• Volba rektora
  • Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Fuzzy systémy a neuronové sítě

Kód předmětu: FSI-RNF
Akademický rok: 2017/2018
Typ předmětu: povinný
Typ studia: magisterský navazující (druhý cyklus)
Ročník: 2
Semestr: zimní
Počet kreditů:
Výsledky učení předmětu:
Znalost funkce neuronových sítí a přiměřenosti jejich použití při zpracování dat, speciálně při návrhu "inteligentních" řídících členů.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Předpokládá se znalost maticového počtu, doporučuje se orientace v optimalizačních metodách a modelování.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Kurz seznamuje s nejužívanějšími paradigmaty neuronových sítí, dále se zabývá možnými technicky orientovanými aplikacemi neuronových sítí a jejich praktickým využitím. Výuka teorie se zaměřuje zejména na dynamiku neuronů a zvlášť jejich aktivaci, signály a aktivační modely; na dynamiku synapsí, a to jak na učení bez učitele, tak na učení s učitelem (soutěživé učení, zpětné šíření); architektury sítí a rovnovážný bod sítí. Dále je porovnána neuronová reprezentace a fuzzy reprezentace strukturované znalosti a uvedených poznatků je využito ke konstrukci řídících členů.
Doporučená nebo povinná literatura:
Rojas, R.: Neural Networks, 1996
Mařík, V: Umělá inteligence I, II, 1993
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Výuka je doplněna laboratorním cvičením.
Způsob a kritéria hodnocení:
Požadavky pro udělení zápočtu: aktivní účast na cvičeních a samostatné zpracování projektu zadaného vyučujícím. Zkouška sestává z písemné a ústní části. Písemnou část představuje test se čtyřmi otázkami. Ústní část se skládá z diskuse nad písemnou částí s možnými doplňujícími otázkami. Klasifikace je plně v kompetenci vyučujícího podle platných směrnic VUT v Brně.
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Cílem předmětu je, aby studenti zvládli základy neuronového modelování a všeobecného využití neuronových modelů při zpracování dat i rámec konstukce "inteligentních" řídících členů.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka běží podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.

Typ (způsob) výuky:

Přednáška: 26 hod., nepovinná
Vyučující / Lektor: prof. RNDr. Ing. Tomáš Březina, CSc.
Osnova: 1. Konekcionistický model živočišného mozku, neuronové dynamické systémy, obecné signálové funkce, aditivní neuronová dynamika.
2. Aditivní bivalentní modely, obecné neuronové aktivace, učení jako kódování.
3. Základní pravidla učení bez učitele, stochastické učení bez učitele a stochastický rovnovážný stav.
4. Učení s učitelem, učení jako stochastické učení vzorů se známou příslušností ke třídě, jako stochastická aproximace.
5. Algoritmus zpětného šíření.
6. Neuronové sítě jako stochastické gradientní systémy, synaptická konvergence k centroidům.
7. Globální rovnovážný stav: konvergence a stabilita, globální stabilita zpětnovazebních neuronových sítí, strukturální stabilita učení bez učitele.
8. Fuzzy množiny a systémy, neurčitost v pravděpodobnostním prostředí, náhodnost proti víceznačnosti.
9. Fuzzy a neuronové aproximace funkcí, neuronová reprezentace a fuzzy reprezentace strukturované znalosti.
10. Řídící členy založené na matematickém modelu a na aproximátoru.
11. Fuzzy řídící členy.
12. Řídící členy založené na Kalmanově filtru.
13. Shrnutí.
Laboratoře a ateliéry: 26 hod., povinná
Vyučující / Lektor: prof. RNDr. Ing. Tomáš Březina, CSc.
Osnova: 1. Základy systému Matlab: základní příkazy, práce s maticemi, vizualizační funkce.
2. Perceptron I: model neuronu, aktivační funkce, tvorba sítě.
3. Perceptron II: omezení perceptronu, XOR problém.
4. Lineární sítě I: model neuronu, aktivační funkce, tvorba sítě.
5. Lineární sítě II: automatické nastavení vah, učení.
6. Backpropagation I: model neuronu, topologie, algoritmus učení, zadání projektu.
7. Backpropagation II: omezení algoritmu, momentum, adaptivní krok učení.
8. Backpropagation III: Levenberg - Marquardt pravidlo učení.
9. Sít s radiálními bázemi: model neuronu, tvorba sít, určení počtu vstupních neuronů.
10. Rekurentní sítě: Hopfieldův model.
11. Rekurentní sítě: Elmanův model.
12. Práce na projektu, konzultace projektu.
13. Zápočet.

Zařazení předmětu ve studijních programech