Detail předmětu
Aplikovaná matematika
FAST-CA057Ak. rok: 2018/2019
Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace). Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
Metody řešení nehomogenních okrajových úloh – Fourierova metoda, pojem Greenovy funkce, metoda variace konstant. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů. Variační metody řešení výše uvedené problematiky.
Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
Laplaceova a Fourierova transformace – základní vlastnosti.
Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
Laplaceova metoda řešení evolučních rovnic - rovnice vedení tepla.
Rovnice z teorie pružnosti.
Garant předmětu
Zajišťuje ústav
Ústav matematiky a deskriptivní geometrie (MAT)
Výsledky učení předmětu
Pochopit pojem zobecněného řešení obyčejné diferenciální rovnice. Seznámit se s principy moderních metod řešení obyčejných a parciálních diferenciálních rovnic, které se využívají v oboru Konstrukce a dopravní stavby.
Prerekvizity
Znalost základů teorie funkce jedné a více proměnných. Umět derivovat a integrovat funkce jedné a více proměnných.
Plánované vzdělávací činnosti a výukové metody
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT - přednášky, cvičení.
Způsob a kritéria hodnocení
Úspěšné absolvování naplánovaných kontrolních testů a odevzdání individuálních domácích úloh uložených učitelem. Nejsou povoleny neomluvené neúčasti studentů ve cvičení. Semestrální zkouška se hodnotí součtem bodů z písemného zkoušení (maximálně 70) a bodů ze cvičení (maximálně 30).
Jazyk výuky
čeština
Osnovy výuky
1. Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace).
2. Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
3. Metody řešení nehomogenních okrajových úloh – Fourierova metoda.
4. Pojem Greenovy funkce, metoda variace konstant.
5. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami.
6. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů.
7. Variační metody řešení výše uvedené problematiky.
8. Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy.
9. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
10. Laplaceova a Fourierova transformace – základní vlastnosti.
11. Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
12. Laplaceova metoda řešení evolučních rovnic - rovnice vedení tepla.
13. Rovnice z teorie pružnosti.
Cíl
Pochopit pojem zobecněného řešení obyčejné diferenciální rovnice. Seznámit se s principy moderních metod řešení obyčejných a parciálních diferenciálních rovnic, které se využívají v oboru Konstrukce a dopravní stavby.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Zařazení předmětu ve studijních plánech
- Program N-P-E-SI (N) magisterský navazující
obor K , 1. ročník, letní semestr, 4 kredity, povinně volitelný
- Program N-K-C-SI (N) magisterský navazující
obor K , 1. ročník, letní semestr, 4 kredity, povinně volitelný
- Program N-P-C-SI (N) magisterský navazující
obor K , 1. ročník, letní semestr, 4 kredity, povinně volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace).
2. Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
3. Metody řešení nehomogenních okrajových úloh – Fourierova metoda.
4. Pojem Greenovy funkce, metoda variace konstant.
5. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami.
6. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů.
7. Variační metody řešení výše uvedené problematiky.
8. Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy.
9. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
10. Laplaceova a Fourierova transformace – základní vlastnosti.
11. Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
12. Laplaceova metoda řešení evolučních rovnic - rovnice vedení tepla.
13. Rovnice z teorie pružnosti.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
Cvičení navazují přímo na uvedená témata přednášek.
1. Základy teorie obyčejných diferenciálních rovnic z hlediska technických aplikací – pojem klasického řešení, Cauchyovy úloha a okrajové úlohy (jejich klasifikace).
2. Analytické metody řešení okrajových úloh pro obyčejné diferenciální rovnice druhého a čtvrtého řádu.
3. Metody řešení nehomogenních okrajových úloh – Fourierova metoda.
4. Pojem Greenovy funkce, metoda variace konstant.
5. Řešení nelineárních diferenciálních rovnic s danými okrajovými podmínkami.
6. Sobolevovy prostory a pojem zobecněného řešení diferenciálních rovnic a důvody zavedení těchto pojmů.
7. Variační metody řešení výše uvedené problematiky.
8. Úvod do teorie parciálních diferenciálních rovnic ve dvou proměnných – jejich klasifikace a základní pojmy.
9. Pojem klasické řešení okrajové úlohy (jejich klasifikace) a vlastnosti řešení.
10. Laplaceova a Fourierova transformace – základní vlastnosti.
11. Fourierova metoda řešení evolučních rovnic – difuzní úlohy, vlnová rovnice.
12. Laplaceova metoda řešení evolučních rovnic - rovnice vedení tepla.
13. Rovnice z teorie pružnosti.