Detail předmětu

Evoluční algoritmy

FEKT-MEALAk. rok: 2019/2020

Předmět je orientován na deterministické a stochastické metody optimalizace pro hledání globálních extrémů. Zaměřuje se zejména na evoluční algoritmy s populacemi, jako genetické algoritmy, řízené náhodné prohledávání, evoluční strategie, metodu rojení částic, metodu mjravenčích kolonií a další.

Výsledky učení předmětu

Absolvent předmětu je schopen:
Realizovat jednoduché analytické optimalizační metody (metodu nejstrmějšího sestupu a Newtonovu metodu)
Realizovat simplexovou metodu pro hledání globálního extrému
Vysvětlit podstatu stochastických optimalizačních metod s populacemi
Vysvětlit podstatu binárních a spojitých genetických algoritmů a jejich základních operací

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia, předpokládáme znalosti ze základů numerické matematiky. V laboratorní výuce se předpokládá znalost programovacího prostředí Matlab.

Doporučená nebo povinná literatura

Tvrdík, J.: Evoluční algoritmy. Skripta, Přírodovědecká fakulta Ostravské univerzity, 2004 (CS)
Hynek, J.: Genetické algoritmy a genetické programování. Grada Publishing, 2008 (CS)
Zelinka a kol.: Evoluční výpočetní techniky. Principy a aplikace. BEN, Praha, 2009 (CS)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons, New Jersey, 2004 (EN)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky a cvičení na počítači. Předmět využívá e-learning. Student odevzdává jeden samostatný projekt.

Způsob a kritéria hodnocení

Podmínky pro úspěšné ukončení předmětu upřesňuje každoročně aktualizovaná vyhláška garanta předmětu;
- až 30 bodů za řešení zadaných úkolů v laboratorním cvičení (pro postup ke zkoušce je nutný zisk minimálně 15 bodů)
- až 70 bodů za písemnou zkoušku (z písemné zkoušky je nutné získat minimálně 35 bodů)

Jazyk výuky

čeština

Osnovy výuky

1. Úvod do matematické optimalizace - gradient, hessian
2. Metoda nejstrmějšího sestupu Newtonova metoda, Fibonacciho optimalizace
3. Simplexová metoda, horolezecký algoritmus, simulované žíhání (SA), řízené náhodné prohledávání (CRS)
4. DE (diferenciální evoluce), ES (evoluční strategie), soutěžní heuristiky
5. Úvod ke genetickým algoritmům (GA), GA s binárním vyjádřením hodnot
6. GA se spojitým vyjádřením hodnot, problém obchodního cestujícího (TSP) s GA
7. Genetické programování
8. Rojové algoritmy: mravenčí kolonie (AC), TSP s AC a SA, heuristické metody
9. Rojové algoritmy: rojení částic (PSO), SOMA
10. Algoritmy inspirované chováním světlušek, netopýrů, kukaček
11. Algoritmy inspirované chováním vlků, včel
12. Optimalizace v MATLABu, ověřování a porovnávání algoritmů – praktické ukázky

Cíl

Získání znalostí o deterministických a stochastických metodách optimalizace. Seznámení se s evolučními algoritmy s populacemi pro hledání globálních extrémů vícerozměrných funkcí. Seznámení se s úvodem do genetického programování.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu (viz Rozvrhové jednotky).
V zásadě:
- povinné počítačové cvičení (zmeškaná laboratorní cvičení musí být řádně omluvená a lze je nahradit po domluvě s vyučujícím)
- nepovinná přednáška

Zařazení předmětu ve studijních plánech

  • Program EEKR-M1 magisterský navazující

    obor M1-BEI , 2. ročník, zimní semestr, 5 kreditů, volitelný oborový

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1. ročník, zimní semestr, 5 kreditů, volitelný oborový

Typ (způsob) výuky

 

Cvičení na poč.

13 hod., povinná

Vyučující / Lektor

Ostatní aktivity

13 hod., povinná

Vyučující / Lektor