• JobChallenge 2017
  • Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Numerické metody I

Kód předmětu: FAST-DA61
Akademický rok: 2017/2018
Typ předmětu: volitelný
Typ studia: doktorský (třetí cyklus)
Ročník: 1
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Není specifikováno.
Způsob realizace výuky:
20 % kontaktní výuka, 80 % distančně
Prerekvizity:
Znalost základních pojmů lineární algebry a vektorového počtu. Ovládat elementární pojmy teorie funkcí jedné reálné proměnné a více reálných proměnných (limita a spojitost, grafy fukcí, derivace, parciální derivace). Znalost základních pojmů integrálního počtu jedné a dvou proměnných.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Chyby v numerických výpočtech a numerické řešení jedné rovnice pro jednu reálnou neznámou.
Iterační metody. Banachova věta o pevném bodě.
Iterační metody řešení systémů lineárních a nelineárních rovnic.
Přímé metody řešení systémů lineárních rovnic, inverze matic, vlastní čísla, vlastní vektory.
Interpolace a aproximace funkce polynomy a splajny.
Numerické derivování a integrace. Extrapolace k limitě.
Doporučená nebo povinná literatura:
HOROVÁ, I., ZELINKA, J.: Numerické metody. Masarykova univerzita v Brně 2004
MIKA, S.: Numerické metody algebry. SNTL Praha 1982
PŘIKRYL, P., BRANDNER, M.: Numerické metody II. ZČU Plzeň 2000
Plánované vzdělávací činnosti a výukové metody:
Není specifikováno.
Způsob a kritéria hodnocení:
Není specifikováno.
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
1. Chyby v numerických výpočtech. Numerické řešení jedné rovnice pro jednu reálnou neznámou.
2. Základní princip iteračních metod. Iteračních metody řešení jedné rovnice pro jednu reálnou neznámou.
3. Normy vektorů a matic, vlastní čísla a vlastní vektory matic. Iterační metody pro systémy lineárních rovnic - část I.
4. Iterační metody pro systémy lineárních rovnic - část II. Iterační metody pro systémy nelineárních rovnic.
5. Přímé metody řešení systémů lineárních algebraických rovnic, LU-rozklad matice. Systémy lineárních rovnic se speciálními maticemi-část I.
6. Systémy lineárních rovnic se speciálními maticemi - část II. Metody založené na minimalizaci kvadratické formy.
7. Výpočet inverzních matic a determinantů, stabilita, podmíněnost.
8. Vlastní čísla - mocninná metoda. Základy interpolace.
9. Interpolace polynomiální.
10. Interpolace pomocí splajnů. Ortogonální polynomy.
11. Aproximace diskrétní metodou nejmenších čtverců.
12. Numerická derivace, Richardsonova extrapolace. Numerická integrace funkcí jedné proměnné - část I.
13. Numerická integrace funkcí jedné proměnné - část II. Numerická integrace funkcí dvou proměnných.
Cíl:
Pochopit základní principy numerických výpočtů a seznámit se s faktory, které ovlivňují numerické výpočty. Umět řešit vybrané základní úlohy numerické matematiky. Zvládnout princip iteračních metod řešení rovnice f(x)=0 a systémů lineárních algebraických rovnic, zvládnout výpočetní algoritmy. Naučit se aproximovat vlastní čísla a vlastní vektory matice. Seznámit se s problematikou interpolace a aproximace funkcí jedné proměnné a naučit se úlohy prakticky řešit. Znát principy numerické derivace a naučit se numerickou aproximaci integrálů funkce jedné a dvou proměnných.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Typ (způsob) výuky:

Přednáška: 39 hod., nepovinná
Vyučující / Lektor: prof. Ing. Jiří Vala, CSc.

Zařazení předmětu ve studijních programech