Course detail

Special Measurement Methods

FEKT-DPC-TE1Acad. year: 2021/2022

Principles of nuclear magnetic resonance and imaging based on magnetic resonance. Diagnostic possibility of MRI. The principles of basic imaging measurement sequences. Programs for the processing, simulation and control of MRI experiments. MRI tomograph electronic system. Preparation of the MR experiment. Magnetic field of MR tomograph. Generation of the defined gradient magnetic fields. Characterization of nanostructures by macroscopic measurement. Methods for magnetic field mapping based on MRI and measurement of magnetic susceptibility. Tomographic images and their processing with a focus on MRI, CT and ultrasound. General issues of technical diagnostics. Diagnostics of electrical isolation systems. Accuracy of electrical measurements. Low-level measurements.
Photonic sensors. Bio-photonics.

Language of instruction

Czech

Number of ECTS credits

4

Mode of study

Not applicable.

Learning outcomes of the course unit

Experience and knowledge of measurement methods and ability to develop od this methods.

Prerequisites

The subject knowledge on the Master´s degree level is required.

Co-requisites

Not applicable.

Planned learning activities and teaching methods

Teaching methods depend on the type of course unit as specified in the article 7 of BUT Rules for Studies and Examinations. Teaching methods include lectures combined with seminars. Course is taking advantage of e-learning (Moodle) system.

Assesment methods and criteria linked to learning outcomes

Total number of points 100.

Course curriculum

1. Principles of nuclear magnetic resonance and imaging based on magnetic resonance.
2. Diagnostic possibility of MRI.
3. The principles of basic imaging measurement sequences.
4. Programs for the processing, simulation and control of MRI experiments.
5. MRI tomograph electronic system. Preparation of the MR experiment.
6. Magnetic field of MR tomograph. Generation of the defined gradient magnetic fields.
7. Characterization of nanostructures by macroscopic measurement.
8. Methods for magnetic field mapping based on MRI and measurement of magnetic susceptibility.
9. Tomographic images and their processing with a focus on MRI, CT and ultrasound.
10. General issues of technical diagnostics. Diagnostics of electrical isolation systems. Accuracy of electrical measurements.
11. Low-level measurements.
12. Photonic sensors.
13. Bio-photonics.

Work placements

Not applicable.

Aims

To obtain knowledge about special measurement methods.

Specification of controlled education, way of implementation and compensation for absences

The content and forms of instruction in the evaluated course are specified by the lecturer responsible for the course. The study results are verified continuously during the semester on the basis of the discussion.

Recommended optional programme components

Not applicable.

Prerequisites and corequisites

Not applicable.

Basic literature

Chizhik, V. I., Chernyshev, Y. S., Donets, A. V., Frolov, V. V., Komolkin, A. V., & Shelyapina, M. G. (2014). Magnetic resonance and its applications. Springer International Publishing. (CS)
Kalantar-Zadeh, K. (2013). Sensors: an introductory course. Springer Science & Business Media. (CS)

Recommended reading

Webb, A. G. (Ed.). (2016). Magnetic Resonance Technology: Hardware and System Component Design. Royal Society of Chemistry. (CS)
Rao, D. K. (Ed.). (2014). Nuclear Magnetic Resonance (NMR): Theory, Applications and Technology. Nova Publishers. (CS)
Mobli, M., & Hoch, J. C. (Eds.). (2017). Fast NMR Data Acquisition: Beyond the Fourier Transform. Royal Society of Chemistry. (CS)
Fraden, J. (2016). Handbook of Modern Sensors - Physics, Designs, and Applications. Springer Science & Business Media. (CS)

eLearning

Classification of course in study plans

  • Programme DPC-KAM Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DPC-EKT Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DPC-MET Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DPC-SEE Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DPC-TLI Doctoral, any year of study, winter semester, compulsory-optional
  • Programme DPC-TEE Doctoral, any year of study, winter semester, compulsory-optional

Type of course unit

 

Seminar

39 hours, optionally

Teacher / Lecturer

eLearning