and ESL

The ESR (Equivalent Series Resistance) and the ESL (Equivalent Series Inductance)
are important parameters influencing behavior of all decoupling capacitor types. The
typical values of ESR vary from 10 [mΩ] to 200 [mΩ] while typical values of ESL are
from 0.01 [nH] to 1 [nH] according to [104]. Unfortunately, the influence of ESR and
ESL cannot be presently added to the simulation using the TD-CIM solver. Therefore,
we have modeled the attenuation due to a C = 10 [nF] capacitor with various ESR and
ESL values using the CST Microwave Studio. We placed the capacitor on subsequent
places forming 1) the ring around the ’PORT 1’ and 2) line from the top-left corner to the
bottom-right corner on the rectangular circuit as shown in Fig. 6.15 (a) with red dashed
and dotted curve, respectively. The circle radius is ρ = 5 [mm]. The position on the circle
is defined:

r = c + ρ · [cos(θ), sin(θ)] (6.25)

where c denotes the position of the noise source (’PORT 1’) and θ is the angle from the
i1 axis going from 0 to 2π. The line goes from point rA = [0.015, 0.09] [m] to point
rB = [0.135, 0.01] [m]. Any position on the line can be defined by parameter s going
from 0 to 1:

r = s(rB − rA) (6.26)

As we can see in Fig. 6.16, the peak voltage ratio values are different for results obtained
by CST Microwave Studio and TD-CIM. What is important, the trend of all obtained
curves is the same. The shape of the attenuation curves is slightly changed only for the
highest value of ESL = 1 [nH]) Nevertheless, the minimum and maximum values can be
found for the same angles θ and parameters s for all the curves. Therefore, the influence
of ESR and ESL does not affect the capacitor position assuming a linear correction of
the required attenuation level value L defined by the user. Considering the time necessary
to compute the voltage response of the structure by both the solvers and the influence
of ESR and ESL values on the decoupling properties for different places on a PCB, we
prefer to use the TD-CIM based solver for the optimization experiments that follow.

Placing Capacitors Anywhere

First, we used the whole surface of the PCB to find the optimal set of decoupling capacitors
to reach peak voltage ratio PV R = 0.05 (approximately −13 [dB]). Capacitors with a
fixed value of C = 10 [nF] can be placed at any position at a distance more than
1.0 [mm] far off the circuit’s periphery and the ports. The maximum number of capacitors
was set to Nmax = 7 so the decision space size was any value from the set {2, 4, ..., 14}.
To give an example, discrete variables with 10 samples per a variable would lead to
102 + 104 + ... + 1014 = 1.01× 1014, which is the enormous number of combinations.

The results are summarized in Table 6.5. As we see there, the optimizer assigned the
optimal number of capacitors to be N = 4 for both the PCB shapes. The voltage responses
with and without the set of decoupling capacitors are shown in Fig. 6.17. Here, we see
that the voltage response was attenuated to exactly 0.05 level of the voltage response
without any capacitor on the board. Interesting are positions of capacitors depicted in
Fig. 6.17 and summarized in Table 6.5. One capacitor is placed very close to the source
of the noise or to the place of interest. According to Fig. 6.15, placing a single capacitor
here attenuates the voltage response approximately ten times. Other capacitors are then
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(a) Circle curve.

(b) Line segment.

Figure 6.16: Influence of ESR and ESL on the peak voltage ratio considering the ca-
pacitor position on the rectangular circuit (C = 10 [nF]). Results computed by CST
Microwave Studio depicted with curves (solid for non-zero ESL values, dashed for non-
zero ESR), results depicted with black cross markers computed by the TD-CIM (no ESR
and ESL). The position of capacitor is moving on (a) circle around ’PORT 1’ (parameter
θ), (b) line from top-left corner to bottom-right corner (parameter s).
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(a) Rectangular circuit.

(b) Irregularly-shaped circuit.

Figure 6.17: The voltage response of the example PCBs with (red line) and without (blue)
decoupling capacitors optimized for peak voltage ratio PV R = 0.05 [−]. The ports are
plotted with red dots and the capacitors with black dots in sub-figures depicting geometry
of PCBs.

placed to provide exactly chosen L. The better fitness function value f was achieved in
case of the irregularly-shaped circuit according to Table 6.5. Though geometrically more
complex, the PSO-VND algorithm could find a good candidate on the smaller surface in
the early stage of the algorithm run. Then, the algorithm is capable of exploiting the
area of the optimum in a great detail, which leads to a very low value of the objective
function.

Placing Capacitors on a Circle

We can simplify the optimization task as much as possible knowing that the maximal at-
tenuation can be achieved placing the capacitor to a close vicinity of the element producing
the noise or the place of interest. The number of dimensions can be further minimized by
regularizing the position of capacitors. We let the optimizer to place capacitors only on a
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Table 6.5: Resulting sets of decoupling capacitors with fixed value placed at any position
on the rectangular and irregularly-shaped circuit to reach peak voltage ratio PV R =
0.05 [−] and corresponding fitness function values.

rectangular irregularly-shaped

r1 [mm] {70.05, 22.96} {23.81, 13.88}
r2 [mm] {120.62, 78.04} {70.43, 71.02}
r3 [mm] {95.10, 95.00} {18.67, 63.00}
r4 [mm] {145.00, 25.26} {98.15, 74.04}
f [−] 2.0× 10−5 8.8× 10−6

circle with a radius ρ = 5 [mm] (depicted with the red dashed line in Fig. 6.15). Then, the
position used to evaluate the fitness function (6.17) of any capacitor is computed using
(6.25).

The maximal number of capacitors was Nmax = 7 so the decision space vector could
have seven different dimensions. The desired peak voltage ratio was set to be L = 0.01 [−]
and L = 0.05 [−] , respectively.

The obtained optimal angles and resulting fitness function values are summarized in
Table 6.6. Defining the capacitor’s position using only angle θ we spare one variable
per one capacitor, which significantly reduces the decision space size and, in addition, it
results in better values of fitness functions. Moreover, the optimizer is able to find a less
expensive solution with only three capacitors to achieve 0.05 peak voltage ratio for the
rectangular PCB as depicted in Fig. 6.18. The irregularly-shaped PCB has slightly larger
PV R values in the close vicinity of the ’PORT 1’ as depicted in Fig.6.15. Therefore,
four capacitors have to be used. For the lower 0.01 peak voltage ratio, five capacitors are
needed for the both rectangular and irregularly-shaped circuits.

Figure 6.18: The capacitors placed around ’PORT 1’ on the circle with a radius ρ = 5 [mm]
optimized for an attenuation level L = 0.05 [−].
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Table 6.6: Resulting sets of decoupling capacitors placed on the circle with a radius
ρ = 5 [mm] around the noise source on the rectangular and irregularly-shaped circuits.
The requested peak voltage ratio is PV R = 0.01 [−] and PV R = 0.05 [−], respectively.

rectangular irregularly-shaped

L [−] 0.01 0.05 0.01 0.05

θ1 [rad] 0 1.597 0 0

θ2 [rad] 2.026 4.257 1.429 1.832

θ3 [rad] 2.746 5.612 3.836 4.394

θ4 [rad] 3.947 − 4.247 4.922

θ5 [rad] 5.212 − 5.868 −
f [−] 7.1× 10−8 2.5× 10−5 1.7× 10−8 3.0× 10−10

Searching for Position and Capacitance

A more general optimization task is to search for both positions and values of individual
capacitors. In the last example, we searched for the position of an unknown number of
capacitors on the circle as in the previous subsection (by means of angle θ) and capacitance
values (C). Only standard E-6 series capacitance values from interval

〈
0.1 [nF]; 68 [nF]

〉
can be chosen. We have optimized the set of decoupling capacitors only for the attenuation
level L = 0.01 [−]. All other optimization parameters were set as described in the previous
subsection. The results of the optimization for both the rectangular and irregularly-shaped
structures are summarized in Table 6.7.

The results show that only four capacitors can be used to attenuate the voltage re-
sponse to L = 0.01 [−] for the rectangular circuit. In comparison, we needed five com-
ponents when we used only capacitors with the fixed capacitance value C = 10 [nF] (see
the corresponding column in Table 6.6). As we can see from the optimal angles θ and
corresponding values C, the largest capacitance values (C = 15 [nF]) are used in areas
having the largest impact on the attenuation as seen in Fig. 6.16 (a). Smaller capacitance
values are than used to balance the desired attenuation level, which is indicated by the
low objective function value f = 1.3× 10−5 [−].

Five capacitors are needed in case of irregularly-shaped structure as in the case of
optimization with fixed capacitance value. The objective function value f = 4.1× 10−6 [−]
is much worse than in case of the fixed capacitance optimization (f = 1.7× 10−8 [−]).
This is caused by the fact that despite the same computational resources allocated to the
optimization (50 agents and 100 iterations for both cases), the possible decision space sizes
are now much larger. In the present case we work with decision space sizes {2, 4, ..., 14}
while available decision space sizes were only {1, 2, ..., 7} in the case of fixed capacitance
values.

Conclusion

We have formulated the decoupling capacitor placement problem as an optimization task
with variable number of dimensions. This approach makes it possible to solve the problem
without knowing a priori the number of capacitors needed to reduce the noise received at
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Table 6.7: Resulting sets of decoupling capacitors with variable values placed on the circle
with a radius ρ = 5 [mm] around the noise source on the rectangular and irregularly-
shaped circuits. The requested peak voltage ratio is PV R = 0.01 [−].

rectangular irregularly-shaped

n θ [rad] C [nF] θ [rad] C [nF]

1 0.668 15.0 0.150 10.0

2 1.986 4.7 0.869 22.0

3 3.492 3.3 1.480 3.3

4 5.817 15.0 2.172 3.3

5 − − 3.703 10

f [−] 1.3× 10−5 4.1× 10−6

a chosen place on a PCB to the requested level. We have tested the proposed approach on
two sample PCBs considering three different options: placing capacitors with fixed value
everywhere on a PCB, placing capacitors with fixed value on a ring near the noise source,
and placing various capacitors on the ring. We have demonstrated that thanks to the
reduction of the decision space the choice of the problem formulation has an significant
impact on the efficiency of the optimization procedure. We have further shown that the
tested approach combining power of the PSO-VND optimization algorithm with the TD-
CIM solver can be used as a very fast and robust prototyping tool. For final verification
of the optimized design, another simulator that can take into account ESR and ESL
values is necessary.
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6.4 Design of a Linear Antenna Array: Variable Num-

ber of Dimensions Approach
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Abstract

A linear antenna array design is usually formulated as a binary optimization task. A
global optimization algorithm is then used to turn on/off a fixed number of elements po-
sitioned on a uniform grid. This paper introduces a new formulation of the problem: the
optimizer searches for distances between individual elements and their total amount at
the same time. Such a formulation has to be solved using the optimization with a variable
number of dimensions that enables to work with decision space vectors having different
lengths. Here, the Particle Swarm Optimization algorithm is used to solve different for-
mulations of the linear antenna array design problem. The “uniform grid” formulation
is compared with the “variable number of dimensions” formulation on several optimiza-
tion tasks encompassing the minimization of selected antenna parameters: the Side-Lobe
Level, the First Null Beam Width and the number of used (active) elements.

Introduction

A large number of design problems (not limited to the domain of electromagnetics) in-
volves the decision about amount of some components to be used. The number of compo-
nents is in fact one of the design variables with a potentially huge impact on the optimized
metric (e.g. realized gain, directivity), but a cost and a complexity of the system as well.
This is true especially when a designer asks to himself: “How many of . . . is necessary
to achieve . . . ?”. This behavior is characteristic for the following problems: the sensor
coverage problem [48], the composite laminate stacking problem [114], the short cantilever
design [101], the printed circuit board decoupling capacitors placement [85], the dielec-
tric layered filter design [95], the high-dimensional data clustering [164, 185], the cancer
marker identification [135] etc. All the aforementioned tasks can be included into the
so-called family of variable number of dimensions (VND) optimization problems (referred
as variable length problems by some authors).

The antenna array design can be viewed as the VND problem, also. Usually, set of
required antenna array parameters is defined and a designer is then asked to guess the
optimal number of array elements based on his own experience or a repetitive search for
individual dimensions. Another possibility is to formulate the design task as a binary
optimization problem [139]. Then, the problem involves a large number of elements
positioned with use of a uniform grid (UG) and every variable from the fixed length
binary decision space vector switches the corresponding element either on or off.

There is an enormous number of research papers using the UG approach in a cooper-
ation with a global optimization algorithm to solve the antenna array synthesis problem.
As the UG formulation involves use of binary variables, most of the authors utilize the
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Genetic Algorithms using both the uniform [67,72,196] and non-uniform [22,52,116] po-
sitioning of elements. Also, other global optimization algorithms are utilized to solve this
problem: e.g. Particle Swarm Optimization (PSO) [65,75,76], Differential Evolution [64]
etc. The most important design objectives are the following: the side-lobe level (SLL),
the first null beam-width (FNBW ) and number of used elements (ν). Goal of the design
is to minimize all these three objectives which leads to a multi-objective optimization
because they are contrary to each other [63,207].

All the UG formulations are suffering from the a priori made choice about possible
positions for the individual antenna elements. They define an exponential number of
discrete combinations of positions on a relatively large-sized N -dimensional space that
contains more suitable positions with a high probability. Only minor efforts were put to
try some relaxation techniques as provided in [57] to overcome this issue.

In this paper, we introduce several VND formulations of the linear antenna array design
problem. The conventional UG formulations search for the proper combination of fixed
number of excitation amplitudes (usually equal to zero or one). On the contrary, the
proposed VND formulations search for distances between individual elements and their
optimal amount, simultaneously. The VND-formulated problems are solved here using
the VND variant of the PSO algorithm introduced in [93]. Results of both the single-
objective and multi-objective VND problems are compared to results of conventional UG
formulations solved by the conventional single-objective [51] and the multi-objective [159]
PSO algorithm.

Linear Antenna Array Design: Problem Formulations

We consider a linear array consisting of ν same antennas distributed alongside the x-axis
as shown in Fig. 6.19. Generally, radiation properties of such an array can be analyzed
by means of the so-called radiation vector. The full derivation of the radiation vector can
be found e.g. in [144]. If F i(k) stands for the radiation vector of the i-th element, then
the total radiation vector reads:

F tot(k) = F 1 + F 2 + · · ·+ F ν (6.27)

where k = kr is the wave number vector, k stands for the free space wave number
(k = 2π/λ0 with λ0 standing for the free space wavelength) and r denotes the position
vector. If all elements of the array have the same radiation vector F (k) then (6.27) can
be simplified to:

F tot(k) = A(k)F (k) (6.28)

Here, A(k) stands for the array factor which is determined by the array configuration
(positions and feeding of individual elements of the array). The total array factor reads:

A(k) =
ν∑
i=1

ai exp (jk · di) (6.29)

where j denotes the imaginary unit and ai and di denotes the complex excitation (ampli-
tude and phase) and the position of the i-th element, respectively. The array factor can
be easily expressed in the spherical coordinates θ (the polar angle) and φ (the azimuth
angle) using the conversion from the Cartesian coordinate system. Only the polar cut
θ = π/2 is considered in the remainder of the text for the sake of simplicity.
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Figure 6.19: Linear antenna array consisting of ν antennas.

The design requirements for an antenna array contain parameters SLL, FNBW and
ν. All the design parameters of the antenna array are to be minimized. Please see the
definition of the SLL and FNBW parameters in Fig. 6.20.
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Figure 6.20: Antenna factor A as a function of the azimuth angle φ: a definition of the
SLL and FNBW parameters.

The antenna array design problem can be formulated as a single-objective or a multi-
objective problem. Both the options can use either a fixed number of decision space
variables or variable number of dimensions. The combinations of the problem formulations
used in this study are listed in the following subsections. The mutual coupling of individual
elements is not considered in this study. However, some computational techniques from
[40] could be incorporated to the computational apparatus without loss of generality.

Uniform Grid Formulations

The first type of formulation uses a uniform grid for positions of elements. This approach
leads to a binary optimization problem with decision space vector of fixed length. Every
component of the vector is equal to either 1 (an element is placed here) or 0 (the position
is left empty) as shown in Fig. 6.21. The drawback of this approach is that the feasible
space has to be sampled to a very dense grid in order to keep a satisfactory resolution
for the design requirements which leads to an enormous number of possible combinations
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(2n).

Figure 6.21: Linear antenna array, comparison of the UG formulation (top) and VND
formulation (bottom).

In our case, we use a grid with positions for up to 60 antenna elements. A distance
between two grid positions is 0.25λ0. Every variable from the decision space vector can
be equal to 0 or 1: xi = {0, 1} , ∀i ∈ {1, 2, · · · , 60} which means that xi = ai with respect
to (6.29) (see the top part of Fig. 6.21). Using 60 decision variables, an optimization
algorithm searches within 260 ' 1.15× 1018 possible combinations. Assuming that com-
putation of the objective functions for a single combination lasts for 1 ns (which is very
unlikely for the real-world simulations), it would still take us almost 37 years to evaluate
all the possible combinations.

The remainder of this subsection defines in total four single-objective and two multi-
objective UG formulations.

Problem 1 (SO: min SLL)
f = SLL(x) (6.30)

Problem 2 (SO: SLL = −20 dB)

f = [SLL(x)− L]2,
L = −20 dB

(6.31)

Problem 3 (SO: min SLL, min FNBW )

f = SLL(x) + FNBW (x) (6.32)

Problem 4 (SO: min SLL, min FNBW , min ν)

f = SLL(x) + FNBW (x) + ν(x) (6.33)

Problem 5 (MO: min SLL, min FNBW )

f1 = [SLL(x)− L]2

f2 = ν(x)
(6.34)

Problem 6 (MO: min SLL, min FNBW , min ν)

f1 = SLL(x)
f2 = FNBW (x)
f3 = ν(x)

(6.35)
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Variable Number of Dimensions Formulations

The second family of the problem formulations involves the VND type. It means that
decision space vectors with different sizes n can be used during a single optimization run.
In this study, the first antenna of the array is placed at the position x = 0 m. The i-
th variable of the decision space vector is then the distance between i-th and (i + 1)-th
element of the array as shown in Fig. 6.21. It means that number of antenna elements
is ν = n + 1 for all the VND formulations. The distances between individual elements
can vary according to the interval xi/λ0 ∈ 〈0.25, 1〉 to keep fair the comparison with the
regular grid formulations.

Problem 7 (VNDSO: min SLL)

f = SLL(x, n) (6.36)

This formulation is fully comparable with Problem 1. The VND pairings for UG Prob-
lems 2-6 are as follows:

Problem 8 (VNDSO: SLL = −20 dB)

f = [SLL(x, n)− L]2 (6.37)

Problem 9 (VNDSO: min SLL, min FNBW )

f = SLL(x, n) + FNBW (x, n) (6.38)

Problem 10 (VNDSO: min SLL, min FNBW , min ν)

f = SLL(x, n) + FNBW (x, n) + ν(x, n) (6.39)

Problem 11 (VNDMO: min SLL, min FNBW )

f1 = [SLL(x, n)− L]2

f2 = ν(x, n)
(6.40)

Problem 12 (VNDMO: min SLL, min FNBW , min ν)

f1 = SLL(x, n)
f2 = FNBW (x, n)
f3 = ν(x, n)

(6.41)

Optimization Techniques

The Particle Swarm Optimization algorithm mimics a co-operative behavior of a set of
individuals to maximize collective profits. Basic properties of the PSO algorithm and its
respective variants used to solve the antenna array design problems defined in Section 6.4
are briefly reviewed in the following sub-sections.
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Single-Objective PSO

A commonly used version of the single-objective Particle Swarm Optimization (SOPSO)
can be found in [163]. It uses a set of decision space vectors called particles that iteratively
change their positions to improve their objective function value. The position of the p-th
particle at the iteration i reads:

xp(i) = xp(i− 1) + ∆tvp(i), (6.42)

where the time step ∆t = 1 (for the sake of completeness) and vp(i) stands for the velocity
of the p-th particle. The velocity is updated according to:

vp(i) = wvp(i− 1) + c1r1[pbp − xp(i)]

+ c2r2[gb− xp(i)].
(6.43)

Here w denotes the so-called inertia weight, c1 and c2 stand for the cognitive and the social
learning factor, respectively. Values r1 and r2 are chosen randomly from the interval 〈0, 1〉
with the uniform distribution of probability. Symbol pbp stands for the best position found
by the p-th particle in previous iterations. Finally, gb denotes the best position from the
set of pb values for the whole swarm.

The user-defined parameters w, c1 and c2 determine the trade-off between exploration
and exploitation of the algorithm. Recommended values for these parameters are based
on numerous comparative benchmark studies (see e.g. [158]): w = 0.9 and c1 = c2 = 1.5.

In this paper, simple binary variant of the PSO algorithm is used to solve the binary
UG problems. Before the decision space vector is to be evaluated by the objective function
its components are set either to be 0 or 1 with the threshold value 0.5. Then, boundary
conditions preventing particles to reach positions outside the feasible part of the decision
space Ω can be left out.

Multi-Objective PSO

Plenty of multi-objective modifications of the PSO algorithm (MOPSO) can be found in
the open literature. This study uses the MOPSO variant presented in [159]. The only
difference between single-objective and multi-objective PSO is the choice of gb to update
the actual velocity vector. The velocity update formula (6.43) slightly changes to:

vp(i) = wvp(i− 1) + c1r1[pbp − xp(i)]

+ c2r2[gbp − xp(i)].
(6.44)

Vector gbp for the p-th particle is selected randomly from the so-called external archive.
The external archive contains the non-dominated solutions so far found by the algorithm
(candidates for the Pareto-optimal front). It is also possible to select the closest solution
from the external archive be means of the Euclidean distance in the decision space. Unfor-
tunately, this approach would lead to premature convergence of the algorithm. Therefore,
a combination of these two approaches is used to benefit from both.

Single-Objective VNDPSO

The conventional SOPSO algorithm works with a set of decision space vectors that have
the same number of components (or dimensions if you want). Nevertheless, the con-
ventional SOPSO algorithm was extended to handle problems with a variable number
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of dimensions in [93]. The single-objective VNDPSO (SOVNDPSO) follows exactly
the same procedures as SOPSO except the random generation of the initial popula-
tion and computation of the velocity vector. First, user defines the list of dimensions
Γ = {N1, N2, . . . , ND} that are feasible for the problem. Limits Ωd have to be defined
for all the dimensions up to ND. Then, the dimension is picked randomly from the Γ list
for every particle xp. If possible (i.e. P ≥ D) all the dimensions from the list should be
distributed uniformly. Letting particles to have different dimensions becomes a problem
in the velocity update formula (6.43). There are three vectors namely gb, pbp and xp

that can all have a different number of elements Ng, Np, and Nx, respectively. Therefore,
three user-defined probabilities are introduced: p1 (probability to use Ng), p2 (probability
to use Np), and p3 (probability to use Nx).

The sum of all the probabilities is set to equal 1. In case the three components in
(6.43) have not the same dimension, random value r ∈ 〈0, 1〉 is generated. The dimension
for the particle in the next iteration is then selected according to:

Nx =


Ng, if 0 < r ≤ p1

Np, if p1 < r ≤ p1 + p2

Nx, if p1 + p2 < r

(6.45)

Once the new number of dimensions Nx is determined, vectors gb, pbp and xp with a
higher dimension are shortened to size of Nx by deleting last elements from the vector.
On the other hand, if any of the vectors is shorter than Nx, then the missing elements are
either generated randomly or taken from the existing pb having at least Nx elements. The
second approach enhances a convergence speed of the algorithm if the optimal elements
position does not change with the change of dimension.

Multi-Objective VNDPSO

Multi-objective PSO with a variable number of dimensions (MOVNDPSO) follows pro-
cedure of the conventional PSO. The strategy for gb and pb updating is the same as
for MOPSO algorithm (see Sec. 6.4). The problem with variable number of elements
in the velocity update formula is solved the same way as presented in the SOVNDPSO
algorithm: see (6.45) in Sec. 6.4.

Numerical Examples

Throughout all the simulations presented in this Section, we use the PSO-based algorithms
with the following user-defined parameters: size of the swarm na = 200, number of iter-
ations: ni = 100, learning factors: c1 = c2 = 1.5, inertia weight: w = 0.9, random global
best parameter: rgb = 0.7, dimension probability vector: p = [0.90, 0.05, 0.05]. Every
problem has been solved 100-times with respect to a stochastic nature of the optimization
processes. A single evaluation of the array factor took approximately 20 ms. Therefore, a
single run of the optimization (regardless of the Problem type) took approximately 400 s.

Single-objective Problems

Here, we compare results of the UG single-objective problems (Prob. 1-4) solved by the
SOPSO algorithm with the VND formulations (Prob. 7-10) solved by SOVNDPSO. The
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results of SLL, FNBW and ν (number of elements) are summarized in Table 6.8). The
data are presented in form of standard boxplots in Fig. 6.22. We can see, that significantly
lower SLL values are achieved for the problems minimizing this parameter with a uniform
grid (−40.21 dB ≤ SLLavg ≤ −39.73 dB) compared to the VND problems (−33.13 dB ≤
SLLavg ≤ −32.17 dB). Also, the results of the FNBW metric are better in case of the
UG formulations: FNBW avg = 3.10 ◦ for Problems 3 and 4 while FNBW avg = 6.00 ◦

for the VND Problems 9 and 10. The better performance of arrays designed by the UG
formulations is paid dearly by a massive increase of elements used as νavg = 49 for the UG
formulations while the VND formulations use only νavg = 27 elements on the average.

The trade-off between the quality of the array parameters and the number of elements
vanishes when we ask the optimizer to find an array with a particular level of some param-
eter: SLL in case of Problem 2 (UG) and 8 (VND). As evidenced by the corresponding
boxplots in Fig. 6.22, both the formulations were able to find a solution with exactly
matching level of the SLL parameter L = −20 dB with almost zero variance. But, the
VND formulation uses only 24 antenna elements on the average while the UG formulation
wastes up to 39 elements to reach the same level of SLL. These results indicate that the
conventional single-objective optimizer searches for results in a very good agreement with
the objective function formulation but in a sub-optimal dimension.

Table 6.8: Comparison of the antenna array parameters SLL, FNBW , and ν for the UG
and VND formulations.

Problem # 1 2 3 4 7 8 9 10
UG VND

SLLavg [dB] -40.2 -20.0 -39.8 -39.7 -33.1 -20.0 -32.2 -32.2
FNBW avg [dB] - - 3.1 3.1 - - 5.9 6.1

νavg [−] 48.0 39.0 49.0 50.0 27.0 24.0 27.0 26.0

Figure 6.22: Standard boxlpots of the antenna array parameters for the UG (Problems
1-4) and VND (Problems 7-10) formulations. The parameter SLL uses the left axis, while
the parameters FNBW and ν use the right axis. The vertical solid line separates the UG
problems from the VND ones.
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Multi-objective Problems

The multi-objective test suite consists of two problems for both the UG and VND for-
mulations: the two-dimensional (SLL and FNBW minimization, see Prob. 5 and 11) and
the three-dimensional (minimizing of the number of antenna elements ν is added to the
two objectives, see Prob. 6 and 12). All decision space vectors assigned by the MOPSO
and VNDMOPSO algorithms as the Pareto-optimal during 100 runs of the 2D problems
are compared in Fig. 6.23. We can see that while the UG vectors are better in the SLL
values, the VND vectors achieve desired smaller values of the FNBW parameter. Never-
theless, a major part of the Pareto-optimal set for the UG formulation is dominated by
the solutions obtained via the VND formulation.
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Figure 6.23: Pareto-optimal solutions found for the two-objective Problems 5 and 11. The
color of the markers indicates the number of elements needed.

On top of it, the color of the used markers in Fig. 6.23 indicating the number of elements
proves the inefficiency of the UG formulation. The Pareto-optimal VND solutions are
limited up to approximately 25 or 30 elements while the UG non-dominated solutions use
more than 50 elements to build arrays with the best SLL values. The decrease of the SLL
value is strongly connected with the number of elements used. The UG formulation is
favored here because it can use up to 60 elements compared to maximally 30 elements for
the VND formulation. The VND formulation enables the optimizer to set the distances
among consecutive elements freely. Nevertheless, the UG formulation has to search in
the decision space with a much higher dimension. As a result, the MOPSO optimizer is
unable to find the best trade-off solutions using the same computational effort as in case
of the VNDMOPSO optimizer.

The two-objective formulations considered minimization of the SLL and FNBW pa-
rameters only. Hence, it is not absolutely fair to compare the results of UG and VND
formulations from the perspective of the number of elements used. The three-objective
Problems 6 and 12 add the number of elements ν as the third objective. The Pareto-
optimal solutions found by the MOPSO and VNDMOPSO optimizers, respectively, are
shown in Fig. 6.24. It is obvious, that MOPSO solving the UG formulation is able to
find more trade-off solutions that occupy a larger area of the three-dimensional objective
space. But the extreme solutions are not very good design candidates because they meet
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the requirements of a single-objective only. The VNDMOPSO algorithm clearly outper-
forms the MOPSO algorithm as it dominates the central part of the objective space (the
trade-off part). Moreover, no member of the VND Pareto-optimal set is dominated by
any member of the UG set.
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Figure 6.24: Three-dimensional Pareto-optimal solutions considering the array parameters
SLL, FNBW , and ν found using the UG and VND formulation, respectively.

Conclusions

The paper reviews possible formulations of the linear antenna array synthesis using global
optimization methods. The single-objective and multi-objective PSO algorithms and
their variants for optimization problems with a variable number of dimensions are briefly
reviewed. All the antenna array problem formulations can be split up into two categories:
1) the uniform grid formulations, and 2) the variable number of dimensions. The UG
formulation outperforms the VND one for the single-objective problems (both in the SLL
and FNBW parameter) at the cost of a significant increase of the elements needed. This
is much more obvious when the optimizer is not asked to reach the possible limit of a
certain parameter but a certain value of it. In that case, the UG formulation seems to be
highly ineffective. The VND formulation clearly outperforms the UG one in case of the
multi-objective optimization designs especially when it takes a number of elements used
as one of the objectives together with the SLL and FNBW parameters. The performance
of the UG formulations is limited by the a priori chosen positions of elements while the
VND formulations can distribute them more freely.
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Chapter 7

Teaching Experiences

This chapter summarizes my activities in the educational domain. Teaching is for me a
corner stone of the research continuity. I see the teaching as a great option for the re-
searcher to think about the aspects of the discussed subject from different angles, because
the teacher is forced by the students to use other ways to explain something or find other
ways to solve problems.

7.1 Subjects

Fundamentals of Television Technology

After I started my Ph.D. studies in August 2009, I started to teach laboratory classes for
the subject Fundamentals of Television Technology (BZTV, Základy televizńı techniky in
Czech) for Bachelor’s students. The course was guaranteed by prof. Stanislav Hanus. In
total, I thought these exercises for three years till 2011.

Electromagnetic waves and antennas

In the winter term of the academic year 2012/2013, I was teaching the Computer exercises
of the subject Electromagnetic waves and antennas (BEVA, Elektromagnetické vlny, ve-
deńı a antény) guaranteed by prof. Zbyněk Raida. The course was thought for Bachelor’s
students.

CAD in microwave techniques

In the winter term of the academic year 2011/2012, I was teaching the Computer exer-
cises of the subject CAD in microwave techniques (MCVT, CAD v mikrovlnné technice)
guaranteed by prof. Zbyněk Raida. The course was dedicated for Master’s students.

Electromagnetic compatibility

I was teaching the laboratory exercises of the subject Electromagnetic compatibility
(BEMC, Elektromagnetická kompatibilita) guaranteed by Jǐŕı Dř́ınovský during the win-
ter terms of years 2012 and 2013. The course was thought for Bachelor’s students.
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Modern electronic circuit design

I have been member of the team of lecturers in the subject Modern electronic circuit design
(DRE1, Návrh moderńıch elektronických obvod̊u) since 2014. The course is dedicated
for Ph.D. students of the Doctoral program Electrical Engineering and Communication.
This course is guaranteed by prof. Zdeněk Kolka and I am responsible for three lectures
covering the evolutionary optimization.

CAD in Communication Subsystems

In 2013, I started to guarantee the subject CAD in Communication Subsystems (BRKS,
Poč́ıtačové řešeńı komunikačńıch subsystémů). The course was created by prof. Zbyněk
Raida and then guaranteed and modified by Petr Vágner. After I started to guarantee the
subject, the optimization theory and methods (including the multi-objective ones) were
included to the syllabus of the subject. The course was thought for Bachelor’s students.
The subject was open for Erasmus students in years 2017 and 2018 and therefore, thought
in English (CRKS).

Computer Programming 1

In 2018, I started to guarantee the subject Computer Programming 1 (BPC-PP1, Poč́ıtačové
programováńı). The course was created as a brand new subject to introduce program-
ming to the Bachelor’s students for the re-accredited program BPC-EKT (Electronics
and Communication Technologies). Previously, the course was divided to two halves:
one dedicated to C language and the other dedicated to MATLAB language. After the
re-acreditation, the course is fully dedicated to MATLAB, that enables to introduce the
students to algoritmization in a less complicated way compared to the C language. I
created brand new materials for the whole subject: new lectures and computer exercises.
The subject is open also for long-distance students in program BKC-EKT.

7.2 Student Theses

I have lead six MSc. students and five Bc. students that successfully defended their final
theses since year 2009. These students and their theses are summarized in Table 7.1.
Student Jan Maloušek received the BUT Rector’s price and Josef Hlávka’s Price and won
the Golden transistor student’s competition with his Bc. thesis entitled: Mobile Android
sport application.

Ph.D. candidate Martin Marek is currently in the fourth year of his studies. He made
the state exam in 2018 with his treatise on Ph.D. thesis entitled: “Multi-objective Opti-
mization of EM Structures With Variable Number of Dimensions”. Also, he participated
in the Student EEICT conference in 2016 (paper “Comparison of multi-objective optimiza-
tion methods”) and 2018 “Discretization of decision variables in real-coded optimization
algorithms”).
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Chapter 8

Research Projects

At this point, I would like to thank to all the institutions that provided me and my
colleagues with the necessary funding!

Modeling and simulation of fields

GA102/07/0688 (Modelováńı a simulace poĺı)

Years: 2009 - 2011

Principal researcher: prof. Zbyněk Raida (Brno University of Technology)

This grant project was aimed to improve the current PhD studies in the domain of
a fractionalism of the education, excessive specialization in particular areas, insufficient
sharing of well-equipped laboratories, insufficient communication and co-operation among
students while they use the same techniques of modeling, simulation and optimization.
I was a member of the research team. I was co-author of one chapter dedicated to
numerical optimization in the monograph [154] which was the most important outcome
of the project.

High Intensity Radiated Field Synthetic Environment

7E09008

Years: 2009 - 2012

Principal researcher: prof. Zbyněk Raida (Brno University of Technology)

This project interconnected more than 30 universities and companies around Europe
that are specialized in the field of numerical modeling of electromagnetic phenomena. The
project aimed to expedite the process of EMC certification of aircrafts. I was member of
the team at the Department of Radio Electronics that was responsible for the development
of the time-domain and frequency-domain finite element method solver. This solver was
called BUTFE and was fully written in MATLAB (for more details please see [2]).

Tools for synthesis of antennas and sensors

TA04010457 (Nástroje pro syntézu antén a senzor̊u)

Years: 2014 - 2017

Principal researcher: Petr Kadlec (for Brno University of Technology)
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This project was solved in cooperation with Czech Technical University Prague (CTU,
principal investigator, Miloslav Čapek) and company MECAS ESI s.r.o. The main goal
of the project was the transfer of software tools that was created at both the universities
with an age-long fundamental research in the domain of antenna analysis and design. I
was a member of a highly collaborating team established among researchers at the two
universities and the company that created two softwares fully written in MATLAB: AToM
(Antenna Toolbox for MATLAB) and FOPS (Fast Optimization ProcedureS). AToM [1]
is a versatile tool that enables the characteristic modes analysis of the antennas. FOPS [3]
is a standalone tool that enables to solve optimization problems (single-objective, multi-
objective and VND ones).

Interdisciplinrn vzkum bezdrtovch technologi (INWITE)

LO1401 (Interdisciplinárńı výzkum bezdrátových technologíı (INWITE))
Years: 2015 - 2019
Principal researcher: prof. Zbyněk Raida (Brno University of Technology)
The project aimed to a research of innovative concepts of wireless communication

systems, which can provide high reliability, high speed and capacity, jointly ensuring high
digital security with a wide applicability.

Applications of Space-Time Reciprocity in Computational Elec-
tromagnetic Compatibility

GJ17-05445Y (Aplikace časoprostorové reciprocity ve výpočetńı elektromagnetické kom-
patibilitě)

Years: 2017 - 2018
Principal researcher: Martin Štumpf (Brno University of Technology)
The project aimed to develop new time-domain analysis tools for transient phenomena

of electromagnetic interferences. Therefore, it should help to ensure the problem-free
coexistence of new digital systems. I was member of the research team that developed
a MATLAB software tool TD-PCBS (Time Domain Printed Circuit Board Solver) that
combines a Time-Domain Contour Integral Method with the circuit simulator ngspice.
The detailed info about this software can be found in [4].

Virtual Prototyping and Validation of Electromagnetic Systems

TH04010373 (Virtuálńı prototypováńı a validace elektromagnetických systém̊u )
Years: 2018 - 2021
Principal researcher: Petr Kadlec (for Brno University of Technology)
This is an ongoing project that continues in the successful cooperation with the com-

pany MECAS Esi Group a.s. (principal researcher Jaroslav Rýmus) and Czech Technical
University in Prague established during the solution of project TA04010457. The project
aims to transfer knowledge in the domain of virtual prototyping of electromagnetic sensors
to the simulator Visual CEM that is developed at MECAS ESI s.r.o. During the solution
of the project I was the co-author of the VFTool (Vector Fitting MATLAB Toolbox),
that enables the approximation of complex functions in the frequency domain (please
refer to [5]).



Chapter 9

Conclusions

The presented thesis covers the theory of evolutionary optimization. First, the optimiza-
tion problem is formulated as the single-objective one (a single vector of decision space
variables is expected as a result of the optimization process), multi-objective one (set of
trade-off solutions is found). Moreover, some optimization tasks require to choose the
complexity of the solved problem (which means the number of decision space variables)
to be estimated a priori when solved by conventional single-objective and multi-objective
algorithms. Therefore, the optimization task with the variable number of dimensions is
formulated in this thesis.

Then, three state-of-the-art algorithms namely Genetic Algorithms, Particle Swarm
Optimization, and Differential Evolution are briefly reviewed in the thesis. The multi-
objective extensions of these algorithms are also discussed. Then, the works that intro-
duces the VND variants of these algorithm are summarized.

Only limited number of VND algorithms was presented in otherwise enormous number
of optimization algorithms presented. They are often called as Variable Length algorithms
based on their introduction in the domain of genetic algorithms, but I believe that the
name Variable Number of Dimensions fits better as it is more general. In case of the VND
optimization task the number of decision space variables becomes to be unknown. The
optimization algorithm has to work with agents (candidate solutions) that have different
sizes. On the first sight, this could make the task more complex. Definitely, the algorithm
has to be slightly changed. But VND formulation gets rid of the a priori choice of the
design complexity, which is a very complicated without a good knowledge about the
problem behavior.

In the main part of the thesis reprints of the selected published research papers of me
(as the main author) and my colleagues are presented. In the single-objective section, the
inverse problem of localization of the lightning stroke based on the voltage induced to the
transmission line is shown. The multi-objective part contains the design of the dielectric
filter and Yagi-Uda antenna by the MOSOMA algorithm, that was developed during my
Ph.D. studies. Then, multi-objective optimization of the testing pulse so the time-domain
EMC shielding effectiveness tests of the thin metal sheets are adjusted is presented.

The most important contribution of this thesis in the fundamental research can be
found in the domain of the VND evolutionary optimization. First, the paper introducing
VND variant of the PSO algorithm is reprinted here. It contains the general approach
how to handle variable dimensions of solution candidates, that can be applied to any
other algorithm. Also, several benchmark problems and testing metrics to evaluate the
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convergence of the VND algorithms are introduced there. Then, this algorithm was
applied to solution of various electromagnetic problems: the design of antenna array,
the optimization of decoupling capacitors on printed circuit board and the reconstruction
of the dielectric profile. The papers have shown that the VND formulation can be more
effective in terms of the convergence rate and minimization of the design variables and
therefore resources.

The last two chapters cover the teaching experiences and research projects, respectively.
During my teaching career, I have been involved in the teaching of seven subjects at the
Department of Radio Electronics (from which two have been guaranteed by me) and I
have supervised together 11 Bc. and Msc. theses. I have been involved in more than six
research projects in which I have co-developed several software tools.
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rithms from the black-box optimization benchmarking BBOB-2009. In Proceedings
of the 12th annual conference companion on Genetic and evolutionary computation,
pages 1689–1696. ACM, 2010.

[69] N. Hansen, S. D. Mller, and P. Koumoutsakos. Reducing the time complexity of the
derandomized evolution strategy with Covariance Matrix Adaptation (CMA-ES).
Evolutionary Computation, 11(1):1–18, March 2003.

[70] R. L. Haupt and D. H. Werner. Genetic algorithms in electromagnetics. John Wiley
& Sons, 2007.

[71] M. Hu, T. Wu, and J. D. Weir. An adaptive particle swarm optimization with multi-
ple adaptive methods. IEEE Transactions on Evolutionary Computation, 17(5):705–
720, 2012.

[72] A. H. Hussein, H. H. Abdullah, A. M. Salem, S. Khamis, and M. Nasr. Optimum
design of linear antenna arrays using a hybrid MoM/GA algorithm. IEEE Antennas
and Wireless Propagation Letters, 10:1232–1235, 2011.

[73] W. I. Ibrahim and M. R. Ghazali. Measurements of electric and magnetic fields due
to lightning strokes based on single-station detection. In 2012 IEEE Asia-Pacific
Conference on Applied Electromagnetics (APACE), pages 268–273, Dec 2012.

[74] J. J. Jamian, M. N. Abdullah, H. Mokhlis, M. W. Mustafa, and A. H. A. Bakar.
Global particle swarm optimization for high dimension numerical functions analysis.
Journal of Applied Mathematics, 2014, 2014.

[75] C. Jang, F. Hu, F. He, J. Li, and D. Zhu. Low-redundancy large linear arrays syn-
thesis for aperture synthesis radiometers using particle swarm optimization. IEEE
Transactions on Antennas and Propagation, 64(6):2179–2188, June 2016.

[76] X. Jia and G. Lu. A hybrid Taguchi binary particle swarm optimization for antenna
designs. IEEE Antennas and Wireless Propagation Letters, 18(8):1581–1585, Aug
2019.



BIBLIOGRAPHY 135

[77] N. Jin, X. Zhou, C. Lin, L. Wang, Y. Liu, M. L. Wymore, and D. Qiao. ThunderLoc:
Smartphone-based crowdsensing for thunder localization. In 2018 15th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON),
pages 1–2, June 2018.

[78] J. M. Johnson and V. Rahmat-Samii. Genetic algorithms in engineering electro-
magnetics. IEEE Antennas and propagation Magazine, 39(4):7–21, 1997.

[79] E. A. Jones and W. T. Joines. Design of yagi-uda antennas using genetic algorithms.
IEEE Transactions on Antennas and Propagation, 45(9):1386–1392, 1997.
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