Detail předmětu

Pravděpodobnost a matematická statistika

FAST-GA03Ak. rok: 2018/2019

Náhodný pokus, diskrétní a spojitý náhodný vektor (veličina), rozdělovací funkce, pravděpodobnost, distribuční funkce, transformace náhodných veličin, marginální náhodný vektor, jeho rozdělovací funkce, nezávislé náhodné veličiny, číselné charakteristiky náhodných veličin a vektorů, speciální zákony rozdělení.
Náhodný výběr, statistika, bodový odhad parametru rozdělení a požadované vlastnosti odhadu, intervalový odhad parametru rozdělení, podstata testování statistických hypotéz, realizace testů o hodnotách parametrů rozdělení a tvaru rozdělení.

Zajišťuje ústav

Ústav matematiky a deskriptivní geometrie (MAT)

Výsledky učení předmětu

Student zvládne řešení jednoduchých praktických pravděpodobnostních problémů a používání základních statistických metod z oblasti intervalových odhadů parametrů, testování parametrických i neparametrických statistických hypotéz a lineárních modelů.

Prerekvizity

Ovládat elementární pojmy teorie funkcí jedné a více reálných proměnných (derivace, parciální derivace, limita a spojitost, grafy funkcí). Umět řešit určité integrály, znát jejich základní aplikace.

Doporučená nebo povinná literatura

KOUTKOVÁ, Helena: M03 Základy teorie odhadu a M04 Základy testování hypotéz. FAST VUT, Brno, 2004. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)
KOUTKOVÁ, Helena: Základy teorie odhadu. CERM, Brno, 2007. ISBN 978-80-7204-527-3. (CS)
KOUTKOVÁ, Helena: Základy testování hypotéz. CERM, Brno, 2007. ISBN 978-80-7204-528-0. (CS)
KOUTKOVÁ, Helena, DLOUHÝ, Oldřich: Sbírka příkladů z pravděpodobnosti a matematické statistiky. CERM, Brno, 2011. ISBN 978-80-7204-6. (CS)
KOUTKOVÁ, Helena, MOLL, Ivo: Základy pravděpodobnosti. CERM, 2011. (CS)
WALPOLE, R.E., MYERS, R.H.: Probability and Statistics for Engineers and Scientists. Macmillan Publishing Company New York, 1990. ISBN 0-02-946910-4. (EN)
ANDĚL, Jiří: Statistické metody. Matfyzpress, Praha, 2007. ISBN 8-07-348003-8. (CS)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT - přednášky, cvičení.

Způsob a kritéria hodnocení

Podmínkou udělení zápočtu je účast na cvičení a napsání zápočtové písemky na alespoň 50 procent.
Následuje zkouška, kterou je třeba splnit na alespoň 50%. Zkouška bude pouze písemná. Písemka trvá 90 minut a budou na ní 3 příklady výpočtové a 1 příklad, který bude obsahovat testové otázky z teorie.

Jazyk výuky

čeština

Osnovy výuky

1. Diskrétní a spojitá náhodná veličina (náhodný vektor), rozdělovací funkce. Pravděpodobnost.
2. Vlastnosti pravděpodobnosti. Distribuční funkce. Vlastnosti distribuční funkce.
3. Vztahy mezi rozdělovací funkcí a distribuční funkcí náhodné veličiny. Marginální náhodný vektor, jeho rozdělovací funkce.
4. Nezávislé náhodné veličiny. Číselné charakteristiky náhodných veličin: střední hodnota, rozptyl, kvantily. Pravidla pro výpočet střední hodnoty a rozptylu.
5. Číselné charakteristiky náhodných vektorů: kovariance, korelační koeficient. Normální rozdělení - definice, použití.
6. Chí- kvadrát rozdělení, Studentovo rozdělení. Náhodný výběr. Výběrové statistiky.
7. Bodový odhad parametrů rozdělení a jeho realizace. Požadované vlastnosti odhadu parametru, definice, interpretace.
8. Intervalový odhad parametrů rozdělení.
9. Testování statistických hypotéz - podstata. Testy o parametrech normálního rozdělení.
10. Testy dobré shody.

Cíl

Pochopit základní pojmy teorie pravděpodobnosti. Umět pracovat s rozdělovací a distribuční funkcí náhodné veličiny. Vědět, co udávají a jak se počítají základní číselné charakteristiky náhodných veličin a vektorů. Vědět, jak je definována a jaký význam má normální náhodná veličina. Umět vypočítat pravděpodobnosti ve speciálních případech diskrétních a spojitých rozdělení. Umět určit rozdělení transformované náhodné veličiny.
Znát a umět interpretovat základní pojmy z teorie matematické statistiky - náhodný výběr a jeho realizace, bodový odhad parametru rozdělení a požadované vlastnosti odhadu. Vědět, co je intervalový odhad parametru rozdělení a umět vypočítat realizace intervalových odhadů parametrů normálního rozdělení. Znát podstatu testování statistických hypotéz. Umět testovat hypotézy o parametrech normálního rozdělení a hypotézy o tvaru rozdělení.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program B-P-C-GK bakalářský

    obor G , 1. ročník, letní semestr, 3 kredity, povinný

  • Program B-K-C-GK bakalářský

    obor G , 1. ročník, letní semestr, 3 kredity, povinný
    obor GI , 3. ročník, letní semestr, 4 kredity, povinný

  • Program B-P-C-GK bakalářský

    obor GI , 3. ročník, letní semestr, 4 kredity, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Diskrétní a spojitá náhodná veličina (náhodný vektor), rozdělovací funkce. Pravděpodobnost.
2. Vlastnosti pravděpodobnosti. Distribuční funkce. Vlastnosti distribuční funkce.
3. Vztahy mezi rozdělovací funkcí a distribuční funkcí náhodné veličiny. Marginální náhodný vektor, jeho rozdělovací funkce.
4. Nezávislé náhodné veličiny. Číselné charakteristiky náhodných veličin: střední hodnota, rozptyl, kvantily. Pravidla pro výpočet střední hodnoty a rozptylu.
5. Číselné charakteristiky náhodných vektorů: kovariance, korelační koeficient. Normální rozdělení - definice, použití.
6. Chí- kvadrát rozdělení, Studentovo rozdělení. Náhodný výběr. Výběrové statistiky.
7. Bodový odhad parametrů rozdělení a jeho realizace. Požadované vlastnosti odhadu parametru, definice, interpretace.
8. Intervalový odhad parametrů rozdělení.
9. Testování statistických hypotéz - podstata. Testy o parametrech normálního rozdělení.
10. Testy dobré shody.

Cvičení

26 hod., povinná

Vyučující / Lektor

Osnova

1. Výběrová rozdělovací funkce. Histogram. Rozdělovací funkce náhodné veličiny.
2. Pravděpodobnost. Distribuční funkce.
3. Vztahy mezi rozdělovací a distribuční funkcí.
4. Transformace náhodných veličin.
5. Výpočet střední hodnoty, rozptylu a kvantilů náhodné veličiny. Pravidla pro výpočet střední hodnoty a rozptylu.
6. Korelační koeficient. Výpočet pravděpodobnosti v případech speciálních zákonů rozdělení pravděpodobnosti - alternativní, binomické, Poissonovo.
7. Výpočet pravděpodobnosti v případě normálního rozdělení. Práce se statistickými tabulkami. Výpočet realizací bodových odhadů parametrů rozdělení.
8. Výpočet realizací intervalového odhadu parametrů normálního rozdělení.
9. Testování hypotéz o hodnotách parametrů normálního rozdělení.
10. Testy dobré shody.