• Brno University of Technology - Centre of Sports Activities
  • Research centres

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Course detail

Modern electronic circuit design

Course unit code: FEKT-DRE1A
Academic year: 2017/2018
Type of course unit: optional specialized
Level of course unit: Doctoral (3rd cycle)
Year of study: 1
Semester: winter
Number of ECTS credits:
Learning outcomes of the course unit:
The graduate is able to (1) design basic blocks of integrated circuits; (2) use advanced methods for simulation of continuous- and discrete-time systems; (3) utilize conventional and non-conventional optimization methods for systems of general nature.
Mode of delivery:
90 % face-to-face, 10 % distance learning
Prerequisites:
Knowledge of master mathematics (matrix calculus, differential equations, integral transformations, graph theory) and circuit theory (methods for equation formulation, device models, basic circuits) is requested.
Co-requisites:
Not applicable.
Recommended optional programme components:
Not applicable.
Course contents (annotation):
Students become familiar with advanced methods for computer modeling of electronic circuits ( steady-state calculation, approximate symbolic analysis, system modeling with VHDL-AMS, transmission-line circuits, signal integrity analysis in discrete and integrated applications, simulation of switched circuits); analog integrated circuit design (basic elements of CMOS technology, design of basic cells, analysis of special problems - ESD protection, latch-up, EMC of integrated circuits); circuit optimization (formulation of objective function, local and global methods, multicriterial problems).
Recommended or required reading:
VLACH, J., SINGHAL, K.: Computer Methods for Circuit Analysis and Design (2nd ed.). New York: Van Nostrand Reinhold, 1994. (EN)
CHENG, C .K., LILLIS, J., LIN, S., CHANG, N.: Interconnect Analysis and Synthesis. John Wiley & Sons, New York 2000. (EN)
LAKER, K.R., SANSEN, W. M. C.: Design of Analog Integrated Circuits and Systems. McGraw-Hill, 1994. (EN)
DEB, K. Multi-Objective Optimization using Evolutionary Algorithms. Chichester: J. Wiley & Sons, 2002. (EN)
Balanis, C. A. (2016). Antenna theory: analysis and design. John Wiley & Sons. (EN)
Planned learning activities and teaching methods:
Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Teaching methods include lectures. Course is taking advantage of e-learning (Moodle) system. Students have to write two projects during the course.
Assesment methods and criteria linked to learning outcomes:
Two individual projects and their defense (2 x 50 points).
Language of instruction:
English
Work placements:
Not applicable.
Course curriculum:
1. Computer modeling of electronic circuits - 4 seminars
- Methods for solution in DC, AC, and time domains. Computation accuracy, convergence problems.
- Computation of steady state in time, frequency, and combined domains. Methods for approximate symbolic analysis and their utilization.
- Methods for simulation of circuits with transmission lines. Utilization for analysis of signal integrity in discrete and integrated applications.
- Modeling of fractional-order circuits.

2. Basic theorems for lumped and distributed circuits - 1 seminar
- Mathematical description of transmitting and receiving antenna system.
- Introduction to the reciprocity theorem and its applications. Reciprocity between receiving and transmitting states of antenna (construction of the Kirchhoff equivalent circuit of receiving antenna, power theorem of reciprocity, conditions of antenna matching).

3. Analog integrated circuit design - 4 seminars
- Basic network elements. Specifics of CMOS technology, parasitic elements, manufacturing tolerance.
- Building blocks of integrated circuits. Current mirrors, amplifier stages. Analysis of operation and parasitic properties.
- Methodology of design basic blocks, analytical model and it solution. Case study of an transconductance operating amplifier.
- Simulation of special problems: ESD protection, latch-up, EMC of integrated circuits.

4. Circuit optimization - 3 seminars
- Classification of optimization problems (local and global, single- and multiple-criteria, etc.). Formulation of criterial function, local optimization methods (steepest descent, Newton method).
- Global optimization methods for single-criteria functions (simplex method, genetic algorithms, particle-swarm methods, self-organizing and migrating algorithms).
- Formulation of multi-criteria optimization problems, aggregation methods for transformation to single-criteria problems, multi-criteria algorithms (NSGA-II, MOPSO, MOSOMA).
Aims:
Lectures are focused on advanced methods for analysis, design, and optimization of discrete and integrated electronic circuits.
Specification of controlled education, way of implementation and compensation for absences:
Evaluation of activities is specified by a regulation, which is issued by the lecturer responsible for the course annually.

Type of course unit:

Seminar: 39 hours, optionally
Teacher / Lecturer: prof. Dr. Ing. Zdeněk Kolka

The study programmes with the given course