• JobChallenge 2017
  • Události
  • Sem patřím
  • Centrum sportovních aktivit VUT v Brně
  • Výzkumná centra

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Detail předmětu

Obecná algebra

Kód předmětu: FSI-SOA
Akademický rok: 2016/2017
Typ předmětu: povinný
Typ studia: bakalářský (první cyklus)
Ročník: 1
Semestr: letní
Počet kreditů:
Výsledky učení předmětu:
Studenti získají základní vědomosti o obecné algebře. Tyto vědomosti jim umožní uvědomit si mnohé matematické souvislosti, a proto hlouběji pochopit různá odvětví matematiky. Především všek získají užitečné nástroje k nejrůznějším aplikacím, kterými se mohou v budoucnu ve své praxi zabývat.
Způsob realizace výuky:
90 % kontaktní výuka, 10 % distančně
Prerekvizity:
Předpokládají se znalosti lineární algebry z prvního semestru bakalářského studia.
Korekvizity:
Není specifikováno.
Doporučené volitelné složky programu:
Není specifikováno.
Obsah předmětu (anotace):
V předmětu budou probrány základy moderní algebry. Budou popsány obecné vlastnosti univerzálních algeber, podrobně pak budou studovány jednotlivé algebraických struktury, tj. grupoidy, pologrupy, monoidy, grupy, okruhy, obory integrity a tělesech. Zvláštní pozornost bude věnována především grupám, okruhům (především okruhu polynomů) a konečným (Galoisovým) tělesům.
Doporučená nebo povinná literatura:
L.Procházka a kol.: Algebra, Academia, Praha, 1990
S.Lang, Undergraduate Algebra, Springer-Verlag,1990
G.Gratzer: Universal Algebra, Princeton, 1968
A.G.Kuroš, Kapitoly z obecné algebry, Academia, Praha, 1977
S. MacLane a G. Birkhoff, Algebra, Vyd. tech. a ekon. lit., Bratislava, 1973 (CS)
S.MacLane, G.Birkhoff: Algebra, Alfa, Bratislava, 1973
J. Karásek and L. Skula, Obecná algebra (skriptum), Akademické nakladatelství CERM, 2008 (CS)
S. Lang, Undergraduate Algebra (2nd Ed.), Springer-Verlag, New York-Berlin-Heidelberg, 1990 (EN)
J.Šlapal, Základy obecné algebry, Ústav matematiky FSI VUT v Brně, 2013 - elektronický text (CS)
Procházka a kol., Algebra, Academia, Praha, 1990
Plánované vzdělávací činnosti a výukové metody:
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách a seznámení se s algebraickým software.
Způsob a kritéria hodnocení:
Pro získání zápočtu je nutná aktivní účast na cvičeních a absolvování písemného testu. Zkouška se skládá z písemné a ústní části, prokázané vědomosti v obou těchto částech pak tvoří výslednou klasifikaci.
Jazyk výuky:
čeština
Pracovní stáže:
Není specifikováno.
Osnovy výuky:
Není specifikováno.
Cíl:
Cílem předmětu je seznámit studenty se základy moderní algebry, tj. se základními algebraickými strukturami a jejich vlastnostmi. Tyto struktury se často vyskytují v nejrůznějších aplikacích, zejméne technických, a jejich znalost je proto pro absolventy oboru matematické inženýrství nezbytná.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky:
Účast na cvičeních bude pravidelně kontrolována. Omluvená neúčast bude nahrazována zadáním samostatné práce tak, aby student mohl zameškanou látku zvládnout.

Typ (způsob) výuky:

Přednáška: 26 hod., nepovinná
Vyučující / Lektor: doc. RNDr. Petr Emanovský, Ph.D.
Osnova: 1. Operace a zákony, pojem univerzální algebry
2. Některé důležité typy algeber
3. Základy teorie grup
4. Podalgebry, rozklad grupy podle podgrupy
5. Homomorfismy a izomorfismy
6. Kongruence a faktorové algebry
7 Kongruence na grupách a okruzích
8. Přímé součiny algeber
9. Okruh polynomů
10. Dělitelnost a obory integrity
11. Gaussovy a Euklidovy okruhy
12.Minimální pole, rozšíření pole
13.Galoisova pole
Cvičení: 22 hod., povinná
Vyučující / Lektor: doc. RNDr. Petr Emanovský, Ph.D.
Osnova: 1. Operace, algebry a jejich typy
2. Základy teorie grupoidů a grup
3. Podalgebry, přímé součiny a homomorfismy
4. Kongruence a faktorové algebry
5. Kongruence na grupách a okruzích
6. Okruhy mocninných řad a polynomů
7. Polynomy jako funkce, interpolace
8. Dělitelnost a obory integrity
9. Gaussovy a Eukleidovy okruhy
10. Minimální pole, rozšíření pole
11. Konstrukce konečných polí
Cvičení s poč. podporou: 4 hod., povinná
Vyučující / Lektor: prof. RNDr. Josef Šlapal, CSc.
Osnova: 1. Užití programu Maple pro počítání úloh obecné algebry
2. Užití programu Mathematica pro počítání úloh obecné algebry

Zařazení předmětu ve studijních programech