Detail předmětu

Electrotechnical materials, material systems and production processes

FEKT-DET1AAk. rok: 2017/2018

Part I. offers the description of the nature of anisotropic materials in general, with more detailed application at piezoelectric materials. It describes linear theory of piezoelectricity, components and systems, production processes of various piezoelectric systems included.
Part II. The Physics of the Solar Cell, Photovoltaic sources, principle of function and characteristics. Basic types of photovoltaics systems and aplications. Manufacturing of Monocrystalline, Polycrystalline, amorphous Siliconbased Solar Cells, CdTe, CuSe, InGa Solar Cells. Dye-sensitized Solar Cells. Solar modules, construction and technology.
Part III. Solder joint, solder joint formation. Requirements for solder joint. Reliability of solder joint - material and process factors.
Part IV.

Jazyk výuky

angličtina

Počet kreditů

4

Výsledky učení předmětu

The graduate gains deeper knowledge in the selected parts of electrotechnical materials, material systems and production processes. The modular system enables a specific composition of the curricular programmed according to the focus of the student or according to his planned dissertation.

Prerekvizity

The subject knowledge on the Magister´s degree level is requested.

Plánované vzdělávací činnosti a výukové metody

Subject is taught form seminars. Lecture are guidee using PowerPoint presentation. At the conclusion seminars is controlled discussion.

Způsob a kritéria hodnocení

Final Test

Osnovy výuky

Module I-M-1: Nature of anisotropic material. Principles of tensors calculus, mechanical properties of anisotropic materials, dielectrically properties of anisotropic materials, coordinate conversion
Module I-M-2: Linear theory of piezoelectricity. Thermodynamic potentials, linear piezoelectric state equations, basic piezoelectric materials
Module I-S-1: Piezoelectric resonators. Excitation mechanics vibration, mechanics vibration of resonators, substitution diagram of piezoelectric resonator, determination of cut orientation, temperature dependence of resonance frequency
Module I-S-2: Measurement of the attribute of resonators. SiO2 based resonators, ceramic based resonator, piezoelectric filters, piezoelectric converters
Module I-P-1: Production of piezoelectric resonators. Monocrystals cuts, electrode systems, encasement, other piezoelectric systems production
Module II-M-1: Materials used in photovoltaic. The Physics of the Solar Cell, Photovoltaic sources, Principle of function, characteristics
Module II-M-2: Third Generation Photovoltaics. Tandem solar cells, Thin-Film Solar Cells, CdTe, CuSe, InGa solar cells, Dye-sensitized Solar Cells
Module II-S-1: Photovoltaic systems. Basic types of photovoltaics systems and application, Photovoltaic Concentrators, Solar modules, construction and technology.
Module II-P-1: Manufacturing of Crystalline Silicon Solar Cells. Monocrystalline and Polykrystaline Silicon Solar Cells, etching, diffusion process, screen printing, sputtering
Module II-P-2: Manufacturing of Thin-Film Solar Cells. Structure of microcrystalline and amorphous silicon, CdTe, CuSe, InGa Solar Cells and manufacturing
Module II-P-3: Manufacturing of Solar Panels Strukture of photovoltaic panels, used materials, contacts, DCAC system in photovoltaic.
Module III-M-1: Solder joint – material system. Surface finishes of connected metals, methods of surface analysis, solders SnPb and SnAgCu, flux system, air and protective atmosphere, adsorption reaction on heterogeneous interfaces.
Module III-S-1: Phases of solder joint formation. Reactive wetting of surface, physical-chemical reaction at interface, dissolving, diffusion, intermetallic area, crystallisation.
Module III-P-1: Solder joint reliability. Process factors: temperature/soldering time, defined vs. quasi unlimited amounts of solder in solder joint, solder joint requirements, solder joint reliability – infuencing factors, thermomechanical fatique of solder joint.
Module IV-1: The overview of basic possible uses of mathematical – physical modelling when solving difficulties in research practice.
Module IV-2: Mastering the problems of selecting and adjusting the appropriate solver, level of discretization, setting up additional chosen mathematical models (e.g. turbulent), mesh, boundary conditions and more difficulties of debugging of the solved task.
Module IV-3: Practical examples of solving mathematical – physical tasks in the area of electromagnetism, fluid flowing, heat exchanges and the like.

Učební cíle

Aim of Part I. is to enlarge the knowledge about nature of anisotropic materials generally, with the concrete applications in the area of piezoelectricity.
Aim of Part II. is to enlarge the knowledge about photovoltaic sources of electric power, possibility and ecological aspects of their usage.
Aim of Part III. is preparing the students for the solution of technological problems in area Solder joint, solder joint formation, Requirements for solder joint, Reliability of solder joint - material and process factors.
Aim of Part IV. is to familiarize (the) students with possible ways of solving (specific) scientific tasks using mathematical – physical modelling of studied difficulties and to master the problems by debugging the studied task.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Základní literatura

HUMPSTON, G., JACOBSON, D., M.: Principles of Soldering, ASM International, 2004, ISBN 0-87170-792-6 (EN)

Doporučená literatura

ADAMSON, A., W., GAST, A., P.: Physical Chemistry of Surfaces. A Willey Interscience Publication, 1997, ISBN 0 –471-14873-3 (EN)
HWANG, J., S.: Environment-Friendly Electronics: Lead Free Technology, Electrochemical Publications Limited, 2001, ISBN 0 901150 401 (EN)
SZE, S., M., KWOK, K.: Physics of Semiconductor Devices. Wiley - Interscience, A John Wiley & sons, Inc. Publication, ISBN-13: 978-0-471-14323-9 (EN)
Ferziger, J. H., Peric, M., Computational Methods for Fluid Dynamics, Springer : Berlin, 2002. (EN)
Stolarski, T., Nakasone, Y., Yoshimoto, S. Engineering Analysis with Ansys Software, Oxford 2006 (EN)
Ansys Advantage magazin: http://www.ansys.com/About+ANSYS/ANSYS+Advantage+Magazine (EN)

Zařazení předmětu ve studijních plánech

  • Program EKT-PPA doktorský

    obor PPA-BEB , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-BEB , 1. ročník, zimní semestr, volitelný oborový
    obor PKA-KAM , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-KAM , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-EST , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-EST , 1. ročník, zimní semestr, volitelný oborový
    obor PPA-MVE , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-MVE , 1. ročník, zimní semestr, volitelný oborový
    obor PKA-MET , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-MET , 1. ročník, zimní semestr, volitelný oborový
    obor PPA-FEN , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-FEN , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-SEE , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-SEE , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-TLI , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PKA doktorský

    obor PKA-TLI , 1. ročník, zimní semestr, volitelný oborový
    obor PKA-TEE , 1. ročník, zimní semestr, volitelný oborový

  • Program EKT-PPA doktorský

    obor PPA-TEE , 1. ročník, zimní semestr, volitelný oborový

Typ (způsob) výuky

 

Seminář

39 hod., nepovinná

Vyučující / Lektor

Osnova