Detail předmětu
Matematika 5 (S)
FAST-CA001Ak. rok: 2018/2019
Chyby v numerických výpočtech. Řešení transcendentních rovnic pro jednu a více neznámých iteračními metodami. Interpolace a aproximace funkce. Numerické derivování, numerická integrace a jejich aplikace pro řešení okrajových úloh pro obyčejné diferenciální rovnice.
Aplikace podle zaměření oboru.
Garant předmětu
Zajišťuje ústav
Ústav matematiky a deskriptivní geometrie (MAT)
Výsledky učení předmětu
Pochopit základní principy numerických výpočtů a seznámit se s faktory, které ovlivňují numerické výpočty. Umět řešit vybrané základní úlohy numerické matematiky. Pochopit princip iteračních metod řešení rovnice f(x)=0 a systémů lineárních algebraických rovnic, zvládnout výpočetní algoritmy. Seznámit se s problematikou interpolace a aproximace funkcí a naučit se úlohy prakticky řešit. Znát principy numerické derivace a umět numericky řešit okrajové úlohy pro obyčejné diferenciální rovnice. Naučit se numerickým výpočtům integrálů.
Prerekvizity
Ovládat elementární pojmy teorie funkcí jedné reálné proměnné (derivace, limita a spojitost, elementární funkce). Umět řešit integrály funkce jedné reálné proměnné, znát jejich základní aplikace.
Plánované vzdělávací činnosti a výukové metody
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT - přednášky, cvičení.
Způsob a kritéria hodnocení
Úspěšné absolvování naplánovaných kontrolních testů a odevzdání individuálních domácích úloh uložených učitelem. Nejsou povoleny neomluvené neúčasti studentů ve cvičení. Semestrální zkouška se hodnotí součtem bodů z písemného zkoušení (maximálně 70) a bodů ze cvičení (maximálně 30).
Jazyk výuky
čeština
Osnovy výuky
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10.Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11.Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12.Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13.Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků
Cíl
Pochopit základní principy numerických výpočtů a seznámit se s faktory, které ovlivňují numerické výpočty. Umět řešit vybrané základní úlohy numerické matematiky. Pochopit princip iteračních metod řešení rovnice f(x)=0 a systémů lineárních algebraických rovnic, zvládnout výpočetní algoritmy. Seznámit se s problematikou interpolace a aproximace funkcí a naučit se úlohy prakticky řešit. Znát principy numerické derivace a umět numericky řešit okrajové úlohy pro obyčejné diferenciální rovnice. Naučit se numerickým výpočtům integrálů.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Zařazení předmětu ve studijních plánech
- Program N-P-E-SI (N) magisterský navazující
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
obor S , 1. ročník, zimní semestr, 4 kredity, povinný - Program N-K-C-SI (N) magisterský navazující
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
obor S , 1. ročník, zimní semestr, 4 kredity, povinný - Program N-P-C-SI (N) magisterský navazující
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
obor S , 1. ročník, zimní semestr, 4 kredity, povinný - Program N-K-C-SI (N) magisterský navazující
obor S , 1. ročník, zimní semestr, 4 kredity, povinný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10.Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11.Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12.Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13.Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků
Cvičení
13 hod., povinná
Vyučující / Lektor
Osnova
Navazuje přímo na jednotlivé přednášky.
1. Chyby v numerických výpočtech, metoda půlení a metoda prosté iterace pro řešení jedné rovnice pro jednu reálnou neznámou
2. Metoda prosté iterace, Newtonova metoda a její modifikace pro řešení jedné rovnice pro jednu reálnou neznámou
3. Normy matic a vektorů, výpočet matice inverzní
4. Řešení systémů lineárních rovnic se speciálními maticemi a číslo podmíněnosti matice
5. Iterační metody řešení systémů lineárních rovnic
6. Metody řešení systémů nelineárních rovnic
7. Lagrangeova interpolace polynomy a kubickými splajny, Hermiteova interpolace polynomy a Hermiteovými interpolačními kubickými splajny
8. Diskrétní metoda nejmenších čtverců, numerické derivování
9. Klasická formulace okrajové úlohy pro ODR 2. řádu a její aproximace metodou sítí
10.Numerická integrace. Variační formulace okrajové úlohy pro ODR 2. řádu
11.Diskretizace variační úlohy pro ODR 2. řádu metodou konečných prvků
12.Klasická a variační formulace okrajové úlohy pro ODR 4. řádu
13.Diskretizace variační úlohy pro ODR 4. řádu metodou konečných prvků