Detail předmětu

Programování v bioinformatice

FEKT-MPC-PRGAk. rok: 2020/2021

Předmět je zaměřen na programování v oblasti bionformatiky. Zaměřuje se na seznámení s různými typy programů a konkrétními algoritmy používaných pro analýzu sekvencí DNA a proteinů.

Výsledky učení předmětu

Student je schopen:
- řešit algoritmy iteračně i rekurzivně
- vyhodnotit náročnost algoritmů
- realizovat algoritmy pro vyhledávání (hrubou silou, Greedyho algoritmus)
- realizovat algoritmy pro zarovnávání sekvencí (lokální, globální, zpětné trasování)
- realizovat algoritmy pro shlukovou analýzu
- realizovat algoritmy pro učení skrytých markovových modelů a pro jejich použití

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia.

Doporučená nebo povinná literatura

Jones N.C., Pevzner P.A: An Introduction to Bioinformatics Algorithms. The MIT Press, 2004 (EN)
Moorhouse M, Barry P: Bioinformatics Biocomputing and Perl: An Introduction to Bioinformatics Computing Skills and Practice. Wiley; 1 edition, 2004. (EN)
Chao K.-M., Zhang L.: Sequence Comparison. Springer-Verlag, 2009 (EN)
Zaplatílek K, Doňar B: Matlab tvorba uživatelských aplikací, Technická literatura BEN, Praha 2004 (CS)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.

Způsob a kritéria hodnocení

Studenti musí získat minimálně 50 bodů ze 100 bodů v dílčích aktivitách:
1. bodované programování (min 20 bodů, max 40 bodů),
2. závěrečný písemný test (min 30 bodů, max 60 bodů).
Dílčí aktivity mají prověřit schopnosti studenta realizovat algoritmy ve vybraném programovém prostředí.

Jazyk výuky

čeština

Osnovy výuky

1. Základy algoritmizace úloh a náročnost algoritmů.
2. Typy algoritmů, rekurze a iterace.
3. Regulární výrazy.
4. Třídící algoritmy (greedy algoritmy).
5. Algoritmy pro restrikční mapování (exhaustive search).
6. Vyhledávání motivů (branch and bound algoritmy).
7. Dynamické programování s rekurzí.
8. Algoritmy pro de novo skládání genomu.
9. Markovovy modely v bioinformatice.
10. Sufixové stromy.

Cíl

Cílem předmětu je seznámení a osvojení základních algoritmů pro analýzu sekvencí DNA a proteinů a jejich podrobný rozbor. Studenti jsou vedeni k samostatnému programování probíraných algoritmů v programovacím prostředí R či Matlab.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Počítačová cvičení jsou povinná, řádně omluvené zmeškané cvičení lze po domluvě s vyučujícím nahradit individuálně.

Zařazení předmětu ve studijních plánech

  • Program MPC-BTB magisterský navazující, 1. ročník, zimní semestr, 5 kreditů, povinný

Typ (způsob) výuky

 

Přednáška

13 hod., nepovinná

Vyučující / Lektor

Cvičení na počítači

39 hod., povinná

Vyučující / Lektor

eLearning