• VUT junior
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra
  • Zvut.cz

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Rovnice matematické fyziky I

Kód předmětu: FSI-9RF1
Akademický rok: 2016/2017
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Základy teorie parciálních diferenciálních rovnic a přehled o možnostech jejich využití při matematickém modelování. Dovednost sestavit matematický model konkrétních vybraných fyzikálních situací a v jednoduchých případech spočítat řešení.
Způsob realizace výuky:
Není specifikováno.
Prerekvizity:
Řešení algebraických rovnic a soustav lineárních rovnic, diferenciální a integrální počet funkce jedné a více proměnných, obyčejné diferenciální rovnice.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
Parciální diferenciální rovnice - základní pojmy. Rovnice prvního řádu.
Klasifikace a kanonický tvar rovnic druhého řádu. Odvození vybraných rovnic matematické fyziky, formulace počátečních a okrajových úloh.
Klasické metody: metoda charakteristik, Fourierova metoda řad, metoda integrální transformace, metoda Greenovy funkce. Principy maxima.
Vlastnosti řešení eliptických, parabolických a hyperbolických rovnic.
Doporučená nebo povinná literatura:
V. J. Arsenin: Matematická fyzika. Základné rovnice a špeciálne funkcie. Alfa, Bratislava, 1977
J. Franců: Parciální diferenciální rovnice. Akad. nakl. CERM, Brno 2011
T. A. Bick: Elementary boundary value problems. Marcel Dekker, New York 1993
V. J. Arsenin: Matematická fyzika, Alfa, Bratislava 1977
I. G. Petrovskij: Parciální diferenciální rovnice. Přir. vydavatelství, Praha 1952
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny.
Způsob a kritéria hodnocení:
Zkouška se skládá z praktické a teoretické části.
Praktická část: řešení zadaných příkladů
1. rovnice prvního řádu,
2. rovnice druhého řádu, klasifikace a převedení na kanonický tvar
3. formulace počáteční okrajové úlohy pro rovnici vedení tepla v tyči
nebo kmitání struny a její řešení Fourierovou metodou řad.
Teoretická část: 3 otázky z probrané teorie.
Jazyk výuky:
čeština, angličtina
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Cílem kurzu je seznámit posluchače s parciálními diferenciálními rovnicemi,
zejména rovnicemi matematické fyziky, jejich základními vlastnostmi a jejich
použitím v matematickém modelování, naučit formulovat počáteční a okrajové
úlohy modelující vybrané konkrétní fyzikální situace. Seznámit s klasickými
metodami řešení a naučit řešit jednoduché úlohy matematické fyziky.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
V případě absence student si musí doplnit zameškanou látku samostudiem ze skript.

Typ (způsob) výuky:
Přednáška: 20 hod., nepovinná
Vyučující / Lektor: prof. RNDr. Jan Franců, CSc.
Osnova: 1. Úvod, rovnice prvního řádu.
2. Rovnice druhého řádu, klasifikace a kanonický tvar.
3.-4. Odvození vybraných rovnic matematické fyziky a formulace počátečních a okrajových úloh.
5. Metoda charakteristik.
6. Fourierova metoda řad.
7. Metoda integrální transformace.
8. Metoda Greenových funkcí.
9. Principy maxima a harmonické funkce.
10. Souhrn, srovnání vlastností řešení hyperbolických, parabolických a eliptických rovnic.

Zařazení předmětu ve studijních programech