Course detail

Industrial Electronics

FEKT-LPELCompulsoryMaster's (2nd cycle)Acad. year: 2017/2018Summer semester1. year of study5  credits

The course is focused onto analogue technics - linear and non-linear circuits with operational amplifiers (amplifiers, filters, oscillators, comparators, device-rectifiers, controlled limiters, signal generators). Further basic digital circuits and some special circuits are solved. An attention is paid to the problems of galvanic separation of control signals in pulse converters.

Learning outcomes of the course unit

- The graduate knows the principle of the transistor effect, he can draw the input and output characteristics system. He understands the terms active (linear) regime, switched-off state and switched-on state (saturation).
- The graduate is able to explain and to use the linearized model of a bipolar transistor from the „AC point of view“ using hybrid parameters.
- The graduate is able to do an analysis or synthesis of a DC operating point in any schematics containing bipolar transistors, resistors, DC sources and diodes.
- The graduate is able to do an analysis or synthesis of the complete circuit of a single-transistor amplifier „common emitter“ (also with a non-blocked emitter resistor), „common collector“ and „common base“.
- The graduate is able to do an analysis or synthesis of a double-acting emitter follower. He understands the terms „amplifier class A, A/B and B.
- The graduate is able to do an analysis or synthesis of low-power pulse circuits with bipolar transistors in switching regime. He knows the methods of minimization of the switch-on and switch-off delay including the usage of the anti-saturation diode.
- The graduate knows the operation of unipolar transistors MOSFET and JFET. He understands the system of output and transfer characteristics.
- The graduate can use the linearized model of unipolar transistor using admittance parameters.
- The graduate can design the single-transistor amplifier „common emitter“ with JFET or MOSFET.
- The graduate is able to do an analysis or synthesis of simple driving circuits for a power MOSFET in switching regime.
- The graduate knows the static and dynamic properties of ideal and real operational amplifier.
- The graduate knows the principle of creating the „virtual ground“ due to the high internal gain of the opamp and the existence of a negative feedback.
- The graduate is able to deduce the transfer function of basic circuits with opamps (inverting and non-inverting type – amplifiers, controllers, simple filters). He is able to draw the module frequency characteristics.
- The graduate knows practical consequences (advantages and disadvantages) of inverting and non-inverting connections. He is able to choose the most advantageous solution in a given application regarding the control electronics for pulse converters (low-pass filters + amplifiers, controllers).
- The graduate knows the principle, purpose and practical limitation in usage of differential amplifier with opamp.
- The graduate knows several special connections with opamps.
- The graduate can do an analysis and synthesis of comparators without hysteresis and with a static or dynamical hysteresis.
- The graduate knows practical methods for amplifier EMS increasing (DPS layout, supply wires, blocking, additional filtration capacities, choice of element types, influence of the input resistance etc.).
- The graduate knows the principle of linear voltage controllers – parallel or serial. He can do an analysis and synthesis of several circuits.
- The graduate can deduce the amplitude and phase condition of oscillations. He knows the principle of feedback oscillators.
- The graduate knows the analysis of an LC oscillator with a negative differential resistance.
- The graduate can design the Reinartz oscillator. He knows the analysis and practical consequences (advantages and disadvantages) of other LC oscillators (Snell, Hartley, Colpitts). He understands the term „three-point-oscillator“.
- The graduate can design the RC oscillator with non-inverting amplifier and Wien circuit. He can analyze the RC oscillator with a single-transistor amplifier „common emitter“ and a cascade of three derivation RC circuits.

Mode of delivery

20 % face-to-face, 80 % distance learning


- The student should know the calculations with complex numbers. - The student should be able to use the Kirchhoffs laws – practically, with a clear insight to a concrete circuit situation. - The student should know the practical approach to the theoretical solution of linear circuits (sequential simplification, superposition principle, replacement of a voltage source with a serial resistance by a current source with the parallel resistance or in the opposite way, Thevenins theorem). He should know to choose the most advantageous method in each situation and to use it, what needs training. He should understand that the loop current or node voltage methods are simple mechanically applicable however they lead to a system of linear equations whose solving is to heavy going and slow and therefore non-effective for hand-made circuit analysis. - The student should understand the geometrical interpretation of terms derivation, definite/indefinite integral. He must be able to draw a function created as a derivation or an integral of any previously drawn function – for example a constant, rectangle shape, linear growing etc. He must understand concretely the practical meaning of the integration constant.


Not applicable.

Recommended optional programme components

Not applicable.

Recommended or required reading

Patočka M., Vorel P.: Řídicí elektronika - pasivní obvody 2004 (CS)
Patočka M., Vorel P.: Řídicí elekronika - aktivní obvody (CS)

Planned learning activities and teaching methods

Techning methods include tutorials and practical laboratories. Students have to complete 7 homeworks during the course.

Assesment methods and criteria linked to learning outcomes

Final examination - 70points
Test - 15points
Laboratories - 15points

Language of instruction


Work placements

Not applicable.

Course curriculum

1. Physical description of a bipolar transistor, transistor effect. Setting the DC operating point of bipolar transistors.
2. Linearized model of a bipolar transistor using h-parameters, amplifier input and output impedance - consequencies, common emitter connection (with/without Re) - detai analysis form DC and AC point of view.
3. Common collector and common base connections - detail analysis from DC and AC point of view, double acting emitter follower, transfer distortion and its ellimination.
4. DC current source. Current mirror. Bipolar transistor in switching regime (non-power applications), switching-on and -off delay minimization.
5. Physical description of unipolar transistors, JFET and MOSFET as an amplifier "common emitter" (y-parameters), MOSFET in switching regime.
6. Parallel voltage regulator with Zener diode, serial regulators - principle, design of concrete circuits.
7. Operatinal amplifier (OA) - operation, statical and dynamical parameters.
8. Linear circuits with OA - inverting circuits - amplifiers, filters, controllers.
9. Linear circuits with OA - non-inverting circuits - amplifiers, filters, controllers.
10. Linear circuits with OA - differential circuits. Special (often used) circuits with OA.
11. Non-linear circuits with OA (operational rectifiers, comparators without hysteresis, with statical/dynamical hysteresis).
12. Theory of oscillators with negative differential resistance and feed-back oscillators. Basic sorting of oscillators.
13. Selected RC and LC oscillators - detail description and design.


Students learn the typical electronic circuits in industrial applications. An attention is paid especially to switching-converters-technique, electric drives and measurement.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by a regulation issued by the lecturer responsible for the course and updated for every academic year.

Type of course unit



26 hours, optionally

Teacher / Lecturer

Laboratory exercise

26 hours, compulsory

Teacher / Lecturer