Detail předmětu

Data acquisition,analysis and processing.

FEKT-NZPDAk. rok: 2019/2020

Předmět se věnuje problematice analýzy digitálních signálů v časové a frekvenční oblasti.
Důraz je kladen na ortogonální transformace zejména na DFT, rychlé algoritmy FFT, a waveletovy transformace. Část předmětu je věnována matematickým operacím s časovými řadami a číslicové filtraci signálů.

Výsledky učení předmětu

Absolvent předmětu je schopen:
- popsat druhy fyzikálních signálů,
- interpretovat principy základních metod analýzy a zpracování dat,
- vysvětlit význam ortogonálních transformací a uvést příklady,
- vysvětlit principy rychlých algoritmů FFT a metod časově frekvenční analýzy,
- popsat princip waveletových transformací a diskutovat výsledky,
- vysvětlit výsledky spektrální a kepstrální analýzy,
- popsat způsoby číslicové filtrace signálů,
- navrhnout číslicový filtr s požadovanými vlastnostmi.

Prerekvizity

Student, který si zapíše předmět, by měl být diskutovat základní pojmy teorie signálů. Obecně jsou požadovány znalosti z předmětu BMA1, BMA2, BPMT, znalosti programování v prostředí Matlab, LabVIEW

Doporučená nebo povinná literatura

Blachut,R.E.:Fast Algorithms for Digital Signal Processing,Springer (EN)
Otnes,R.K.-Enochson,L.:Applied Time Series Analysis,Wiley (EN)
Rabiner,R.L.-Gold,B.:Theory and Application of Digital Signal Processing.,Prentice Hall (EN)
Smith, S.W.:Digital Signal Processing. California Technical Publishing, San Diego, California 1999 (EN)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT.
Metody vyučování zahrnují přednášky a cvičení na počítači.
Student odevzdává jeden samostatný projekt.

Způsob a kritéria hodnocení

až 30 bodů za hodnocení počítačových cvičení
až 70 bodů za závěrečnou písemnou zkoušku

Jazyk výuky

angličtina

Osnovy výuky

1. Rozdělení a popis fyzikálních signálů
2. Operace s časovými řadami, metody řazení dat, statistická analýza
3. Lineární systémy, diskrétní konvoluce
4. Diskrétní korelace, hodnocení závislosti jevů
5. Ortogonální funkce, diskrétní Fourierova transformace
6. Principy rychlých algoritmů FFT
7. Diskrétní ortogonální transformace (Walschova, Haarova, Hadamardova, Hilbertova)
8. Časově frekvenční analýza, STFT, waveletovy transformace
9. Spektrální a kepstrální analýza
10. Numerická derivace a integrace, interpolace v posloupnosti dat
11. Redukce a komprese dat
12. Způsoby číslicové filtrace, vlastnosti číslicových filtrů
13. Návrh číslicových filtrů.

Cíl

Cílem předmětu je poskytnout studentům přehled a orientaci v oblasti zpracování digitálních signálů. Důraz je kladen na frekvenční a spektrální analýzu a na číslicovou filtraci signálů.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program EEKR-MN magisterský navazující

    obor MN-KAM , 1. ročník, letní semestr, 5 kreditů, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení na počítači

39 hod., povinná

Vyučující / Lektor