Detail předmětu
Matematika IV
FAST-HA01Ak. rok: 2018/2019
Funkce komplexní proměnné, limita, spojitost a derivace. Cauchy-Riemannovy podmínky, analytické funkce. Konformní zobrazení realizované analytickou funkcí.
Rovinné křivky. Prostorové křivky, křivost a torse, Frenetův trojhran, Frenetovy vzorce.
Explicitní, implicitní a parametrické rovnice plochy, první základní forma plochy a její užití. Druhá základní forma plochy, normálová a geodetická křivost plochy. Křivoznačné a asymptotické křivky na ploše, střední a totální křivost plochy, eliptické, hyperbolické, parabolické a kruhové body plochy.
Garant předmětu
Zajišťuje ústav
Ústav matematiky a deskriptivní geometrie (MAT)
Výsledky učení předmětu
Student zvládne hlavní cíle předmětu:
Pochopení základů teorie funkce komplexní proměnné.
Pochopení základů diferenciální geometrie křivek a ploch ve třírozměrném prostoru.
Prerekvizity
Základní znalosti komplexních čísel v rozsahu střední školy.
Znát základní pojmy diferenciálního a integrálního počtu funkce jedné proměnné. Ovládat derivování funkci.
Znát základní pojmy diferenciálního počtu funkce dvou a více proměnných. Umět parciální derivování funkcí více proměnných.
Doporučená nebo povinná literatura
ERWIN KREYSZIG: Differential geometry. Akademische Verlagsgesellschaft, Leipzig, 1957. (EN)
S.P.FINIKOV: Diferencialnaja geometrija. Moskva, 1961. (RU)
DIRK.J.STRUIK: Lectures on classical differential geometry. Addison - Wesley publishing Massachutes USA, 1961. (EN)
DLOUHÝ O., TRYHUK V.: Vybrané části funkce komplexní proměnné a diferenciální geometrie. FAST VUT v Brně, 2010. [https://intranet.fce.vutbr.cz/pedagog/predmety/opory.asp] (CS)
Plánované vzdělávací činnosti a výukové metody
Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT - přednášky, cvičení.
Způsob a kritéria hodnocení
Úspěšné absolvování naplánovaných kontrolních testů a odevzdání individuálních domácích úloh uložených učitelem. Nejsou povoleny neomluvené neúčasti studentů ve cvičení.
Jazyk výuky
čeština
Osnovy výuky
1. Komplexní čísla, základní operace, zobrazení, n-tá odmocnina. Funkce komplexní proměnné.
2. Limita, spojitost, derivace funkce komplexní proměnné, Cauchy-Riemannovy podmínky.
3. Analytické funkce. Konformní zobrazení realizované analytickou funkcí.
4. Konformní zobrazení realizované analytickou funkcí.
5. Křivky v rovině, singulární body křivky.
6. Prostorové křivky, křivost a torse.
7. Frenetův trojhran, Frenetovy vzorce.
8. Explicitní, implicitní a parametrické rovnice plochy.
9. První základní forma plochy a její užití.
10. Druhá základní forma plochy. Normálová a geodetická křivost plochy. Meusnierova věta.
11. Křivoznačné a asymptotické křivky na ploše.
12. Střední a totální křivost plochy.
13. Eliptické, hyperbolické, parabolické a kruhové body plochy.
Cíl
Pochopit základní pojmy funkce komplexní proměnné. Seznámit se s geometrickým významem pojmů.
Pochopení základních pojmů diferenciální geometrie prostorových křivek a ploch.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Komplexní čísla, základní operace, zobrazení, n-tá odmocnina. Funkce komplexní proměnné.
2. Limita, spojitost, derivace funkce komplexní proměnné, Cauchy-Riemannovy podmínky.
3. Analytické funkce. Konformní zobrazení realizované analytickou funkcí.
4. Konformní zobrazení realizované analytickou funkcí.
5. Křivky v rovině, singulární body křivky.
6. Prostorové křivky, křivost a torse.
7. Frenetův trojhran, Frenetovy vzorce.
8. Explicitní, implicitní a parametrické rovnice plochy.
9. První základní forma plochy a její užití.
10. Druhá základní forma plochy. Normálová a geodetická křivost plochy. Meusnierova věta.
11. Křivoznačné a asymptotické křivky na ploše.
12. Střední a totální křivost plochy.
13. Eliptické, hyperbolické, parabolické a kruhové body plochy.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
1. Komplexní čísla, základní operace, zobrazení, n-tá odmocnina. Funkce komplexní proměnné.
2. Limita, spojitost, derivace funkce komplexní proměnné, Cauchy-Riemannovy podmínky.
3. Analytické funkce. Konformní zobrazení realizované analytickou funkcí.
4. Konformní zobrazení realizované analytickou funkcí.
5. Křivky v rovině, singulární body křivky.
6. Prostorové křivky, křivost a torse.
7. Frenetův trojhran, Frenetovy vzorce.
8. Explicitní, implicitní a parametrické rovnice plochy.
9. První základní forma plochy a její užití.
10. Druhá základní forma plochy. Normálová a geodetická křivost plochy. Meusnierova věta.
11. Křivoznačné a asymptotické křivky na ploše.
12. Střední a totální křivost plochy.
13. Eliptické, hyperbolické, parabolické a kruhové body plochy. Zápočty.