• JobChallenge 2017
  • Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Matematika IV

Kód předmětu: FSI-4M-K
Akademický rok: 2016/2017
Typ předmětu: povinný
Typ studia: bakalářský (první cyklus)
Ročník: 2
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách.
Způsob realizace výuky:
20 % kontaktní výuka, 80 % distančně
Prerekvizity:
Základy diferenciálního a integrálního počtu.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Předmět je zaměřen na seznámení studentů s metodami popisné statistiky, základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor) a matematické statistiky (náhodný výběr, odhady parametrů, testování statistických hypotéz, lineární regresní analýza). Úlohy na procvičení látky jsou orientovány na praktické aplikace ve strojírenských oborech. Počítačovou podporou je nepovinný předmět Statistický software.
Doporučená nebo povinná literatura:
Montgomery, D. C. - Renger, G.: Applied Statistics and Probability for Engineers. New York : John Wiley & Sons, 2003.
Karpíšek, Z.: Matematika IV. Pravděpodobnost a statistika. Učební text FSI VUT v Brně. Akademické nakladatelství CERM: Brno, 2003.
Hahn, G. J. - Shapiro, S. S.: Statistical Models in Engineering.New York : John Wiley & Sons, 1994.
Karpíšek, Z., Drdla, M.: Applied Statistics. Textbook. Brno : FME BUT, 2007. File ApplStat2007.pdf .
Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha : Plus, 1994.
Anděl, J.: Základy matematické statistiky. Praha : Matfyzpress, 2005.
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení:
Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, součet hodnocení obou kontrolních prací a písemné semestrální práce aspoň 12 bodů. Zkouška (písemná forma): praktická část (2 příklady z teorie pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení Bi,H,Po,N a diskrétní náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech, lineární regresní model) s vlastním přehledem vzorců; teoretická část (5 otázek na základní pojmy, jejich vlastnosti, význam a praktické užití); hodnocení: každý příklad 0 až 15 bodů a každá teoretická otázka 0 až 3 body; klasifikace podle celkového součtu bodů ze zkoušky a cvičení: výborně (90 až 100 bodů), velmi dobře (80 až 89 bodů), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující(0 až 49 bodů).
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Seznámení studentů se základními pojmy, metodami a postupy teorie pravděpodobnosti, popisné statistiky a matematické statistiky. Formování stochastického způsobu myšlení studentů pro modelování reálných jevů a procesů ve strojírenských oborech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení.

Typ (způsob) výuky:

Konzultace: 17 hod., nepovinná
Vyučující / Lektor: Ing. Josef Bednář, Ph.D.
Osnova: 1. Náhodné jevy a jejich pravděpodobnost.
2. Podmíněná pravděpodobnost. Nezávislé jevy.
3. Náhodná veličina, druhy, funkční charakteristiky.
4. Číselné charakteristiky náhodné veličiny.
5. Základní diskrétní rozdělení Bi, H, Po (vlastnosti a užití).
6. Základní spojitá rozdělení R, N (vlastnosti a užití).
7. Dvourozměrný diskrétní náhodný vektor, druhy, funkční a číselné charakteristiky.
8. Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
9. Odhady parametrů (bodové a intervalové odhady parametrů N a Bi).
10. Testování statistických hypotéz (druhy, základní pojmy, test).
11. Testy hypotéz o parametrech N, Bi a testy rozdělení.
12. Základy regresní analýzy.
13. Lineární regresní model, odhady a testy hypotéz.
Řízené samostudium: 35 hod., povinná
Vyučující / Lektor: doc. RNDr. Zdeněk Karpíšek, CSc.
Osnova: 1. Popisná statistika (jednorozměrný statistický soubor).
2. Popisná statistika (dvourozměrný statistický soubor). Kombinatorika.
3. Pravděpodobnost (výpočty pomocí m/n a vlastností). Zadání semestrální práce.
4. Podmíněná pravděpodobnost. Nezávislé jevy.
5. Písemná práce (3 příklady, maximálně 10 bodů). Funkční a číselné charakteristiky náhodné veličiny.
6. Funkční a číselné charakteristiky náhodné veličiny - dokončení.
7. Základní rozdělení pravděpodobnosti(Bi, H, Po, N).
8. Dvourozměrný diskrétní náhodný vektor, funkční a číselné charakteristiky.
9. Písemná práce (3 příklady, maximálně 10 bodů).
10. Bodové a intervalové odhady parametrů N a Bi.
11. Testy hypotéz o parametrech N.
12. Testy hypotéz o parametrech N a Bi - dokončení. Testy rozdělení.
13. Lineární regrese (přímka), odhady, testy a graf. Hodnocení semestrální práce (maximálně 5 bodů).

Zařazení předmětu ve studijních programech