Detail předmětu

Teorie dynamických systémů

FEKT-MPC-TDSAk. rok: 2020/2021

Teorie systémů, systémový přístup, kybernetika. Klasický (V/V) a stavový popis pro analýzu a návrh dynamických systémů, vzájemné vztahy. Spojité, diskrétní, lineární, nelineární, časově variantní a invariantní systémy. Stabilita systémů. Dekompozice systémů. SISO a MIMO systémy. Řiditelnost, dosažitelnost, pozorovatelnost, rekonstruovatelnost a realizovatelnost systémů. Stavové rekonstruktory a stavové zpětná vazba. Deterministické a stochastické systémy. Bayesovský přístup k odhadování. Kalmanův filtr.

Výsledky učení předmětu

Absolvent je schopen používat moderní systémové metody a prostředky k řešení systémových úloh:
- demonstrovat a vysvětlit rozdíl mezi stavovým a V/V popisem systému
- vysvětlit pojmy kauzalita, realizovatelnost, dosažitelnost řiditelnost, pozorovatelnost a rekonstruovatelnost systému
- identifikovat a aproximovat základní typy dynamických systémů a systém diskretizovat
- aplikovat principy blokové algebry a Masonovo pravidlo pro výpočet přenosu
- navrhnout stavový rekonstruktor a stavovou zpětnou vazbu
- vysvětlit Bayesovský přístup k odhadování a princip Kalmanova filtru

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia.

Doporučená nebo povinná literatura

Štecha, J., Havlena, V.:Teorie dynamických systémů. Vydavatelství ČVUT, Praha, 1999. (CS)
Ogata, K.: Modern Control Engineering, Fifth edition. Prentice Hall, 2010, ISBN 10: 0-13-615673-8. (EN)
Blaha, P., Bortlík, P., Veselý, L.: Teorie dynamických systémů - sbírka úloh. Skriptum VUT, 2016. (CS)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování závisejí na způsobu výuky a jsou popsány článkem 7 Studijního a zkušebního řádu VUT. Podklady k přednáškám a ke cvičení jsou pro studenty dostupné z webových stránek předmětu. Student odevzdává jeden samostatný projekt.

Způsob a kritéria hodnocení

Numerická cvičení- Max 15 bodů.
Individuální projekt - Max. 15 bodů.
Závěrečná zkouška - Max. 70 bodů.

Jazyk výuky

čeština

Osnovy výuky

1. Definice a rozdělení dynamických systémů.
2. Způsoby popisu: vstup výstupní, přenosový, frekvenční, polynomiální.
3. Stavový popis, stavové rovnice, jejich sestavení a řešení. Modelování dynamických systémů, MATLAB Simulink.
4. Realizace modelu: sériové, paralelní a přímé programování. Kanonické formy.
5. Řiditelnost, dosažitelnost, pozorovatelnost, rekonstruovatelnost systémů.
6. Bloková algebra, Masonovo pravidlo pro výpočet přenosu.
7. Stavová zpětná vazba, stavové rekonstruktory.
8. Diskretizace spojitých soustav.
9. Stabilita lineárních a nelineárních systémů, stabilita intervalových polynomů.
10. Vícerozměrové systémy.
11. Bayesovský přístup k odhadování náhodných veličin.
12. Kalmanův filtr.
13. Opakování, rezerva.

Cíl

Seznámit studenty s obecnou teorií systémů, s její aplikací na dynamické systémy a systémovým přístupem k řešení úloh.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Zařazení předmětu ve studijních plánech

  • Program MPC-KAM magisterský navazující, 1. ročník, zimní semestr, 7 kreditů, povinný

Typ (způsob) výuky

 

Přednáška

39 hod., nepovinná

Vyučující / Lektor

Cvičení odborného základu

26 hod., povinná

Vyučující / Lektor

eLearning