Detail předmětu

Pravděpodobnost a statistika I

FSI-S1PPovinnýBakalářský (první cyklus)Ak. rok: 2016/2017Zimní semestr3. ročník5  kreditů

Předmět je zaměřen na seznámení studentů se základy teorie pravděpodobnosti (náhodné jevy, pravděpodobnost, náhodná veličina, náhodný vektor), matematické statistiky (popisná statistika, náhodný výběr, odhady parametrů, testování statistických hypotéz) a se statistickým softwarem Statistica. Úlohy na procvičení látky jsou orientovány na praktické aplikace zejména ve strojírenskéch oborech.

Výsledky učení předmětu

Studenti získají potřebné znalosti z teorie pravděpodobnosti, popisné statistiky a teorie matematické statistiky, které jim umožní pochopit a aplikovat stochastické modely technických jevů a procesů, založené na těchto metodách.

Způsob realizace výuky

90 % kontaktní výuka, 10 % distančně

Prerekvizity

Základy diferenciálního a integrálního počtu.

Doporučená nebo povinná literatura

Neubauer J., Sedlačík M., Kříž O.: Základy statistiky. Praha: Grada Publishing. 2012. (CS)
Montgomery, D. C. - Runger, G.: Applied Statistics and Probability for Engineers, John Wiley & Sons, New York. 1994. (EN)
Hogg R.V., McKean J., Craig, A.T.: Introduction to Mathematical Statistics. Pearson, Cloth. 2013. (EN)
Karpíšek, Z.: Matematika IV. Statistika a pravděpodobnost. Brno : FSI VUT v CERM, 2003.
Meloun, M. - Militký, J.: Statistické zpracování experimentálních dat. Praha : PLUS, 1994.
Michálek, J. Matematická statistika pro informatiky. Praha: Státní pedagogické nakladatelství, 1987. (CS)
Lamoš, F. - Potocký, R.: Pravdepodobnosť a matematická štatistika. Bratislava : Alfa, 1989.
Zvára, K., Štěpán, J.: Pravděpodobnost a matematická statistika. Praha : Matfyzpress, 2002. (CS)

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Podmínky udělení zápočtu: aktivní účast ve cvičeních, zvládnutí celé látky, klasifikace dostatečně anebo lepší všech kontrolních prací, odevzdání semestrální práce.
Zkouška: Hodnocení je dáno součtem bodů za semestrální práci (12b) a písemný test (88b); praktická část testu (2 příklady z partií teorie
pravděpodobnosti: pravděpodobnost a její vlastnosti, náhodná veličina, rozdělení pravděpodobnosti Bi, H, Po, N, náhodný vektor; 2 příklady z matematické statistiky: bodové a intervalové odhady parametrů, testy hypotéz o rozděleních a parametrech) teoretická část testu (4 otázky na základní pojmy, jejich vlastnosti, význam a praktické užití a důkazy dvou vět); hodnocení: každý příklad 0 až 18 bodů a každá teoretická otázka 0 až 4 bodů;
- klasifikace podle celkového součtu bodů (0 bodů u semestrální práce, některého příkladu nebo celé teoretické části znamená celkově 0 bodů): výborně (90 až 100 bodů a oba důkazy), velmi dobře (80 až 89 bodů a jeden důkaz), dobře (70 až 79 bodů), uspokojivě (60 až 69 bodů), dostatečně (50 až 59 bodů), nevyhovující (0 až 49 bodů).

Jazyk výuky

čeština

Cíl

Seznámení studentů oboru Matematické inženýrství s pojmy, metodami a postupy teorie pravděpodobnosti, popisné a matematické statistiky, a se statistickým softwarem Statistica. Formování stochastického způsobu myšlení pro tvorbu matematických modelů s důrazem na strojírenské obory.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Cvičení je kontrolované a o náhradě zameškané výuky rozhoduje učitel cvičení.

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

Náhodné jevy, jevové pole a pravděpodobnost (vlastnosti).
Podmíněná pravděpodobnost a nezávislé jevy (vlastnosti).
Spolehlivost systémů. Náhodná veličina (druhy, distribuční funkce).
Funkční charakteristiky diskrétních a spojitých náhodných veličin.
Číselné charakteristiky diskrétních a spojitých náhodných veličin.
Základní diskrétní rozdělení A, Bi, H, Po (vlastnosti a užití).
Základní spojitá rozdělení R, N, E (vlastnosti a užití).
Náhodný vektor, druhy, funkční a číselné charakteristiky.
Rozdělení transformovaných náhodných veličin.
Zákon velkých čísel, centrální limitní věta.
Náhodný výběr, výběrové charakteristiky (vlastnosti, výběr z N).
Odhady parametrů (bodové a intervalové odhady parametrů Bi a N).
Testování statistických hypotéz.
Testy hypotéz o parametrech Bi a N.

Cvičení s poč. podporou

26 hod., povinná

Vyučující / Lektor

Osnova

Popisná statistika (jednorozměrný statistický soubor). Software Statistica.
Popisná statistika (dvourozměrný statistický soubor). Kombinatorika.
Pravděpodobnost (vlastnosti a výpočty). Zadání semestrální práce.
Podmíněná pravděpodobnost. Nezávislé jevy.
Písemná práce (3 příklady). Funkční a číselné charakteristiky náhodné veličiny.
Funkční a číselné charakteristiky náhodné veličiny - dokončení.
Základní rozdělení (Bi, H, Po, R, N, E), aproximace.
Náhodný vektor, funkční a číselné charakteristiky.
Písemná práce (3 příklady).
Bodové a intervalové odhady parametrů Bi a N.
Testy hypotéz o parametrech Bi a N.
Testy hypotéz o parametrech Bi a N - dokončení. Testy rozdělení.
Regresní přímka, odhady, testy a grafy.