Branch Details

Design and Process Engineering

Original title in Czech: Konstrukční a procesní inženýrstvíFSIAbbreviation: D-KPIAcad. year: 2018/2019Specialisation: Aircraft Design and Air Transport

Programme: Machines and Equipment

Length of Study: 4 years

Accredited from: 1.1.1999Accredited until: 31.12.2020

Profile

Design and Process Engineering
· Designing, construction, calculation, technology of manufacturing, technical preparation of manufacturing including assembly and testing,
· Thermal and nuclear power plant devices such as steam and combustion turbines, steam generators, steam power plants and heating plants including nuclear power stations, industrial power engineering and their environmental aspects,
· Water turbines, hydrodynamic and hydrostatic pumps, piping systems, hydroelectric power plants, and pumping stations,
· Machinary and devices for chemical industry, food-stuff industry, and biotechnological treatment lines,
· Construction, modelling and theoretical studies of machines and devices for cutting, forming machines, industrial robots, and manipulators,
· Machine parts and mechanisms, methodology of designing machine elements and working mechanisms of general application with consideration of stochastic qualities of inputs, including the application of special types of machines and devices,
· Cars, vans and lorries, buses, trailers, semi-trailers, and motorcycles,
· Combustion engines for all types of vehicle drives, simulation of combustion engine thermomechanical systems, dynamics of driving gear, engine accessories, ecology,
· Machines and devices for in-plant handling of material and handling between operations, for the mining and transport of building materials, for passenger conveyance in buildings,
· Aerodynamic calculation and designing, flight mechanics, fatigue and durability of aircraft constructions, aeroelasticity of aircraft,
· Quality of machine industry production.

Guarantor

Issued topics of Doctoral Study Program

  1. Analysis and modeling of stiffness characteristics of hydraulic and electric actuators in the aircraft control system.

    The current trend in the construction of small transport aircraft, equipped with automatic control systems, is to use of hydraulic and electrical control units for the control surfaces of the airplane. These aggregates are the high demands on weight, energetic and dynamic properties. When analyzing systems control of the airplane it is necessary to consider the effects of aero-elastic phenomena in the construction of aircraft and flight modes. The negative effects of these aeroelastic phenomena can extend to accidents airplane. Inclusion of hydraulic or electric actuators to the airplane system control creates significant additional risk of such aeroelastic phenomena developing. The aim of this thesis is to make the effect of stiffness properties of hydraulic and electric actuators for aircraft aeroelastic phenomena. Based on theoretical analysis and modeling of the properties actuators control devise a methodology for assessing their effects on the generation of hazardous aerodynamic phenomena. It is also necessary to focus attention on methodology of experimental determination of the stiffness characteristics

    Tutor: Třetina Karel, doc. Ing., CSc.

  2. Analysis and modeling of stiffness characteristics of hydraulic and electric actuators in the aircraft control system.

    The current trend in the construction of small transport aircraft, equipped with automatic control systems, is to use of hydraulic and electrical control units for the control surfaces of the airplane. These aggregates are the high demands on weight, energetic and dynamic properties. When analyzing systems control of the airplane it is necessary to consider the effects of aero-elastic phenomena in the construction of aircraft and flight modes. The negative effects of these aeroelastic phenomena can extend to accidents airplane. Inclusion of hydraulic or electric actuators to the airplane system control creates significant additional risk of such aeroelastic phenomena developing. The aim of this thesis is to make the effect of stiffness properties of hydraulic and electric actuators for aircraft aeroelastic phenomena. Based on theoretical analysis and modeling of the properties actuators control devise a methodology for assessing their effects on the generation of hazardous aerodynamic phenomena. It is also necessary to focus attention on methodology of experimental determination of the stiffness characteristics

    Tutor: Třetina Karel, doc. Ing., CSc.

  3. Assessment of the state of aircraft structures during the technical life of the airplane

    The PhD student will be involved in research activities within the framework of OP-VVV Advanced Aircraft Design Center, which is focused on monitoring the state of construction and diagnostics. This consistency will help to develop the research topic of dissertation work and the incorporation of a student into the research team of the Institute of Aerospace Engineeing.

    Tutor: Píštěk Antonín, prof. Ing., CSc.

  4. Automatic air transmission of METEO data and its utilisation on board in flight.

    Automatic collection, storing and transmission of METEO data on boards of flying planes and its exploitation for the FMS operation.

    Tutor: Vosecký Slavomír, doc. Ing., CSc.

  5. Automatic processing of aeronautic operation information on a civil airport

    Actual state of the art. Required applications. Volition of correponding parameters. Data processing methods used. Indication of final results to a potential user.

    Tutor: Vosecký Slavomír, doc. Ing., CSc.


Course structure diagram with ECTS credits

Study plan wasn't generated yet for this year.