• Brno University of Technology - Centre of Sports Activities
  • Research centres

  • Pravděpodobně máte vypnutý JavaScript. Některé funkce portálu nebudou funkční.

Course detail

Computer Graphics

Course unit code: FSI-2PG
Academic year: 2016/2017
Type of course unit: optional (voluntary)
Level of course unit: Bachelor's (1st cycle)
Year of study: 1
Semester: summer
Number of ECTS credits:
Learning outcomes of the course unit:
Students will apply the knowledge acquired in mathmatics and descriptive geometry. This knowledge will be extended by understanding of technical curves and surfaces, students will gain skills necessary for the work with a professional graphic system (DESIGN CAD 3D). They will be made familiar with algorithm building and with Borland DELPHI environment, as well as programming of basic graphics systems.
Mode of delivery:
90 % face-to-face, 10 % distance learning
Prerequisites:
Students are expected to be familiar with basic terms of 3D geometry, basic problems of 3D geometry, hyve basic knowledge of projection methods (Monge and orthographic projection) and a grasp of language Pascal and Borland Delphi environment.
Co-requisites:
Not applicable.
Recommended optional programme components:
Not applicable.
Course contents (annotation):
The course familiarises students with basic principles of geometric shape computer modelling and basic algorithm of computer graphics. Acquired knowledge is a precondition for successful work with CAD systems.
Lecture summary:
2-D modelling: explicit, parametric and polar curves, Ferguson, Beziere and Coons curves, basic plane transforms and their composition, modelling of rolling motion.
3-D modelling: parallel and perpendicular projection, linear perspective. Explicit, parametric and polar surfaces. Beziere and Coons surfaces and their connection. Surfaces defined by border. Space figure realistic representation, hide algorithm, constant shading. edge, surface
and volume modelling, curves, surfaces and solids operations, sweep modelling.
Recommended or required reading:
Martišek, D.: Počítačová geometrie a grafika, VUTIUM, Brno 2000
Martišek, D.: Počítačová geometrie a grafika, VUTIUM, Brno 2002
Martišek, D.: Matematické principy grafických systémů, Littera, Brno 2002
Martišek, D.: Matematické principy grafických systémů, Littera, Brno 2002
Planned learning activities and teaching methods:
The course is taught through exercises which are focused on practical topics presented in lectures.
Assesment methods and criteria linked to learning outcomes:
Requirements of credit obtainning: graphic program constructed in Borland DELPHI
environment, machine part graphic model constructed in DESIGN CAD.
Language of instruction:
Czech
Work placements:
Not applicable.
Course curriculum:
Not applicable.
Aims:
Students will apply the knowledge acquired in mathmatics and descriptive geometry. This knowledge will be extended by understanding of technical curves and surfaces, students will gain skills necessary for the work with a professional graphic system (DESIGN CAD 3D). They will be made familiar with algorithm building and with Borland DELPHI environment, as well as programming of basic graphics systems.
Specification of controlled education, way of implementation and compensation for absences:
Missed lessons may be compensated for via a written test.

Type of course unit:

seminars in computer labs: 26 hours, compulsory
Teacher / Lecturer: doc. PaedDr. Dalibor Martišek, Ph.D.
Syllabus: 1. DESIGN CAD system: environment, co-ordinate system, cursor control, system setting (Units, Options - View, Cursor, Grid); 2. DESIGN CAD system: elements of edge modelling (Point, Line, Circle, Arc, Polygon), edge operations (Fillet, Chamfer, Combine). 3. DESIGN CAD system: colours and their editting, colour system RGB (DESIGN CAD) and CMY (Paint Brush). Files control (Open, New, Save, Save as). Elements of surface modelling (Circle, Polygon, Plane) 4. DESIGN CAD system: Zoom, Fit to Window, Snap Toolbox. BORLAND DELPHI: Environment, simple program (RGB cube cut).5. DESIGN CAD system: Curves and surfaces operations (Make Slane, Surface Connect, S. Patch, Cut Plane, Plane Subtract). BORLAND DELPHI: Curve constructions – self algorithm of curves construction 6. DESIGN CAD system: Elements of volume modelling (Box, Wall, Cylinder, Sphere), volume elements operations (Add, Subtract, Intersect, Slice), visualisation commands: Hide, Shade. Material, Light Source. BORLAND DELPHI: Plane transforms. 7. DESIGN CAD system: Selection and blocks (Selection Move, -Duplicate, -Rotate, -Mirror, -Scale, -Zoom). Extruding and sweeping, Info Box. BORLAND DELPHI: Modelling of technical motions 8. DESIGN CAD system: Work with blocks (Array, Circular Array). Revision, assignment of semester work. BORLAND DELPHI: Technical curves in plane. 9. DESIGN CAD system: Semester work processing. BORLAND DELPHI: Edge Models of elementary surfaces and solids in parallel and orthographic projection. 10. DESIGN CAD system: Semester work processing. BORLAND DELPHI: Edge models of technical surfaces. 11. DESIGN CAD system: Semester work processing. BORLAND DELPHI: Visibility algorithms. 12.- 14. Semester work processing.

The study programmes with the given course