Detail předmětu

Optimalizace II

FSI-SO2Ak. rok: 2019/2020

Předmět je zaměřen na pokročilé optimalizační modely a metody pro řešení inženýrských úloh. Předmět zahrnuje zejména stochastické programování (deterministické reformulace, jejich vlastnosti a vybrané algoritmy) a vybrané okruhy z celočíselného a dynamického programování. Kurs byl sestaven na základě zkušeností autora s obdobnými kursy na zahraničních školách.

Garant předmětu

Zajišťuje ústav

Výsledky učení předmětu

Předmět je určen pro studenty matematického inženýrství, je užitečný pro studenty aplikovaných věd. Studenti prohloubí své znalosti teoretických základů optimalizace a osvojí si pokročilé algoritmy řešení optimalizačních úloh a rozvinou svoji představu o uplatnění optimalizačních modelů v typických aplikacích.

Prerekvizity

Přednášená látka vyžaduje znalosti základů optimalizace v rozsahu předmětu SOP. Dále se předpokládají standardní znalosti pravděpodobnosti a matematické satistiky.

Doporučená nebo povinná literatura

Kall, P.-Wallace,S.W.: Stochastic Programming, Wiley 1994. (EN)
Birge,J.R.-Louveaux,F.: Introduction to Stochastic Programing, Springer, 1997. (EN)
Prekopa, A: Stochastic Programming, Kluwer, 1996. (EN)
Klapka, J. a kol: Metody operačního výzkumu, VUT, 2000. (CS)

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

Zkouška je udělena na základě hodnocení předložené písemné práce a
jejího přednesení v kolektivu zúčastněných studentů.

Jazyk výuky

čeština

Cíl

Důraz je kladen na získání znalostí o pokročilých optimalizačních modelech.
Důležité je porozumění a rozvíjení schopnosti osvojené poznatky používat.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast je kontrolována pomocí aktivní účasti studentů na řešených problémech,
zameškaná výuka je nahrazována samostatným řešením zadaných úloh.

Zařazení předmětu ve studijních plánech

  • Program M2A-P magisterský navazující

    obor M-MAI , 1. ročník, zimní semestr, 4 kredity, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Původní úloha stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Příklady na:
1. Původní úlohu stochastického programování.
2. WS a HN přístup.
3. IS a EV reformulace.
4. EO, EEV, EVPI a VSS.
5. MM a VO, řešení rozsáhlejších úloh.
6. PO a QO, souvislosti s celočíselným programováním.
7. Deterministická a pravděpodobnostní omezení, použití kompenzace.
8. WS teorie - konvexnost a měřitelnost.
9. WS případ - určení rozdělení.
10. Dvojstupňové úlohy, jejich klasifikace a modelování.
11. Základní výsledky v oblasti konvexnosti.
12. Aplikace dvojstupňového programování.
13. Dynamické programování a vícestupňové modely.

Účast na cvičení je povinná.

eLearning