Detail předmětu
Statistika
FP-UstatlPAk. rok: 2020/2021
Náhodné jevy: Pravděpodobnost a její vlastnosti, podmíněná pravděpodobnost, klasická pravděpodobnost, nezávislost jevů, úplná pravděpodobnost.
Náhodné veličiny: Náhodné veličiny diskrétního a spojitého typu, charakteristiky a zákony rozdělení náhodných veličin, rozdělení binomické, hypergeometrické, geometrické, Poissonovo, normální a exponenciální.
Matematická statistika: Zpracování a vyhodnocování jednorozměrných datových souborů kvantitativního znaku, bodové a intervalové odhady parametrů znaku základního souboru, testy statistických hypotéz.
Indexní analýza: Individuální a agregátní indexy, Laspeyresovy a Paascheovy indexy.
Regresní analýza: Metoda nejmenších čtverců, regresní přímka, speciální regresní funkce.
Časové řady: Charakteristiky časových řad, rozklad časové řady, určení trendu v časové řadě.
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Studenti získají základní znalosti z náhodných veličin, indexní analýzy, matematické statistiky, regresní analýzy a časových řad a budou schopni je aplikovat v ekonomických problémech. Po absolvování předmětu budou připraveni pro studium ekonomických předmětů, uvažujících náhodu.
Prerekvizity
Základy lineární algebry a matematické analýzy.
Doporučená nebo povinná literatura
KROPÁČ, J. Statistika. 2. vyd. CERM, Brno. 2012. ISBN 978-80-7204-788-8. (CS)
HINDLS, R. aj. Analýza dat v manažerském rozhodování. Praha : Grada Publishing, 1999. ISBN 80-7169-255-7. (CS)
SWOBODA, H. Moderní statistika. Praha : Svoboda, 1977. (CS)
SEGER, J. aj. Statistické metody v tržním hospodářství. Praha : Victoria Publishing, 1995. ISBN 80-7187-058-7. (CS)
Plánované vzdělávací činnosti a výukové metody
Výuka probíhá formou přednášek, které mají charakter výkladu základních principů, metodologie dané disciplíny a problémů. Cvičení podporují zejména praktické ovládnutí látky vyložené na přednáškách.
Způsob a kritéria hodnocení
ZÁPOČET: Zápočet je udělen na základě:
- účasti na cvičeních,
- vypracování písemných prací na cvičních.
ZKOUŠKA: Zkouška je písemná.
V její první části vypracuje během 15 minut odpovědi na teoretické otázky.
Ve druhé části zkoušky student řeší student během 60-70 minut příklady. (Jako pomůcku může použít doporučená skripta.)
Známka, odpovídající součtu (max 100 bodů), sestává:
- z bodů z kontrolních testů, tyto body musí být získány ze semestru, v němž se skládá zkouška,
- z výsledků řešených příkladů,
- z odpovědí na teoretické otázky.
Známky a jim odpovídající body:
A (100-90), B (89-83), C (82-76), D (75-69), E (68-60), F (59-0).
Jazyk výuky
čeština
Osnovy výuky
1.Náhodný pokus, náhodný jev, operace s jevy, klasická a statistická definice pravděpodobnosti, pravidla pro počítání s pravděpodobnostmi
2. Podmíněná pravděpodobnost, nezávislost jevů.
3.Náhodné diskrétní a spojité veličiny, distribuční funkce, pravděpodobnostní funkce, hustota pravděpodobnosti, kvantily a jejich vlastnosti.
4. Charakteristiky náhodné veličiny - střední hodnota a rozptyl.
5.Diskrétní rozdělení - alternativní, binomické, Poissonovo, hypergeometrické. 6.Spojitá rozdělení - normální, lognormální, exponenciální. Speciální rozdělení - t, F, chí kvadrát. Centrální limitní věta, zákon velkých čísel.
7.Zpracování a vyhodnocování jednorozměrných datových souborů kvantitativního znaku.
8.Bodový odhad a jeho vlastnosti, bodový odhad střední hodnoty a rozptylu, intervalový odhad střední hodnoty a rozptylu.
9.Testování hypotéz. Obecný postup testování,jednovýběrový t-test
10. párový a dvouvýběrový t-test, F-test, Chí-kvadrát test dobré shody.
11.Jednoduchá lineární regrese.
12 Úvod do korelační analýzy.
13.Časové řady. Elementární charakteristiky časových řad, bazické a řetězové indexy, klasická dekompozice časové řad
Cíl
Cílem předmětu je seznámit studenty se základními pojmy náhodných veličin, matematické statistiky, indexní analýzy, regresní analýzy a časových řad, tak, aby byli schopni studovat ekonomické předměty, pracující s náhodou, a řešit pomocí uvedených metod problémy těchto předmětů.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Účast na přednáškách není povinná ale doporučuje se. Účast na cvičeních je kontrolovaná.
Omluvená neúčast studenta na cvičení může být nahrazena náhradními úkoly.