Detail předmětu

Číslicové zpracování signálů

FEKT-MCSIAk. rok: 2019/2020

Definice a klasifikace 1D a 2D diskrétních signálů a systémů. Příklady signálů a systémů. Spektrální analýza s využitím FFT. Spektrogramy a tekoucí spektra. Hilbertova transformace. Reprezentace pásmově omezených signálů. Decimace a interpolace. Transverzální a polyfázové filtry. Banky filtrů s dokonalou rekonstrukcí. Půlpásmové kvadraturní (QMF) filtry. Vlnková transformace. Analýza signálu s vícenásobným rozlišením. Náhodné veličiny, náhodné procesy a matematická statistika. Výkonová spektrální hustota a její odhad. Neparametrické metody výpočtu výkonové spektrální hustoty. Lineární predikční analýza. Parametrické metody pro výpočet výkonové spektrální hustoty. Komplexní a reálné kepstrum. V počítačových cvičeních si studenti ověří metody číslicového zpracování signálu v prostředí Matlab v reálném čase.

Výsledky učení předmětu

Student bude umět stanovit spektrální vlastnosti 1D a 2D deterministických i náhodných signálů s využitím různých bázových funkcí (fourierovská analýza, vlnky) pro vícenásobné rozlišení. Bude umět používat banky filtrů, které mají více kmitočtů vzorkování (využití např. v kompresních metodách audio a videosignálů, přenos ADSL apod.). Dále bude znát principy lineární predikce a kepstrální analýzy. Budou umět využívat program Matlab pro zpracování signálů a návrh systémů.

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia s důrazem na číslicové zpracování signálu. Dále jsou nutné základní schopnost programovat v prostředí Matlab.

Doporučená nebo povinná literatura

SHENOI, K.: Digital Signal Processing in Telecommunications. Prentice Hall, New Jersey 1995. ISBN 0-13-096751-3
FLIEGE,N.J.: Multirate Digital Signal Processing. John Wiley, Chichester 1994. ISBN 0 471 93976 5
MADISETTI, V.K., WILLIAMS, D.B.: The Digital Signal Processing Handbook. CRC Press, 1998. ISBN 0-8493-8572-5
MITRA, S.K.: Digital Signal Processing. A Computer-Based Approach. The McGraw-Hill Companies, Inc. New York 1998. ISBN 0-07-042953-7
VÍCH, R., SMÉKAL, Z.: Digital Filters (Číslicové filtry). Academia, Praha 2000. ISBN 80-200-0761-X (In Czech)
SMÉKAL? Z.: Číslicové zpracování signálů, FEKT, VUT v BRně.

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisí na typu výuky. V přednáškách je kombinováno promítání Power Pointových prezentací s odvozováním některých důležitých partií přímo na tabuli. Všechny přednášky jsou studentů k dispozici na e-learningu. Jsou také pro větší názornost používány ukázky programů v jazyce Java a Matlab a videoukázky. V laboratorních cvičeních si studenti přímo ověřují probírané metody a algoritmy na multimediálních stanicích při simulacích i v reálném čase.

Způsob a kritéria hodnocení

Pro úspěšné ukončení předmětu je nutné absolvovat povinně počítačová cvičení a získat zápočet. Za semestr z počítačových laboratoří mohou získat 30 bodů ze 100. Zbytek 70 bodů mohou získat úspěšným složením závěrečné písemné zkoušky.

Jazyk výuky

čeština

Osnovy výuky

1. Popis diskrétních signálů a jejich dělení. Energetické a výkonové signály. Periodické signály. Základní 1D a 2D signály. Spektrum diskrétní Fourierovy řady a diskrétní Fourierovy transformace. Algoritmus rychlé Fourierovy transformace. Transformace Z.
2. Vnější a stavový popis. BIBO stabilita, kauzalita. Lineární časově invariantní 1D diskrétní systém. Spojování systémů z dílčích sekcí. Systémy typu IIR a FIR. Kmitočtové charakteristiky, rychlá konvoluce. Metoda odstranění přesahu a metoda přičtení přesahu. Lineární 2D diskrétní systém invariantní vůči posunutí. 2D Fourierova transformace diskrétního signálu a její vlastnosti. 2D kmitočtové charakteristiky
3. Maticový zápis soustavy stavových rovnic a jejich řešení. Semi-symbolická analýza pomocí počítače. Grafy signálových toků a Masonovo pravidlo. Kontrola kauzality diskrétního systému.
4. Definice periodické sudé posloupnosti z jednorázové posloupnosti, definice diskrétní kosinové transformace DCT I až DCT IV. Souvislost DCT II a DFT. Definice diskrétní sinové transformace. Podvzorkování a nadvzorkování diskrétního signálu v poměru celého čísla. Popis v časové a kmitočtové oblasti. Změna vzorkovacího kmitočtu v poměru racionálního čísla. Optimalizace počtu násobiček a počtu registrů paměti antialiasingové dolní propusti.
5. Rozložení pólů a nulových bodů v rovině z. Minimální, maximální a smíšená fáze. Fázovací článek, inverzní diskrétní systém. Vzorkování pásmově omezených signálů. Reálný signál, analytický signál a komplexní obálka. Hilbertova transformace pro spojité signály. Kvadraturní modulátor a demodulátor. Hilbertův transformátor pro diskrétní signály.
6. Rozkladová a rekonstrukční banka číslicových filtrů. Výpočet DFT spektra diskrétního signálu pomocí rovnoměrné banky číslicových filtrů. Subpásmové kódování. Kvadraturní zrcadlové filtry. Perfektní rekonstrukce signálu. Transmultiplexery.
7. Gaborova transformace a krátkodobá Fourierova transformace. Časově kmitočtové rozlišení, Heisenbergův princip neurčitosti. Ortogonální systémy a jejich využití pro spektrální analýzu. Vlnky a jejich definice.
8. Spojitá vlnková transformace, diskrétní vlnková transformace. Vlnková transformace s diskrétním časem. Souvislost vlnkové transformace s diskrétním časem s QMF bankami číslicových filtrů.
9. Distribuční funkce a hustota rozdělení pravděpodobnosti, obecné a centrální momenty. Stacionární a ergodické spojité a diskrétní náhodné procesy. Odhady, konsistentní odhad. Náhodný výběr z rozdělení pravděpodobnosti, statistiky, testování statistických hypotéz, parametrické a neparametrické testy, testy dobré shody.
10. Přímá a zpětná lineární predikce. Výpočet lineárních predikčních koeficientů. Křížové struktury typu AR a ARMA a jejich využití. Použití lineární predikční analýzy pro kompresi řečového signálu.
11. Definice výkonové spektrální hustoty a její vlastnosti. Bartletova metoda průměrování periodogramů. Welchova metoda průměrování modifikovaných periodogramů. Blackmanova-Tukeova metoda vyhlazení periodogramu.
12. Náhodné procesy typu AR, MA a ARMA. Definice modelu pro výpočet výkonové spektrální hustoty. Souvislost mezi parametry modelu a autokorelačními koeficienty. Yuleova-Walkerova metoda a Burgova metoda pro AR model.
13. Komplexní a reálné kepstrum. Zobecněná superpozice. Homomorfní filtrace, definice a její použití. Aproximace exponenciální funkce pomocí řetězových zlomků.

Cíl

Cílem předmětu je obsáhnout moderní metody číslicového zpracování signálu, které jsou založeny na analýze 1D a 2D diskrétních a číslicových signálů a systémů. Dále se studenti seznámí s parametrickou a neparametrickou spektrální analýzou náhodných signálů a matematickou statistikou. Budou umět využívat lineární predikce a zpracovávat signál pomocí bank číslicových filtrů s různými vzorkovacími kmitočty v reálné praxi.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program AUDIO-P magisterský navazující

    obor P-AUD , 1. ročník, letní semestr, 6 kreditů, povinný

  • Program EEKR-M1 magisterský navazující

    obor M1-KAM , 1. ročník, letní semestr, 6 kreditů, volitelný mimooborový
    obor M1-MEL , 1. ročník, letní semestr, 6 kreditů, volitelný mimooborový
    obor M1-TIT , 1. ročník, letní semestr, 6 kreditů, povinný

  • Program IBEP-V magisterský navazující

    obor V-IBP , 1. ročník, letní semestr, 6 kreditů, volitelný oborový
    obor V-IBP , 2. ročník, letní semestr, 6 kreditů, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Laboratorní cvičení

39 hod., povinná

Vyučující / Lektor