Detail předmětu

Strojové učení

FEKT-LSTUAk. rok: 2018/2019

Předmět se zabývá otázkou, jak konstruovat počítačové programy, které se automaticky zlepšují pomocí učení. Cílem předmětu je představit přehled základních typů algoritmů a postupů definujících strojové učení, které tvoří matematicko-logický základ oborů, jako jsou umělá inteligence, rozpoznání vzorů nebo dolování dat. Důraz je kladen zejména na řešení klasifikačních a optimalizačních úloh.

Garant předmětu

Výsledky učení předmětu

Absolvent předmětu je schopen:
- navrhnout řešení klasifikační úlohy
- předzpracovat data a vybrat vhodnou množinu příznaků k modelování
- vybrat vhodný model a odhadnout jeho přesnost
- zdůvodnit vhodnost/nevhodnost různých řešení
- navrhnout řešení optimalizační úlohy
- vybrat pro daný typ optimalizační úlohy vhodnou optimalizační metodu

Prerekvizity

Jsou požadovány znalosti na úrovni bakalářského studia zejména v oblasti matematiky, statistiky a teorie pravděpodobnosti.

Doporučená nebo povinná literatura

Honzík P.: Strojové učení. Elektonická skripta VUT. (EN)
Mitchell, Tom M. Machine learning. Boston : McGraw-Hill, 1997. 414 s. McGraw-Hill series in computer science. ISBN 0-07-042807-7. (CS)

Plánované vzdělávací činnosti a výukové metody

Metody vyučování zahrnují přednášky a cvičení. Student odevzdává 5 úloh.

Způsob a kritéria hodnocení

Zápočet (úkoly): 20 bodů.
Zkouška: 80 bodů.
Získání zápočtu není podmíněno počtem bodů získaných za projekt.

Jazyk výuky

čeština

Osnovy výuky

1. Paradigmata strojového učení a terminologie.
2. Statistika ve strojovém učení.
3. Základy teorie informace.
4. Rozhodovací stromy.
5. Učení založené na instancích.
6. Chybové funkce.
7. Metody odhadu chyby modelu.
8. Předzpracování dat.
9. Bayesovské učení.
10. Genetické algoritmy.
11. Lineární regrese. Diskriminační analýza. Podpůrné vektory.
12. Meta-učení.
13. Učení bez učitele.

Cíl

Cílem předmětu je poskytnou studentům základní orientaci v klíčových algoritmech a teoriích strojového učení, důraz je kladen na oblasti klasifikace a optimalizace.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Povinné odevzdání úkolů. Veškeré ostatní součásti výuky jsou nepovinné.

Zařazení předmětu ve studijních plánech

  • Program EEKR-ML1 magisterský navazující

    obor ML1-KAM , 2. ročník, zimní semestr, 5 kreditů, volitelný oborový

  • Program EEKR-CZV celoživotní vzdělávání (není studentem)

    obor ET-CZV , 1. ročník, zimní semestr, 5 kreditů, volitelný oborový

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Cvičení na poč.

26 hod., povinná

Vyučující / Lektor